智能汽车关键技术和发展概况课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能汽车关键技术及发展概况

1、前言:

智能车辆 (I n t e l z i g e n t V e h i c l e s , IV)是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是典型的高新技术综合体。它具有道路障碍自动识别、自动报警、自动制动、自动保持安全距离、车速和巡航控制等功能。作为智能交通系统(ITS : Intelligent Tr nasportation System )的一个重要组成部分,智能车辆系统利用传感器技术、信号处理技术、通讯技术、计算机技术等, 辨识车辆所处的环境和状态, 并根据各传感器所得到的信息做出分析和判断, 或者给司机发出劝告和报警信息, 提醒司机注意躲避危险; 或者在紧急情况下, 帮助司机操作车辆 (即辅助驾驶系统) ,防止事故的发生, 使车辆进入一个安全的状态; 或者代替司机的操作, 实现车辆运行的自动化。

智能车辆系统的引入, 可以提高交通的安全性和道路的利率。目前 , 在汽车、卡车、公交系统、工业及军用等领域, 智能车辆系统都得到了应用, 而且应用的多样性和领域还在不断增加。可以预言, 随着信息采集技术、信息处理技术、系统工程技术等相关技术的研究和发展深入, 智能车辆系统将是智能交通系统研究和发展的重要领域。

2、智能汽车关键技术及研究

智能汽车是一个汇集了众多高新科技的综合系统, 尤其是作为智能汽车关键环节的环境信息获取与智能决策控制, 更是依赖于高新技术的有力支撑, 如传感器技术、图像识别技术、电子与计算机技术、控制技术。智能驾驶系统结构如图1:

2.1 感知技术

人类在驾驶汽车时所接受的信息几乎全部来自于视觉, 交通信号、交通标志、交通图案、道路标志等均可以看作是环境对驾驶员的视觉通讯语言。同时, 人类在驾驶汽车时,通过对周围路面场景的观测来决

定采取什么样的操作。因此, 选择机器视觉作为感知路面场景的传感器是一种很自然的选择。机器视觉在智能车辆中的应用如图2 所示。

图1 智能驾驶系统结构框图

图2 机器视觉传感器在智能汽车上的应用

视觉系统在智能车辆中主要用来识别车辆周围的交通环境, 如确定车辆在车道中的位置和方位、车道的几何结构、检测车辆周围的障碍物如车辆和行人、识别交通标志和交通信号等。当机器视觉用于智能车辆时必须具备实时性、鲁棒性和实用性三方面的技术特点。实时性是指视觉处理系统的数据处理必须与车辆的高速行驶同步进行; 鲁棒性是指智能车辆对不同的道路环境如高速公路、市区标准公路、普通公路等, 不同的路面环境如路面及车道标线的宽度、颜色、纹理、动态随机障碍与车流等,以及变化的气候条件如日照及景物阴影、黄昏与夜晚、阴天与雨雪等均具有良好的适应性; 实用性是指智能车辆在体积和成本等方面能够为普通汽车用户所接受。

智能车辆系统可靠运行的前提是通过各种传感器准确的捕捉环境和车辆自身的状态信息, 并加工处理, 随后发出预警或者自动操控车辆。研究如何将传感器传来的信息加以有效处理、分析, 并准确的确定环境和车辆自身的状态是非常重要的。然而到目前为止, 没有任何一种传感器能保证在任何情况下提供完全可靠的信息, 采用多传感器融合技术, 即将多个传感器采集的信息进行合成, 形成对环境特征的综合描述的方法, 能够充分利用多传感器数据间的冗余和互补特性, 获得我们需要的、充分的信息。

目前, 在智能车辆领域, 除了视觉传感器外, 常用的还有激光雷达、毫米波雷达、声纳、红外探测、

磁导引、GPS等传感器。

2.2 决策技术

在辅助驾驶或者自动驾驶技术中, 需要依据感知系统获取的信息来进行决策判断, 进而向驾驶员发出警告或者对车辆进行控制。例如, 在车道偏离警告系统和碰撞警告系统中, 需要预测主车辆和其它车辆未来一定时间内的状态。先进决策技术包括模糊推理、强化学习、神经网络和贝叶斯网络等技术。

2.3控制技术

对自动驾驶车辆或者辅助驾驶车辆来说, 利用环境感知信息进行规划决策后需要对车辆进行控制, 比如对路径的自动跟踪, 此时性能优良的控制器成为了智能车辆必不可少的部分, 成为智能车辆的关键。智能控制代表着自动控制的最新发展阶段, 是应用计算机模拟人类智能, 实现人类脑力和体力劳动自动化的一个重要领域。智能控制是一个新兴学科, 包括递阶控制系统、专家控制系统、模糊控制系统、神经控制系统和学习控制系统等5个方面。

2.4 车辆定位与路径规划

车辆定位导航系统应用车辆自动定位技术、数字地图、通信技术, 为车辆提供路径引导、无线遥控等功能。在车辆定位导航系统中, 定位是实现导航功能的前提和基础, 车辆定位技术大致上可分为三类: 惯性导航、无线电定位和卫星定位。车辆定位导航系统如图3所示:

路径规划是智能车辆信息感知和车辆控制的桥梁, 是智能车辆自主驾驶的基础,可分为全局路径规划和局部路径规划。全局路径规划是在己知地图的情况下, 利用已知局部信息如障碍物位置和道路边界,确定可行和最优的路径, 它把优化和反馈机制很好的结合起来。局部路径规划是在全局路径规划生成的可行驶区域指导下,依据传感器感知到的局部环境信息来决策车辆当前前方路段所要行驶的轨迹。与移动机器

人路径规划相比, 车辆的行驶环境具有非结构化、动态性、不确定性等特点,因此研究者们在借用移动机器人路径规划成果的同时, 也在深入彻底研究智能车辆路径规划问题。

图3 车辆定位导航系统示意图

2.5 其它

智能车辆的关键技术还包括车辆状态随机估计和智能车辆体系结构的研究等方面。为了对车辆进行有效的控制, 必须全面准确地获取车辆的自身状态参数, 如车辆横摆角速度估计、汽车轮胎与路面之间的摩擦系数估计、以及车辆侧面碰撞模型的非线性动力学参数的辨识等。由于智能车辆系统复杂程度高、综合性强, 一般需要一组研究人员共同研究开发, 同时为了使系统能够在有限的时间和计算资源内完成各功能, 计算经常需要一定的并行性, 由此产生这样的问题一一将计算资源有效地分布在一组处理器上需要什么样的体系结构, 这就是智能车辆控制器体系机构所研究的问题。

3、支撑智能汽车发展的新理论和新技术

3.1 不确定性人工智能理论

人工智能在模拟人类的确定性智能逻辑思维方面,已经取得很大成就,但是在人类不确定性智能的模拟方面始终没有太大的进展,而在模拟人类形象思维方面尚处在探讨阶段。因此,不确定性人工智能[70]是人工智能中的研究热点,也是人工智能中的重大前沿课题。不确定性人工智能是使机器能够具备人脑一样的不确定性信息和知识的表示能力、处理能力和思维能力,是进入21世纪后新发展出来的多学科交叉渗透的新学科,它已成为当代科学技术研究的热点领域。

人类所处的这个客观世界充满了不确定性,人类自身在认知过程中也具有不确定性。因为人类的认知

相关文档
最新文档