人教版七年级数学下册第六章第一节平方根试题(含答案) (64)
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)
《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
平方根课堂练习
人教版数学七年级下册第六章实数6.1《平方根》同步练习一、选择题1.()20.7- 的平方根是( )A .-0.7 B.±0.7 C.0.7 D.0.49答案:B解析:解答:∵(-0.7)2=(±0.7)2,∴(-0.7)2的平方根是±0.7.故答案为:B .分析:此题根据平方根的定义解答即可.注意一个正数有两个平方根,它们互为相反数.2. 若 -3a =387,则a 的值是( ) A.87 B.-87 C.±87 D.-512343 答案:B知识点:立方根解析:分析:此题根据立方根的定义,可将根号外的符号移入根号内,结合题意即可求出,属于基础题.3.有以下说法中准确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都能够用数轴上的点来表示.A.1B.2C.3D.4答案:B知识点:平方根解析:解答::(1)开方开不尽的数是无理数,但是无理数不但仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法准确;(3)0是有理数,故(3)说法错误;(4)无理数都能够用数轴上的点来表示,故(4)说法准确.应选:B.分析:此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.4. 若2a=25,b=3,则a+b=()()29±A.-8B.±8C.±2D. ±8或±2答案:D知识点:平方根;绝对值解析:解答:∵a2=25,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=5+3=8,当a=5,b=-3时,a+b=5-3=2,当a=-5,b=3时,a+b=-5+3=-2,当a=-5,b=-3时,a+b=-5-3=-8,综上所述,a+b=±8或±2.故答案为:D.分析:此题根据有理数的乘方和绝对值的性质分别求出a、b,然后分类讨论.难点在于分情况讨论.5. 81的平方根是()A.±3B.±9C.3D.9答案:B知识点:平方根解析:±9=81,解答:∵()2∴81的平方根是±9.应选B.分析:此题根据平方根的定义实行解答即可,即假设一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.6.若2m-4与3m-1是同一个数的平方根,则m为()A.-3B.1C.-1D.-3或1答案:D知识点:平方根解析:解答:依题意得:2m-4=-(3m-1)或2m-4=3m-1,解得m=1或-3;∴m的值为1或-3.故答案为D.分析:因为同一个数的两个平方根互为相反数,由此能够得到2m-4=-(3m-1),解方程即可求解.7. 以下说法准确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身答案:D知识点:平方根解析:解答:A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比方-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D准确;应选:D.分析:此题根据平方根的定义即可解答.用排除法作答,考查了考生对正负数的立方根理解.)A.6B.±6C.D.答案:D知识点:平方根解析:应选D.分析:此题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,一A.1B.2C.3D.4答案:D知识点:平方根解析:根据平方根的被开方数是非负数,可得答案.注意开平方的被开方数是非负数.应选:D.分析:A.±2B.2C.4D.±4答案:A知识点:平方的非负性;绝对值的非负性;平方根解析:解答:根据题意得,b-4=0,a-1=0,解得a=1,b=4,所以14 ab=,1 4的平方根是12±,应选A.根的定义解答即可.几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.11. 一个数的平方等于16,则这个数是()A.+4 B.-4 C.±4 D.±8答案:C知识点:平方根解析:解答:∵(±4)2=16,∴所以一个数的平方等于16,则这个数是±4.应选C.分析:此题考查了平方根的定义:假设一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12.()25-的平方根是()A.-5B.±5C.5D.25答案:B知识点:有理数的乘方;平方根解析:解答:∵(-5)2=(±5)2,∴(-5)2的平方根是±5.应选B.分析:此题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.以下说法中错误的选项是( )A.0的算术平方根是0B.36的平方根为±6C.=5D.-4的算术平方根是-2答案:D知识点:平方根;算术平方根解析:解答:A、0的算术平方根是0,说法准确,故本选项错误;B、36的平方根为±6,说法准确,故本选项错误;C、=5,说法准确,故本选项错误;D、-4没有算术平方根,说法错误,故本选项准确.应选D.分析:根据平方根、算术平方根的定义,结合选项即可得出答案.14.以下语句中准确的是( )A.的平方根是9B.的平方根是±9C.的算术平方根是±3D.9的算术平方根是3答案:D知识点:平方根;算术平方根解析:解答:A、的平方根是±3,故本选项错误;B、的平方根是±3,故本选项错误;C、的算术平方根是3,故本选项错误;D、9的算术平方根是3,故本选项准确;应选D.分析:求出=9,再求出9的平方根和算术平方根,即可得出选项.15.下面说法准确的是( )A.4是2的平方根B.2是4的算术平方根C.0的算术平方根不存有D.-1的平方的算术平方根是-1答案:B知识点:平方根;算术平方根解析:解答:A、4不是2的平方根,故本选项错误;B、2是4的算术平方根,故本选项准确;C、0的算术平方根是0,故本选项错误;D、-1的平方为1,1的算术平方根为1,故本选项错误.应选B.分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.二.填空题答案:4知识点:平方根解析:解答:设正方形的边长是x平方厘米,则x2=16,∵x>0,∴x=4,故答案为:4.分析:17.若一个数的算术平方根是8,则这个数是_____.答案:64知识点:算术平方根解析:解答:∵一个数的算术平方根是8,∴这个数是28=64.故答案为:64.分析:根据算术平方根的定义能够得到这个数就是8的平方,由此即可得到答案.18. 81的平方根是_____;的算术平方根是_____.答案:±9;2知识点:平方根;算术平方根解析:解答:81的平方根是=±9;的算术平方根是4,4的算术平方根即为2;故填±9;2.分析:前面题目能够根据平方根的定义求出结果;后面题目先根据算术平方根的定义化简,然后即可求出其结果的算术平方根.19. 一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是_____.答案:知识点:算术平方跟解析:解答:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.分析:首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.20.已知:若≈1.910,≈6.042,则≈_____.答案:604.2知识点:算术平方根解析:解答:根据被开方数扩大100倍,算术平方根扩大10倍,可得答案.解:若≈1.910,≈6.042,则≈604.2,故答案为:604.2.分析:三.解答题.21. 已知3a-2的算术平方根是4,2a+b-2的算术平方根是3,求a、b的值.答案:a=6,b=-1.知识点:算术平方根解析:解答:∵16的算术平方根是4,∴3a-2=16,解得:a=6,∵9的算术平方根是3,a=6,∴2×6+b-2=9,解得:b=-1,可得:a=6,b=-1.分析:根据算术平方根的定义得出3a-2=16,以及2a+b-2=9进而求出a,b的值即可.22.我家客厅的面积为21.6m2,要想用240块相同的正方形地砖铺设,问每块地砖的边长应为多少?答案:0.3m知识点:算术平方根解析:解答:一块地砖的面积为:21.6÷240=0.09m2,∴每块地砖的边长应为=0.3m.分析:先求出一块地砖的面积,再根据算术平方根的定义解答.23. 判断以下各数是否有平方根?并说明理由.(1)(﹣3)2;(2)0;(3)﹣0.01;(4)﹣52;(5)﹣a2;(6)a2﹣2a+2.答案:略知识点:平方根解析:解答:(1)有平方根,﹣3的平方是9;(2)有平方根,0是非负数;(3)没有平方根,负数没有平方根;(4)没有平方根,负数没有平方根;(5)a等于零时,有平方根,a≠0时没有平方根,负数没有平方根;(6)有平方根,被开方数是大或等于1的数.分析:此题考查了平方根,根据被开方是非负数可得答案.注意被开方数是非负数.24. 求以下各数的平方根:(1)121;(2)0.01;(3)2;(4)(﹣13)2;(5)﹣(﹣4)3.答案:(1)±11;(2)±0.1;(3);(4)±13(5)±8.知识点:平方根解析:解答:(1)=±11;(2)=±0.1;(3)==;(4)=±13;(5)==±8.分析:此题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.25. 已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.答案:13知识点:平方根;代数式求值解析:解答:∵2m+2的平方根是±4,3m+n+1的平方根是±5,∴2m+2=16,3m+n+1=25,联立解得,m=7,n=3,∴m+2n=7+2×3=13.分析:根据开方与平方是互逆运算,求出2m+2的值,与3m+n+1的值,然后两式联立求出m、n的值,再代入实行计算即可求解.。
2022-2023学年人教版七年级数学下册《6-1平方根》同步达标测试题(附答案)
2022-2023学年人教版七年级数学下册《6.1平方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.64的平方根是()A.8B.±8C.4D.±42.下列计算正确的是()A.B.=±4C.=﹣4D.=43.的算术平方根是()A.B.C.D.4.若,则m n的值是()A.﹣1B.0C.1D.25.下列说法:(1)±3是9的平方根;(2)9的平方根是±3;(3)3是9的平方根;(4)9的平方根是3,其中正确的是()A.3个B.2个C.1个D.4个6.一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是()A.±B.a﹣1C.a2﹣1D.±7.已知与是一个正数的平方根,则这个正数是()A.1或9B.3C.1D.818.有一个数值转换器,原理如图所示:当输入的x=64时,输出的值是()A.2B.8C.D.2二.填空题(共8小题,满分40分)9.=;的算术平方根为.10.若,则xy的算术平方根是.11.若≈10.1,=3.19,则≈.12.小杰卧室地板的总面积为16平方米,恰好由64块相同的正方形的地板砖铺成,则每块地板砖的边长是米.(答案用小数表示)13.2m﹣4和6﹣m是正数a的两个平方根,则a的值为.14.如图,一个长方形被分割成四部分,其中图形①,②,③都是正方形,且正方形①,③的面积分别为16和3,则图中阴影部分的面积为.15.一个数值转换器,如图所示:8①当输入的x为2时,输出的y值是.②当输出的y值为时,请写出两个满足条件的x的值为和.16.观察等式2;3;4;…;根据规律写出第(n ﹣1)个等式为(n为自然数,且n≥2).三.解答题(共9小题,满分40分)17.求x的值.(1)8(x+1)2=27;(2)4x2﹣16=0.18.已知3b+3的平方根为±3,3a+b的算术平方根为5.(1)求a,b的值;(2)求4a﹣6b的平方根.19.(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)应用:已知≈2.236,则≈,≈;(3)拓展:已知≈2.449,≈7.746,计算和的值.20.交通警察通常根据刹车时后车轮滑过的距离估计车辆行驶的速度.在某高速公路上,常用的计算公式是v2=256(df+1),其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数,f=1.25.在调查这条高速公路的一次交通事故中,测得d=19.2m,求肇事汽车的速度大约是多少.21.如图,某校规划一块正方形场地ABCD,设计分别与AB,AD平行的横向通道和纵向通道,其余部分铺上草皮,这4块草坪为相同的长方形,每块草坪的长与宽之比是10:9,且草坪的总面积为90m².(1)求每块草坪的长为多少m?(2)若横向通道的宽是纵向通道的宽的3倍,求纵向通道的宽为多少m?22.为了切实减轻学生的课业负担,各地中小学积极响应,开展一系列形式多样的课后服务.某次晚托兴趣活动中:(1)小红用两个大小一样的小正方形纸片,剪拼出了一个面积400cm2的大正方形纸片.如图,则每个小正方形的边长是;(2)小美想用这块面积为400cm2的大正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为6:5,且要求长方形的四周至少留出1cm的边框.请你用所学过的知识来说明,能否用这块纸片裁出符合要求的纸片.参考答案一.选择题(共8小题,满分40分)1.解:64的平方根是±8,故选:B.2.解:A、±=±4,故A错误;B、=4,故B错误;C、负数没有算术平方根,故C错误;D、=4,故D正确.故选:D.3.解:原式=,的算术平方根是,故选:A.4.解:∵(m+1)2≥0,,∴当,则m+1=0,n﹣2=0.∴m=﹣1,n=2.∴m n=(﹣1)2=1.故选:C.5.解:由于9的平方根有两个,是3和﹣3,因此(1)±3是9的平方根,是正确的;(2)9的平方根是±3是正确的;(3)3是9的平方根是正确的;(4)9的平方根是3是错误的;综上所述正确的有:(1)(2)(3),共3个,故选:A.6.解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,∴与这个自然数相邻的上一个自然数的平方根是±,故选:D.7.解:∵≥0,≥0,而与是一个正数的平方根,∴=,即2a﹣1=﹣a+2,解得a=1,当a=1时,==1,∴这个正数是1,故选:C.8.解:当x=64时,∴=8,是有理数,∴=2,是无理数,∴输出的值是2,故选:D.二.填空题(共8小题,满分40分)9.解:=±7;∵=4,∴的算术平方根为2.故答案为:±7,2.10.解:∵,|3x﹣1|≥0,,∴3x﹣1=0,y﹣3=0,解得x=,y=3,∴xy==1,∴xy的算术平方根是.故答案为:1.11.解:==≈=1.01,故答案为:1.01.12.解:由题意知,每块地板砖的面积为16÷64=0.25(平方米),则每块地板砖的边长是=0.5(米),故答案为:0.5.13.解:∵2m﹣4和6﹣m是正数a的两个平方根,∴2m﹣4+(6﹣m)=0,解得m=﹣2,所以这两个平方根分别为:﹣8、8,∴a=64,故答案为:64.14.解:正方形①的边长是=4,正方形③的边长是,正方形②的边长是(4﹣),即阴影的宽是()=,阴影的长是:×()=,故答案为:.15.解:(1)当x=2时,输出y=.故答案为:;(2)当x=3时,y=,当x=9时,=3,3是有理数,不能输出,是无理数,y=;故答案可为:3;9.16.解:∵2;3;4;…;∴第(n﹣1)个等式为n(n为自然数,且n≥2),故答案为:n.三.解答题(共5小题,满分40分)17.解:(1)8(x+1)2=27,(x+1)2=,x+1=±,∴x=﹣1+或x=﹣1﹣;(2)4x2﹣16=0,4x2=16,x2=4,∴x=±2.18.解:(1)∵3b+3的平方根为±3,∴3b+3=9,解得b=2,∵3a+b的算术平方根为5,∴3a+b=25,∵b=2,∴a=,(2)∵a=,b=2,∴4a﹣6b=,∴4a﹣6b的平方根为.19.解:(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2)应用:已知≈2.236,则≈0.2236,≈22.36;故答案为:0.2236,22.36;(3)==≈2×7.746≈15.492,==×≈3×0.2449≈0.7347.20.解:将d=19.2m,f=1.25代入v2=256(df+1),得v2=256×(19.2×1.25+1)=6400,∴v=.答:肇事汽车的速度大约是80km/h.21.解:(1)设每块草坪的长为10xm,宽为9xm,根据题意得10x•9x=×90,解之得x=±0.5,∵x>0,∴x=0.5,∴10x=5;答:每块草坪的长为5m;(2)设纵向通道的宽为ym,则横向通道的宽为3ym,根据题意得3y+9×0.5×2=y+5×2,解之得y=0.5.答:纵向通道的宽为0.5m.22.解:(1)由拼图可知,每个小正方形的面积为200cm2,所以小正方形的边长为=10(cm),故答案为:10cm;(2)不能,理由:设长方形的长为6a,则宽为5a,由长方形的面积可得,6a•5a=300,解得a=(a>0),所以这个长方形的长为6,宽为5,因为6+2>20,所以,不能剪出符合条件的长方形.。
七年级数学下册第六章实数6.1平方根练习卷含解析新版新人教版
6.1 平方根一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2 2.|﹣9|的平方根等于()A.±3 B.3 C.±D.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5 4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81 5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.6.(﹣2)2的平方根是.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3 10.化简的结果是()A.﹣4 B.4 C.±4 D.2 11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3 12.的算术平方根是()A.±13 B.13 C.﹣13 D.13.若=1,则﹣(2x﹣3)=.14.若5x﹣19的算术平方根是4,求3x+9的平方根.15.的算术平方根是()A.B.﹣C.D.±16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣17.的算术平方根是()A.2 B.4 C.±2 D.±418.请你观察,思考下列计算过程:,由此猜想=.19.已知=1.8,若=180,则a=.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是.人教新版七年级下学期《6.1 平方根》2020年同步练习卷参考答案与试题解析一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2【分析】原式利用算术平方根,平方根定义计算即可得到结果.【解答】解:=4,4的平方根是±2,故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.|﹣9|的平方根等于()A.±3 B.3 C.±D.【分析】根据平方根的定义解答即可.【解答】解:|﹣9|的平方根等于±3,故选:A.【点评】此题考查平方根的问题,关键是根据一个正数的平方根有两个.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a ﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为 4 .【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.6.(﹣2)2的平方根是±2 .【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.【分析】利用正数的两平方根和为0,进而求出m的值,即可得出答案.【解答】解:∵一正数a的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得:m=﹣2,则2m﹣3=﹣7,解得a=49.【点评】此题主要考查了平方根的定义,得出m的值是解题关键.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.【分析】根据题意可求出2x﹣y及3x+y的值,从而可得出x﹣y的值,继而可求出x﹣y的平方根.【解答】解:由题意得:2x﹣y=9,3x+y=16,解得:x=5,y=1,∴x﹣y=4,∴x﹣y的平方根为±=±2.【点评】本题主要考查了平方根的知识,难度不大,解题的关键是求x、y的值.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3【分析】先将原数化简,然后根据平方根的性质即可求出答案.【解答】解:∵=3,∴3的平方根是±,故选:B.【点评】本题考查平方根的概念,解题的关键是将原数进行化简,属于基础题型.10.化简的结果是()A.﹣4 B.4 C.±4 D.2【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3【分析】直接化简数据,再利用算术平方根的定义得出答案.【解答】解:(﹣3)2=9,则9算术平方根是:3.故选:B.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题关键.12.的算术平方根是()A.±13 B.13 C.﹣13 D.【分析】本身是一个算术平方根的运算,表示13,求的算术平方根即为求13的算术平方根.【解答】解:∵=13∴的算术平方根即为13的算术平方根结果为故选:D.【点评】本题考查的是算术平方根的运算,关键是要看清本题中涉及两次算术平方根的运算.13.若=1,则﹣(2x﹣3)= 3 .【分析】直接利用算术平方根的定义得出x的值,进而得出答案.【解答】解:∵=1,∴x+1=1,解得:x=0,则﹣(2x﹣3)=3.故答案为:3.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.14.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.15.的算术平方根是()A.B.﹣C.D.±【分析】直接利用算术平方根的定义得出答案.【解答】解:=的算术平方根是:.故选:C.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣【分析】观察所给数字可知:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是=;第四个数字是﹣=﹣;继而即可总结规律,求出第2015个数.【解答】解:观察可以发现:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是==;第四个数字是﹣=﹣;…;可得第2015个数即是﹣,故选:D.【点评】本题主要考查了数字变化,算式平方根的性质,数列规律问题,找出一般规律是解题的关键.17.的算术平方根是()A.2 B.4 C.±2 D.±4【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.18.请你观察,思考下列计算过程:,由此猜想=111 111 111 .【分析】观察给出的计算过程,可以看出被开方数中间每增加两位数结果就增加一个1,因为12345678987654321比121多出7个两位数,所以可得结果是111 111 111.【解答】解:∵,∴=111 111 111.故答案为:111 111 111.【点评】本题考查了信息获取能力,先利用已知的计算,认真观察是解决此类问题的关键.19.已知=1.8,若=180,则a=32400 .【分析】根据被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位求解可得.【解答】解:∵=1.8,∴=180,则a=32400,故答案为:32400.【点评】本题主要考查算术平方根,解题的关键是掌握被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为(17,2).【分析】根据规律发现,被开方数是从2开始的偶数列,最后一个数的被开方数是204,所以最大的有理数是被开方数是196的数,然后求出196在这列数的序号,又6个数一组,求出是第几组第几个数,即可确定它的位置.【解答】解:∵2=,∴这列数中最大的数是=14,设196是这列数中的第n个数,则2n=196,解得n=98,观察发现,每6个数一行,即6个数一循环,∴98÷6=16…2,∴是第17组的第2个数.最大的有理数n的位置记为(17,2).故答案为:(17,2).【点评】本题利用算术平方根考查了数字的规律变化问题,求出最大的有理数的序号,并6个数作为一个循环组是解题的关键.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是 2 .【分析】根据算术平方根恒大于等于0,即可确定出最小值.【解答】解:∵≥0,∴+2≥2,即的最小值是2.故答案为:2.【点评】此题考查了非负数的性质.熟练掌握算术平方根的非负数性质是解本题的关键.。
人教版数学七年级下册6.1 算术平方根同步习题+答案
6.1算术平方根一、选择题1. 9的算术平方根是()A.81B.3C.±3D.−32. 下列运算正确的是()A.√−22=−2B.√(−3)33=3C.√2.5=0.5D.√23=2√23. 14的算术平方根是()A.12B.±116C.±12D.1164. √16的平方根是()A.4B.±4C.±2D.25. 下列各式中正确的是()A.√9=±3B.√83=±2 C.√−4=−2 D.√(−5)2=56. 下列说法中正确的是()A.−2是4的平方根B.算术平方根等于它本身的数一定是1C.9的立方根是3D.近似数3.06×105精确到百分位7. √16的平方根是()A.±4B.4C.±2D.+28. 下列判断正确的是( ) A.√16=±4 B.−9的算术平方根是3 C.27的立方根是±3D.正数a 的算术平方根是√a9. 下列说法正确的是( ) A.9的平方根是3B.算术平方根等于它本身的数一定是1C.−2是4的平方根D.√16的算术平方根是410. 下列说法中,正确的是( ) A.(−2)3的立方根是−2 B.0.4的算术平方根是0.2 C.√64的立方根是4D.16的平方根是411. 下列说法:①64的立方根是8,②49的算数平方根是±7,③127的立方根是13,④116的平方根是14,其中正确说法的个数是( )A.1B.2C.3D.412. 已知实数a 的一个平方根是−2,则此实数的算术平方根是 ( ) A.±2 B.−2 C.2 D.4二、填空题13. 4是________的算术平方根. 14. √9的算术平方根是________.3=________.√(−2)2=________.15. 计算:√(−2)316. √81的平方根是________.17. 64的算术平方根是________,平方根是________,立方根是________.的算术平方根是________.18. √16的平方根________,338三、解答题19. 已知:3x+y+7的立方根是3,25的算术平方根是2x−y,求:(1)x,y的值;(2)x2+y2的平方根.20. 已知2b+1的平方根为±3,3a+2b−1的算术平方根为4,求a+6b的立方根.精品文档,可编辑,仅供下载一、选择题1.【答案】B2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】A7.【答案】C8.【答案】D9.【答案】C10.【答案】A11.【答案】A12.【答案】C二、填空题13.【答案】1614.【答案】√315.【答案】−2,216.【答案】±317.【答案】8,±8,418.【答案】±2,3√64三、解答题(本题共计 2 小题,每题10 分,共计20分)19.【答案】解:(1)由题易得,{√3x+y+73=3,√25=2x−y,化简得{2x−y=5,3x+y=20,解得{x=5,y=5,故x,y的值均为5.(2)由(1)知x,y的值均为5,则x2+y2的平方根为±√(x^2+y^2 )=±√52+52=±√25+25=±√50 =±5√2.20.【答案】解:∵ (±3)2=9,∵ 2b+1=9,∵ b=4.∵ 42=16,∵ 3a+2b−1=16,∵ 3a+7=16,解得a=3,∵ a+6b=3+4×6=3+24=27.∵ 33=27,∵ 27的立方根是3,即a+6b的立方根是3.。
2021-2022学年七年级数学下册6.1《平方根》同步达标测试题(含答案)
2021-2022学年人教版七年级数学下册《6-1平方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列各式中正确的是()A.B.C.D.2.下列关于数的平方根说法正确的是()A.3的平方根是B.2的平方根是±4C.1的平方根是±1D.0没有平方根3.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣54.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个5.若x+3是9的一个平方根,则x的值为()A.0B.﹣6C.0或﹣6D.±66.的算术平方根是()A.±3B.3C.﹣3D.97.数学式子±=±3表示的意义是()A.9的平方根是±3B.±9的平方根是±3C.9的算术平方根是±3D.±9的算术平方根是±38.有一个数值转换器,原理如下,当输入的x为81时,输出的y是()A.B.9C.3D.2二.填空题(共6小题,满分30分)9.已知某数的一个平方根为,则该数是,它的另一个平方根是.10.若+|y﹣1|=0,则(y﹣x)2022=.11.在做浮力实验时,小华用一根细线将一圆柱体铁块拴住,完全浸入盛满水的溢水杯中,并用量筒量得从溢水杯中溢出的水的体积为60立方厘米,小华又将铁块从溢水杯中拿出来,量得溢水杯的水位下降了0.8厘米,则溢水杯内部的底面半径为厘米(π取3).12.已知a2+=4a﹣4,则的平方根是.13.若|a﹣2021|+=2,其中a,b均为整数,则符合题意的有序数对(a,b)的组数是.14.若一个正数的两个平方根分别为x﹣7和x+1,则这个正数是.三.解答题(共6小题,满分50分)15.已知一个数m的两个不相等的平方根分别为a+2和3a﹣6.(1)求a的值;(2)求这个数m.16.解方程:(1)4x2=16;(2)9x2﹣121=0.17.(1)已知+|2x﹣3|=0,求x+y的平方根.(2)已知a、b满足+|b﹣|=0,解关于x的方程(a+2)x2﹣b2=a﹣1.18.已知a2=16,|﹣b|=3,解下列问题:(1)求a﹣b的值;(2)若|a+b|=a+b,求a+b的平方根.19.列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为294cm2.(1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为157cm2的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14)20.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.参考答案一.选择题(共8小题,满分40分)1.解:A.=5,故A不符合题意;B.=5,故B符合题意;C.被开方数小于0,无意义,故C不符合题意;D.被开方数小于0,无意义,故D不符合题意;故选:B.2.解:A、3的平方根是±,原说法错误,故本选项不合题意;B、2的平方根是±,原式说法错误,故本选项不合题意;C、1的平方根是±1,原说法正确,故本选项符合题意;D、0的平方根是0,原说法错误,故本选项不合题意;故选:C.3.解:∵+|b﹣4|=0,而,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,∴a﹣b=﹣1﹣4=﹣5.故选:D.4.解:①=9,﹣3是的平方根,故①正确;②7是(﹣7)2的算术平方根,故②错误;③25的平方根是±5,故③正确;④﹣9没有平方根,故④错误;⑤0的算术平方根是0,故⑤错误;⑥=3,的平方根为,故⑥正确;⑦平方根等于本身的数有0,故⑦错误.故选:C.5.解:∵x+3是9的一个平方根,∴x+3=3或x+3=﹣3,解得:x=0或x=﹣6.故选:C.6.解:∵=9,∴的算术平方根是:=3.故选:B.7.解:根据平方根的定义,±=±3表示的意义是9的平方根是±3.故选:A.8.解:由题意可得:81的算术平方根是9,9的算术平方根是3,则3的算术平方根是,故输出的y是.故选:A.二.填空题(共6小题,满分30分)9.解:某数的一个平方根是,那么这个数是6,它的另一个平方根是﹣,故答案为:6,﹣.10.解:∵+|y﹣1|=0,∴x﹣2=0,y﹣1=0,∴x=2,y=1,∴(y﹣x)2022=(1﹣2)2022=(﹣1)2022=1.故答案为:1.11.解:设溢水杯内部的底面半径为x,由题意得:πx2×0.8=60.∴x2==25.∵x>0.∴x==5(厘米).故答案为:5.12.解:a2+=4a﹣4,,,a﹣2=0,b﹣2=0,解得a=2,b=2,∴,∴的平方根是.故答案为:.13.解:∵|a﹣2021|+=2,其中a,b均为整数,又∵|a﹣2021|≥0,≥0,∴可分以下三种情况:①|a﹣2021|=0,=2,解得:a=2021,b=﹣2017;②|a﹣2021|=1,=1,解得:a=2020或2022,b=﹣2020;③|a﹣2021|=2,=0,解得:a=2023或2019,b=﹣2021;∴符合题意的有序数对(a,b)的组数是5.故答案为:5.14.解:根据题意,(x﹣7)+(x+1)=0,解得x=3,∴x+1=3+1=4,∵42=16,∴这个正数是16.故答案为:16.三.解答题(共6小题,满分50分)15.解:(1)∵数m的两个不相等的平方根为a+2和3a﹣6,∴(a+2)+(3a﹣6)=0,∴4a=4,解得a=1;(2)∴a+2=1+2=3,3a﹣6=3﹣6=﹣3,∴m=(±3)2=9,∴m的值是9.16.解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.17.解:(1)∵+|2x﹣3|=0,又∵≥0,|2x﹣3|≥0,∴x=,y=﹣,∴x+y=1,∴x+y的平方根为±1.(2)∵+|b﹣|=0,又∵≥0,|b﹣|≥0,∴a=﹣4,b=,∴方程为﹣2x2﹣3=﹣5,∴x2=1,∴x=±1.18.解:(1)∵a2=16,|﹣b|=3,∴a=±4,b=±3.∴当a=4,b=3,则a﹣b=4﹣3=1;当a=4,b=﹣3,则a﹣b=4﹣(﹣3)=7;当a=﹣4,b=3,则a﹣b=﹣4﹣3=﹣7;当a=﹣4,b=﹣3,则a﹣b=﹣4﹣(﹣3)=﹣1.综上:a﹣b=±1或±7.(2)∵|a+b|=a+b,∴a+b≥0.∴a+b=1或7.∴当a+b=1时,a+b的平方根为±1;当a+b=7时,a+b的平方根为±.综上:a+b的平方根为±1或±.19.解:设长方形纸片的长为3xcm,宽为2xcm.依题意,3x•2x=294,6x2=294,x2=49,x=±7,∵x>0,∴x=7,∴长方形的纸片的长为21厘米,宽为14厘米,(21+14)×2=70厘米.答:纸片的周长是70厘米.(2)设圆形纸片的半径为r,S=πr2=157,r2=50,由于长方形纸片的宽为14厘米,则圆形纸片的半径最大为7,72=49<50,所以不能裁出想要的圆形纸片.20.解:(1)裁剪方案如图所示:(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3xcm,则宽为2xcm,则3x•2x=300,解得:x=5或x=﹣5(舍),∴长方形纸片的长为15cm,又∵(15)2=450>202即:15>20,∴小丽不能用这块纸片裁出符合要求的纸片.。
2022-2023学年人教版七年级数学下册《6-1平方根》同步练习题(附答案)
2022-2023学年人教版七年级数学下册《6.1平方根》同步练习题(附答案)一.选择题1.25的算术平方根是()A.±5B.5C.±D.2.计算的结果是()A.2B.±2C.D.43.已知a﹣7和2a+1是一个正数x的平方根,则这个正数x=()A.2B.2或﹣8C.25D.25或225 4.如图,输入m=2,则输出的数为()A.8B.16C.32D.645.已知a,b满足(a﹣1)2+=0,则a+b的值是()A.﹣2B.2C.﹣1D.06.若≈7.149,≈22.608,则的值约为()A.71.49B.226.08C.714.9D.2260.8 7.平方根是±的数是()A.B.C.D.±8.一个正数的两个平方根分别为2m﹣1与2﹣m,则m的值为()A.1B.2C.﹣1D.﹣2 9.若m2=4,则m=()A.2B.﹣2C.±2D.±10.下列说法正确的是()A.的平方根是B.﹣25的算术平方根是5C.(﹣5)2的平方根是﹣5D.0的平方根和算术平方根都是0二.填空题11.物体在月球上自由下落的高度h(米)和下落时间t(秒)的关系:大约是h=0.8t2.(1)一物体从高空下落2秒时,下落的高度为;(2)当h=20时,物体下落所需要的时间为.12.若一个正数的两个平方根分别为a与﹣2a+3,则这个正数为.13.若|4﹣2x|+(y﹣3)2=0,则x+y=.14.已知=1.8,若=18,则a=.15.若在两个连续整数a、b之间,那么a+b的值是.16.已知一个数的一个平方根是﹣10,则另一个平方根是.17.若的值为有理数,请你写出一个符合条件的实数a的值.18.计算:=.19.若(a﹣2)2+|b+3|+=0,则6a+2b﹣c=.20.已知3a m b5与﹣b n a3的和是单项式,则n2﹣m2的平方根是.三.解答题21.求下列各式中x的值.(1)9x2﹣25=0;(2)(x﹣1)2=36.22.已知x=1﹣2a,y=a+4.(1)若x的算术平方根为3,求a的值;(2)如果一个正数的平方根分别为x,y,求这个正数.23.已知正实数x的平方根分别是n和n+a(n<0),若a=4,求n+a的平方根.24.已知x=,z是9的平方根,求5z﹣2x的值.25.如果A的两个平方根分别是2x﹣1与3x﹣4,求A的值.26.已知2a﹣1的平方根是±3,4a+2b+1的算术平方根是5,求a﹣2b的平方根.27.小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为2:3,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.28.若一个含根号的式子可以写成的平方(其中a,b,m,n都是整数,x 是正整数),即,则称为完美根式,为的完美平方根.例如:因为,所以是的完美平方根.(1)已知是的完美平方根,求a的值;(2)若是的完美平方根,用含m,n,x的式子分别表示a,b;(3)已知是完美根式,请写出它的一个完美平方根.参考答案一.选择题1.解:∵52=25,∴25的算术平方根是5,故选:B.2.解:原式=2,故选:A.3.解:∴a﹣7和2a+1是一个正数x的平方根,当a﹣7=2a+1时,解得a=﹣8,∴﹣8﹣7=﹣15,∴(﹣15)2=225;当a﹣7和2a+1互为相反数时,﹣(a﹣7)=2a+1,解得a=2,∴7﹣a=5,∴x=52=25.故x的值为25或225.故选:D.4.解:∵m=2时,m2=(2)2=8<10,∴=4,再输入4,42=16>10,∴输出的数是16.故选:B.5.解:∵(a﹣1)2+=0,(a﹣1)2≥0,≥0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,则a+b=1+(﹣2)=﹣1.故选:C.6.解:==×100≈7.149×100=714.9,故选:C.7.解:∵()2=,∴平方根是±的数是,故选:C.8.解:∵一个正数的两个平方根分别为2m﹣1与2﹣m,∴2m﹣1=m﹣2,解得m=﹣1.故选:C.9.解:∵m2=4,∴m=±=±2.故选:C.10.解:A.的平方根为±,所以A选项不符合题意;B.﹣25没有算术平方根,所以B选项不符合题意;C.(﹣5)2=25,25的平方根为±5,所以C选项不符合题意;D.0的平方根为0,0的算术平方根为0,所以D选项符合题意.故选:D.二.填空题11.解:(1)当t=2时,h=0.8t2=0.8×22=3.2(米),故答案为:3.2米;(2)当h=20时,即0.8t2=20,解得t=5或t=﹣5<0,舍去,故答案为5s.12.解:∵一个正数的两个平方根为a与﹣2a+3,∴a+(﹣2a+3)=0,解得:a=3,∴这个正数为32=9,故答案为:9.13.解:根据题意得:4﹣2x=0,y﹣3=0,解得:x=2,y=3,则x+y=2+3=5.故答案是:5.14.解:∵=×10=1.8×10=18,而=18,∴a=324,故答案为:324.15.解:∵62=36,72=49,而36<39<49,∴6<<7,∵在两个连续整数a、b之间,∴a=6,b=7,∴a+b=6+7=13,故答案为:13.16.解:∵一个数的一个平方根是﹣10,∴这个数是(﹣10)2=100,∴100的平方根为±10,∴另一个平方根是10,故答案为:10.17.解:=3,3是有理数.故答案为:(答案不唯一).18.解:=4﹣π,故答案为:4﹣π.19.解:根据题意得:a﹣2=0,b+3=0,c﹣1=0,解得a=2,b=﹣3,c=1.则原式=6×2+2×(﹣3)﹣1=12﹣6﹣1=5.故答案是:5.20.解:由题意得:m=3,n=5,∴n2﹣m2=52﹣32=25﹣9=16,∴n2﹣m2的平方根是±4,故答案为:±4.三.解答题21.解:(1)移项得,9x2=25,两边都除以9得,x2=,由平方根的定义得,x=±;(2)(x﹣1)2=36,由平方根的定义得,x﹣1=±6,即x=7或x=﹣5.22.解:(1)∵x的算术平方根为3,∴x=32=9,∵x=1﹣2a,∴1﹣2a=9,∴a=﹣4;(2)根据题意得:x+y=0,即:1﹣2a+a+4=0,∴a=5,∴x=1﹣2a=1﹣2×5=1﹣10=﹣9,∴这个正数为(﹣9)2=81.23.解:∵正实数x的平方根是n和n+a,∴n+n+a=0,∴a=﹣2n,∵a=4,∴n=﹣2,∴n+a=2.∴n+a的平方根是.24.解:∵x=,∴x=5,∵z是9的平方根,∴z=±3,∴分两种情况:当z=+3时,5z﹣2x=3×5﹣2×5=5;当z=﹣3时,5z﹣2x=﹣3×5﹣2×5=﹣25.故5z﹣2x的值为:5或﹣25.25.解:∵A的两个平方根分别是2x﹣1与3x﹣4,∴①(2x﹣1)+(3x﹣4)=0,2x﹣1+3x﹣4=0,5x﹣5=0,x=1,此时2x﹣1=2×1﹣1=1,3x﹣4=3×1﹣4=﹣1,∴A的值为12=1;②2x﹣1=3x﹣4,﹣x=﹣3,x=3,∴2x﹣1=2×3﹣1=5,3x﹣4=3×3﹣4=5,∴A的值为52=25;∴A的值为:1或25.26.解:∵2a﹣1的平方根是±3,4a+2b+1的算术平方根是5,∴2a﹣1=9,∴,∴a﹣2b=5﹣2×2=1,∴1的平方根是±1,即a﹣2b的平方根是±1.27.解:(1)解:设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得,3x•2x=300,6x2=300,x2=50,∵x>0,∴x==5,∴长方形纸片的长为15cm,答:长方形纸片的长是15cm,宽是10cm;(2)不同意小于同学的说法.理由:∵50>49,∴5 >7,∴15>21.∴长方形纸片的长大于20cm,由正方形纸片的面积为400cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长,∴不能用这块纸片裁出符合要求的长方形纸片.28.解:(1)∵2﹣3是a﹣12的完美平方根,∴a﹣12=(2﹣3)2,∴a﹣12=21﹣12,∴a=21;(2)∵m+n是a+b的完美平方根,∴a+b=(m+n)2,∴a+b=m2+n2x+2mn,∴a=m2+n2x,b=2mn;(3)∵17﹣12是完美根式,∴17﹣12=(m+n)2,∴17﹣12=m2+2n2+2mn,∴17=m2+2n2,﹣12=2mn,∴m2=9,n2=4或m2=8,n2=,∵m,n都是整数,∴m=±3,n=±2,∴17﹣12的完美平方根是3﹣2或﹣3+2.。
人教版七年级下第六章实数(平方根)同步练习题含答案
人教版七年级下第六章实数(平方根)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.如果a 的平方根是±2.2.若4a +1的平方根是±5,则2a 的算术平方根是_________.3.平方根等于本身的数是_________,算术平方根等于它本身的数是_________,算术平方根和平方根相等的数是_________.4.则x 的平方根是__________; 2,则x=________;方根是±3,则x=_________.5.已知7x y +=且12xy =,则当x y <时,11x y 的值等于________.6.已知|n ﹣2|m +2n 的值为__.二、单选题7 )A .4B .4±C .2D .2± 8.下列说法正确的是( )A .-4的平方根是2±B .4-的算术平方根是2-C 4±D .0的平方根与算术平方根都是0 9.下列各数13,π,0,4-,()23-,23-,3--,()3--,3.14π-中有平方根的个数为( ).A .2个B .4个C .5个D .7个 10.已知()2310x y x y --++-=,则x y 的值为( )A .-1B .1C .-2D .211.当0m <时,m -的平方根是( )A B .C .D .12.若2m –4与3m –11是同一个数的平方根,则m 的值是( )A.–3B.1C.–3或–1D.3或7三、解答题13.(1)一个正数的平方等于361,求这个正数;(2)一个负数的平方等于121,求这个负数;(3)一个数的平方等于196,求这个数.14.求下列各式中x的值:(1)()3x+=-2727(2)()22360x--=15.计算:2参考答案:1.2【分析】由平方根的定义得到a【详解】解:∵a 的平方根是±2,∵4a =,2;故答案为:2.【点睛】本题考查了平方根的定义和算术平方根的定义,解题的关键是熟练掌握定义进行解题.2.6【详解】略3. 0 0或1 0【解析】略4. ±8; 64; 729【分析】根据立方根的定义先求得x 的值,再根据平方根的定义求得结果;根据立方根的定再根据算术平方根的定义求得x 的值;的值,再根据立方根的定义求得x 的值.【详解】,∵x =64,∵x 的平方根是±8.2,,∵x =64.±3,,∵x =729.故答案为±8;64;729.【点睛】本题考查了立方根、平方根的定义,熟练掌握平方根和立方根的定义是解题的关键. 5.112【分析】利用分式的加减运算法则与完全平方公式把原式化为:222()4x y xy x y +-,再整体代入求值,再利用平方根的含义可得答案.【详解】解:因为7x y +=,12xy =,所以2222211()y x x y x y xy x y ⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭ 22222()47412112144x y xy x y +--⨯===, 又因为x y <,所以110x y->, 所以11112x y -=, 故答案为:112. 【点睛】本题考查的是由条件式求解分式的值,掌握变形的方法是解题的关键.6.3【分析】根据相反数的性质,以及非负数的性质求得,m n 的值,代入代数式即可求解.【详解】解:∵|n ﹣2|∵|n ﹣0,∵n ﹣2=0,m +1=0,∵m =﹣1,n =2,∵m +2n =﹣1+4=3,故答案为:3.【点睛】本题考查了相反数的性质,非负数的性质,求得,m n 的值是解题的关键. 7.D4=,再根据平方根的概念即可得.4=,因为()224±=,所以4的平方根是2±,2±,故选:D .【点睛】本题考查了算术平方根与平方根,熟练掌握平方根的概念是解题关键. 8.D【分析】根据平方根和算术平方根的定义及求法,即可一一判定.【详解】解:A. 负数没有平方根,故该选项不正确;B. 负数没有平方根,也没有算术平方根,故该选项不正确;C. 4的平方根是2±,故该选项不正确;D. 0的平方根与算术平方根都是0,故该选项正确;故选:D .【点睛】本题考查了平方根及算术平方根的定义及求法,熟练掌握和运用平方根及和算术平方根的定义及求法是解决本题的关键.9.C【分析】由于负数没有平方根,所以只要所给数中的负数淘汰即可解决问题.【详解】解:∵13>0,π>0,0=0,-4<0,(-3)2=9>0,-32=-9<0,-|-3|=-3<0,-(-3)=3>0,3.14-π<0,∵有平方根的个数是13,π,0,(-3)2,-(-3),共5个.故选:C .【点睛】本题主要考查的是平方根的性质,掌握平方根的性质是解题的关键.10.B【分析】根据非负数的和为零,可得关于x 、y 的方程组,解方程组可得答案.【详解】解:由题意得,3010x y x y --=⎧⎨+-=⎩, 解得21x y =⎧⎨=-⎩, ∵()211x y =-=.故选:B .【点睛】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.11.C【分析】当0a ≥时,a 的平方根记为: 根据概念可得答案. 【详解】解: 0m <时,m ∴->0,所以m -的平方根是故选:.C【点睛】本题考查的是非负数的平方根的表示,掌握非负数的平方根的表示是解题的关键. 12.D【分析】依据平方根的性质列方程求解即可.【详解】解:由题意知,2m –4+3m –11=0或2m –4=3m –11,解得m =3或m =7.故选D .【点睛】本题主要考查的是平方根的性质,明确2m−4与3m−11互为相反数或相等是解题的关键.13.(1)19;(2)11-;(3)14±【分析】(1)根据算术平方根的定义求解即可;(2)根据平方根的定义求解即可;(3)根据平方根的定义求解即可.【详解】解:(1)∵一个正数的平方等于361,∵19;(2)∵一个负数的平方等于121,∵这个负数为:11=-;(3)∵一个数的平方等于196,∵这个数为:14=±.【点睛】此题考查了算术平方根和平方根的定义,解题的关键是熟练掌握算术平方根和平方根的定义.如果一个数的平方等于a ,即()20x a a =≥,那么这个数叫做a 的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.14.(1)x =﹣5(2)x 1=8,x 2=﹣4【分析】(1)根据立方根定义求解即可;(2)移项后,根据平方根定义求解即可.(1)x+=﹣3,解:开立方得:27解得:x=﹣5.(2)x-=,方程整理得:()2236开方得:x﹣2=±6 ,解得:x1=8,x2=﹣4.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.15.(1)-3;(2)6【分析】(1)先计算算术平方根以及立方根,再算加减法,即可求解;(2)先计算算术平方根,立方根和绝对值,再算加减法,即可求解.(1)=4-2-5=-3;(2)2=9-2-3+2=6【点睛】本题主要考查实数的混合运算,掌握算术平方根,立方根和绝对值是解题的关键.。
人教版七年级下册数学第六章实数之平方根习题练习(附答案))
人教版七年级下册数学第六章实数之平方根习题练习(附答案)一、选择题1.观察下列式子:①√2−25=2√25;②√3−310=3√310;③√4−417=4√417;④√5−526=5√526;…;请你按照规律写出第n (n ≥1)个式子是( )A .√(n −1)−(n−1)2+1=(n -1)√(n−1)2+1B .√n −n n 2−1=n √nn 2−1C .√(n +1)−n+1(n+1)+1=(n +1)√n+1(n+1)+1D .√n −n n 2+1=n √nn 2+12.已知√x =2,那么x 2=( )A . 16B . 8C . 4D . 23.(-2)2的算术平方根是( )A . -2B . ±2C . 2D .√24.若(x -1)2-1=0,则x 的值为( )A . ±1B . ±2C . -2或0D . 0或25.若(x +2)有平方根,则x 的取值范围是() A .x <-2B .x ≤-2C .x >2D .x ≥-26.如果一个正数的平方根为2a +1和3a -11,则a =( )A . ±1B . 1C . 2D . 9二、填空题7.已知:x 满足(x -1)2=9,根据平方根的意义可求得x =________.8.若一个正数a 的两个平方根分别是2m -3和5-m ,则a =________.9.若(a -1)2+|b -9|=0,则b a的平方根是________. 10.√1681的平方根是________. 11.若有√a 意义,则a ________.若−√−a 有意义,则a ________.三、解答题(共6小题,每小题分,共0分)12.已知y 的算术平方根是√5,2y -1的算术平方根是x -2,求√5x 2y 的值13.求x 的值:16x 2-49=0.14.求符合下列各条件中的x 的值.(1)(x -4)2=4;(2)13(x +3)2-3=0. 15.求下面数的平方根.(1)25; (2)6481;(3)(−12)2;(4)|-5|16.先阅读所给材料,再解答下列问题:若√x −1与√1−x 同时成立,求x 的值?解:√x −1和√1−x 都是算术平方根,故两者的被开方数x -1≥0,且1-x ≥0,而x -1和1-x 是互为相反数.两个非负数互为相反数,只有一种情形成立,那就是它们都等于0,即x -1=0,1-x =0,故x =1.解答问题:已知y =√1−2x +√2x −1+2,求xy 的值.17.某小区为了促进全民健身活动的开展,决定在一块面积约为1 000 m 2的正方形空地上建一个篮球场,已知篮球场的面积为420 m 2,其中长是宽的2815倍,篮球场的四周必须留出1 m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?答案解析1.【答案】C【解析】由规律可得,第n 个式子为:√(n +1)−n+1(n+1)2+1=(n +1)√n+1(n+1)2+1.2.【答案】A【解析】因为√x =2,所以x =4,所以x 2=42=16.3.【答案】C【解析】(-2)2=4.4的算术平方根是2.4.【答案】D【解析】(x -1)2-1=0,(x -1)2=1,x -1=±1, 则x 的值为0或2.5.【答案】D【解析】根据题意得x +2≥0,解得x ≥-2.6.【答案】C【解析】根据题意得:2a +1+3a -11=0,移项合并得:5a =10,解得:a =2.7.【答案】4或-2【解析】因为(x -1)2=9,所以x -1=±3, 解得:x =4或x =-2.8.【答案】49【解析】由题意知2m -3+5-m =0,解得m =-2,a =(2m -3)2=(-7)2=49.9.【答案】±3 【解析】因为(a -1)2+|b -9|=0,所以a -1=0,b -9=0,所以a =1,b =9,所以b a =91=9,所以9的平方根是±3. 10.【答案】±23【解析】√1681=49,49的平方根是±23. 11.【答案】≥0 ≤0【解析】若√a 有意义,则a ≥0;若−√−a 有意义,则-a ≥0,解得:a ≤0.12.【答案】解:因为y 的算术平方根是√5,所以y =5,所以2y -1=2×5-1=9的算术平方根是:3=x -2,解得:x =5, 当x =5,y =5时,√5x 2y =25.【解析】根据算术平方根的定义得出y 的值,再利用算术平方根的定义得出x 的值,进而得出答案. 13.【答案】解:∵16x 2=49,∴x 2=4916,∴x =±74.【解析】先移项,再两边同除以16,根据平方根的定义直接得出答案.14.【答案】解:(1)因为(x -4)2=4,所以x -4=±2. 解得:x 1=2,x 2=6.(2)移项得:13(x +3)2=3, 两边同时乘以3得:(x +3)2=9,所以x +3=±3. 所以x 1=0,x 2=-6.【解析】(1)先依据平方根的定义求得x -4的值,然后再求得x 的值即可;(2)先求得(x +3)2的值,然后再依据平方根的定义求解即可.15.【答案】解:(1)因为(±5)2=25,所以±√25=±5; (2)因为(±89)2=6481,所以±√6481=±89; (3)因为(±15)2=14,所以±√(−12)2=±√14=±12; (4)因为(±√5)2=|-5|,所以±√|5|=±√5.【解析】根据平方根定义进行解答即可.16.【答案】解:已知y =√1−2x +√2x −1+2,则1-2x =0,2x -1=0,解得x =12,则y =2,则xy =(12)2=14.【解析】根据被开方数互为相反数,可得方程,根据解方程,可得x 的值,再根据乘方运算,可得答案.17.【答案】解:设篮球场的宽为x m ,那么长为2815x m ,由题意知2815x ·x =420,所以x 2=225,因为x 为正数,所以x =√225=15,又因为(2815x +2)2=(2815×15+2)2=900<1 000, 所以能按规定在这块空地上建一个篮球场.【解析】根据算术平方根的定义计算解答即可。
人教版七年级数学下册第六章《实数》同步练习(含答案)
)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )
(新人教版)数学七年级下册:6.1《平方根》练习题(含答案)
6.1 平方根教学目标:掌握算术平方根定义,会求一个数的算术平方根。
一、选择题1.下列各式中无意义的是( )A .7B .7 C.7 D .7 22.1的算术平方根是()4A .1B .1C .1D .1168223. 下列运算正确的是()A .33B . 33 C . 93D .93二、填空题4. 若一个正方形的面积为13,则正方形的边长为 .5. 小明房间的面积为 10.8 米 2,房间地面恰好由 120 块 相同的正方形地砖铺成,每块地砖的边长是.6. 计算:⑴ 9 =⑵52⑶22⑷-42⑸(3) 2.=_______7.若下列各式有意义, 在后面的横线上写出 x 的取值范围: ⑴ x⑵ 5 x8.若 a 2b 3 0 ,则 a 2b.9.一个正方形的面积扩大为原来的4 倍,它的边长变为原来的 倍,面积扩大为原来的9 倍,它的边长变为原来的倍,面积扩大为原来的 n 倍,它的边长变为原来的倍 .10._______ 的算数平方根是它本身 . 三、解答题11.求下列各数的算术平方根。
⑴ 169 ⑵ 0.0256⑶124⑷222512. 要种一块面积为 615.44 m 2 的圆形草地以美化家庭,它的半径应是多少米?(π取 3.14 )6.1 平方根教学目标:掌握平方根的定义,区别于算数平方根,会求一个数的平方根。
一、选择题1.下列说法中不正确的是( )A.2是 2的平方根 B.2是 2的平方根C.2 的平方根是 2D.2的算术平方根是 22. 1的平方根是()4A.1B.1 C.1 D.1 168223.“4的平方根是2 ”,用数学式子可以表示为()2554 2 4 2 4 2 4 2A.5B.5C.5D.5252525254.下列各式中,正确的个数是( )①0.90.3 ② 174 ③ 32 的平方根是- 393④52的算术平方根是- 5⑤7 是113的平方根6 36A.1 个B.2 个C.3 个D.4个5. 若 a 是4 2 的平方根, b 的一个平方根是 2,则代数式 a + b 的值为()A.8B.0C.8或 0 D.4 或- 4二、填空题6. 如果某数的一个平方根是 -6 ,那么这个数为 ________.7. 如果正数 m 的平方根为 x1和x3 ,则 m 的值是.8. 16 的算术平方根是2,9 的平方根是 .9.若b 1 a a 1 4 ,则ab的平方根是.三、解答题10.求下列各式的值。
(完整版)初一下册数学平方根练习题(含答案)
一、填空题平方根练习题姓名:班级:考号:1、已知m 的平方根是2a-9 和5a-12,则m 的值是.2、对于任意不相等的两个数a,b,定义一种运算※如下:a※b= ,如3※2=.那么12※4=.3、实数a 在数轴上的位置如图所示,化简:。
4、已知:,则x+y 的算术平方根为.二、选择题5、已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.5 6、若,,且,则的值为( )A.-1 或11 B.-1 或-11 C. 1 D.117、点P ,则点P 所在象限为( ).A.第一象限B. 第二象限C. 第三象限 D 第四象限.8、的平方根是A.9 B.C.D.39、一个正方形的面积是15,估计它的边长大小在()A.2 与3 之间B.3 与4 之间C.4 与5 之间D.5 与6 之间三、简答题10、已知的平方根是±3,的算术平方根是4,求的平方根11、如图,实数、在数轴上的位置,化简.12、如果一个正数m 的两个平方根分别是 2a-3 和a-9,求2m-2 的值.四、计算题13、已知与的小数部分分别是a、b,求ab 的值.14、设都是实数,且满足,求式子的算术平方根.15、参考答案一、填空题1、92、1/23、14、5二、选择题5、D6、 D7、D8、C9、B三、简答题10、…2分…..4分……6分结果.8 分11、解:由图可知: , ,∴. 2 分∴ 原式= 5 分= 6 分= .7 分12、∵一个正数的两个平方根分别是 2a-3 和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四、计算题13、解:因为,所以的小数部分是,的小数部分是14、解:由题意得,,解得,所以,所以的算术平方根为.15、原式=+2+4﹣4= ;。
6.1 平方根 人教版数学七年级下册重难点专项练习(含答案)
6.1《平方根》重难点题型专项练习考查题型一求一个数的算术平方根典例1.4的算术平方根是()A.2B.C.D.16【答案】A【分析】根据算术平方根的定义,进行求解即可.【详解】解:4的算术平方根是;故选A.【点睛】本题考查算术平方根.熟练掌握算术平方根的定义:一个非负数的平方为,则叫做的算术平方根,是解题的关键.变式1-1.式子表示()A.的算术平方根B.的算术平方根C.的平方根D.的算术平方根【答案】D【分析】根据实数的运算顺序,先算平方,再开方,由此即可求解.【详解】解:,∴表示的是的算术平方根,故选:.【点睛】本题主要考查平方,开方的运算顺序.掌握平方,开方的运算顺序,二次根式被开方数的特点是解题的关键.变式1-2.计算的结果为()A.B.C.4D.8【答案】C【分析】根据算术平方根的定义求解即可.【详解】解:.故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键,正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.变式1-3.(2022春·黑龙江哈尔滨·七年级校考阶段练习)的算术平方根是()A.5B.C.D.【答案】B【分析】根据算术平方根的性质,首先得,再通过计算,即可得到答案.【详解】∵∴的算术平方根是故选:B.【点睛】本题考查了算术平方根的知识;解题的关键是熟练掌握算术平方根的性质,从而完成求解.考查题型二算术平方根双重非负性的应用典例2.(2022春·浙江宁波·七年级校考期中)若实数x、y、z满足,则的平方根是()A.36B.C.6D.【答案】B【分析】利用非负性求各未知数的值,进一步计算即可求解.【详解】解:∵,∴,,,∴,,,∴,∴的平方根是,故选:B.【点睛】本题主要考查非负性的运用,平方根,能够利用非负性求出数值是解题关键.变式2-1.(2022春·浙江·七年级期中)已知,则的值是()A.4B.-2C.-4D.2【答案】B【分析】先根据算术平方根的非负性、二次方的非负性和绝对值的非负性求出a、b、c的值,然后再代入代数式求值即可.【详解】解:∵,∴,解得:,∴,故B正确.故选:B.【点睛】本题主要考查了求代数式的值,算术平方根的非负性,二次方的非负性和绝对值的非负性,根据题意求出a、b、c的值,是解题的关键.变式2-2.(2022秋·内蒙古巴彦淖尔·七年级校考阶段练习)已知,则代数式的值是()A.5B.3C.2D.-1【答案】A【分析】根据绝对值和算术平方根不可能为负数,得到,解得m、n的值,然后代入即可求解.【详解】解:∵∴,解得:.将代入,得:故选:A.【点睛】本题考查了绝对值和算术平方根的非负性,代数式求值,解答此题的关键是根据绝对值和算术平方根不可能为负数,解得m、n的值.变式2-3.下列关于的说法错误的是()A.可以是负数B.可以是C.是的算术平方根D.不可能是负数【答案】A【分析】根据当时,,即可解答.【详解】解:A、是非负数,故A错误,符合题意;B、可以是,故B正确,不符合题意;C、是的算术平方根,故C正确,不符合题意;D、不可能是负数,故D正确,不符合题意;故选:A.【点睛】本题考查了实数,熟练掌握的双重非负性是解题的关键.考查题型三估计算术平方根的取值范围典例3.(2021秋·辽宁葫芦岛·七年级校考阶段练习)一个正方形的面积是19,它的边长a的值()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】B【分析】根据算术平方根的意义,得到边长为,估算的大小即可求解.【详解】解:∵一个正方形的面积是19,它的边长为a,∴,∵,∴,故选B.【点睛】本题考查了算术平方根的应用,估算无理数的大小,估算的大小是解题的关键.变式3-1.(2022秋·安徽滁州·七年级校考期中)估计的值在( )A.7到8之间B.6到7之间C.5到6之间D.4到5之间【答案】B【分析】估算的大小即可.【详解】解:由于,而,即67,所以的值在6和7之间,故选:B.【点睛】本题考查估算无理数的大小,二次根式的乘除法,掌握算术平方根的定义,二次根式乘除法的计算方法是正确解答的前提.变式3-2.估算的值是在()之间A.5和6B.6和7C.7和8D.8和9【答案】C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.【详解】∵∴∴故选:C.【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.变式3-3.(2021秋·天津·七年级统考期末)估计的值应在().A.7和8之间B.8和9之间C.9和10之间D.10和11之间【答案】A【分析】根据算术平方根进行无理数的估算.【详解】解:∵49<58<64∴,即的值在7和8之间,故选:A.【点睛】本题考查无理数的估算,理解算术平方根的概念准确计算是解题关键.考查题型四求算术平方根的整数部分和小数部分典例4.若的整数部分为,小数部分为,则_________,_________.【答案】【分析】根据首先确定的值,则小数部分即可确定.【详解】解:,,则.故答案是:3,.【点睛】本题主要考查了无理数的估算,解题的关键是确定无理数的整数部分即可解决问题.变式4-1.的整数部分是______.小数部分是_______.【答案】 3【分析】根据算术平方根的整数部分和小数部分求解的方法直接进行求解即可.【详解】解:∵,∴,∴的整数部分为3,∴的小数部分为;故答案为3,.【点睛】本题主要考查算术平方根,熟练掌握求一个算术平方根的整数部分和小数部分是解题的关键.变式4-2.的小数部分为a,的小数部分为b,则__________.【答案】1【分析】先分析介于哪两个整数之间,再分别求出和介于哪两个整数之间,即可求出和的整数部分,然后用它们分别减去它们的整数部分得到,代入即可.【详解】解:∵∴,∴∴的整数部分为10,的整数部分为2,∴a=b=代入得:=12018=1【点睛】此题考查的是实数(带根号)的整数部分和小数部分的求法.变式4-3.已知a,b分别是的整数部分和小数部分,则2a﹣b的值为______.【答案】.【分析】先求出介于哪两个整数之间,即可求出它的整数部分,再用减去它的整数部分求出它的小数部分,再代入即可.【详解】∵9<13<16,∴3<<4,∴a=3,b=﹣3,∴2a﹣b=2×3﹣(﹣3)=6﹣+3=.故答案为.【点睛】此题考查的是带根号的实数的整数部分和小数部分的求法,利用平方找到它的取值范围是解决此题的关键.考查题型五与算术平方根有关的规律探究典例5.(2022秋·河北沧州·七年级校考期中)若则()A.0.01732B.0.1732C.0.05477D.0.5477【答案】B【分析】把0.03看成是3×结合题意即可求解.【详解】解:∵∴,故选B.【点睛】此题主要考查了算术平方根的性质,如果被开方数扩大为原来的100倍,其算术平方根也在扩大,但只扩大为原来的10倍;同理,如果被开方数缩小为原来的,其算术平方根也在缩小,但只缩小为原来的.变式5-1.(2022春·浙江绍兴·七年级校联考期中)若,则()A.B.C.D.【答案】B【分析】当被开方数的小数点每向右(或向左)移动2位,它的算术平方根的小数点就相应的向右(或向左)移动1位.【详解】∵,∴故选B.【点睛】本题考查了被开方数的变化与算术平方根之间的变化规律,熟练掌握小数点移动的规律是解答本题的关键.当被开方数的小数点每向右(或向左)移动2位,它的算术平方根的小数点就相应的向右(或向左)移动1位.变式5-2.(2022秋·重庆渝中·七年级重庆巴蜀中学校考阶段练习)若,,则的值约为( )A.B.C.D.【答案】C【分析】将转化为,进而得出即可.【详解】解:,故选:.【点睛】本题考查算术平方根,理解“一个数扩大或缩小倍,倍,其算术平方根就随着扩大或缩小倍,倍”是解决问题的关键.变式5-3.(2021秋·广西河池·七年级统考期末)若,则等于()A.1.01B.10.1C.101D.10.201【答案】B【分析】根据被开方数向左或向右移动2n位,则对应的算术平方根向左或向右移动n位解答即可.【详解】解:∵∴=10.1.故选B.【点睛】本题主要考查了算术平方根的规律探索,掌握“被开方数向左或向右移动2n位,则对应的算术平方根向左或向右移动n位”是解答本题的关键.考查题型六平方根的概念的理解典例6.(2021秋·重庆渝中·七年级重庆市求精中学校校考期中)的平方根为().A.B.C.D.【答案】B【分析】根据平方根的定义,即可.【详解】∵,∴的平方根是,故选:B.【点睛】本题考查平方根的知识,解题的关键是理解平方根的定义.变式6-1.(2022秋·天津宁河·七年级天津市宁河区芦台第一中学校考期中)一个正数的两个不同的平方根是与,则的值是()A.0B.C.1D.2【答案】B【分析】根据一个正数有两个平方根,这两个平方根互为相反数解答即可.【详解】由题意得,,解得:,故选:B.【点睛】本题考查的是平方根的概念,掌握一个正数有两个平方根,这两个平方根互为相反数是解题的关键,变式6-2.已知和是一个正数的平方根,则这个正数( )A.B.或C.D.或【答案】D【分析】根据平方根的定义求出a的值,进而可得出结论.【详解】解:∴和是一个正数的平方根,当时,解得,∴,∴;当和互为相反数时,,解得,∴,∴.故的值为或.故选:.【点睛】本题考查的是平方根的定义,熟知一个正数有两个平方根,这两个平方根互为相反数是解题的关键.变式6-3.下列语句正确的是()A.10的平方根是100B.100的平方根是10C.是的平方根D.的平方根是【答案】D【分析】根据一个正数的平方根有两个,且互为相反数可对A、B、D进行判断;根据负数没有平方根可对C进行判断.【详解】解:A.10的平方根,所以A选项错误;B.100的平方根是,所以B选项错误;C.没有平方根,所以C选项错误;D.的平方根是,所以D选项正确;故选:D.【点睛】本题考查了平方根的定义:若一个数的平方等于,那么这个数叫的平方根,记作.考查题型七求一个数的平方根典例7.(2021秋·重庆渝中·七年级重庆市求精中学校校考期中)的平方根为().A.B.C.D.【答案】B【分析】根据平方根的定义,即可.【详解】∵,∴的平方根是,故选:B.【点睛】本题考查平方根的知识,解题的关键是理解平方根的定义.变式7-1.64的平方根是()A.B.C.D.8【答案】A【分析】根据平方根的意义,即可解答.【详解】解:64的平方根是,故选:A.【点睛】本题考查了平方根,熟练掌握平方根的意义是解题的关键.变式7-2.的平方根是( )A.B.C.D.【答案】C【分析】根据平方根的定义计算即可.【详解】∵∴,∴的平方根是.故选:C.【点睛】本题考查了平方根即(a≥0),则x叫做a的平方根,熟练掌握平方根的定义是解题的关键.变式7-3.的平方根是( )A.B.2C.D.【答案】C【分析】先计算,再计算4的平方根即可得到答案.【详解】解:∵,∴4的平方根为,即的平方根是,故选C.【点睛】本题考查了算术平方根和平方根,熟练掌握正数的平方根有两个,且互为相反数是解题关键.考查题型八求代数式的平方根典例8.关于x的多项式与多项式相加后不含x的二次和一次项,则平方根为()A.3B.C.D.【答案】C【分析】将两个多项式相加,根据相加后不含x的二次和一次项,求得m、n的值,再进行计算.【详解】+=由题意知,,,∴,,∴,9的平方根是,∴平方根为,故选:C.【点睛】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键,同时考查了平方根的定义,熟练掌握正数有两个平方根,0的平方根是0,负数没有平方根.变式8-1.若,则的平方根为()A.±2B.4C.2D.±4【答案】D【分析】根据绝对值,平方,二次根式的非负性求出x,y,z,算出代数式的值计算即可;【详解】∵,∴,解得,∴,∴;故选:D.【点睛】本题主要考查了平方根的求解,结合绝对值、二次根式的非负性计算是解题的关键.变式8-2.若是169的算术平方根,是121的负的平方根,则(+)2的平方根为()A.2B.4C.±2D.±4【答案】C【分析】求出m、n的值,求出m+n的值,再根据平方根定义求出即可.【详解】解:∵m是169的算术平方根,n是121的负的平方根,∴m=13,n=-11,∴m+n=2,∴(m+n)2的平方根是±=±2,故答案为C.【点睛】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.变式8-3.已知与互为相反数,则的平方根是()A.B.C.D.【答案】C【分析】根据非负数的性质可得关于a、b的方程,解方程求出a、b的值后再代入所求式子即可求出a-b,然后根据平方根的定义解答即可.【详解】解:由题意,得+=0,∴4-a=0,b+1=0,解得:a=4,b=﹣1,∴a-b=5,∴a-b的平方根.故选:C.【点睛】本题考查了非负数的性质和平方根的定义,属于基础题型,熟练掌握基本知识是解题关键.考查题型九平方根的应用典例9.(2022秋·云南昭通·七年级校考阶段练习)一个正数x的两平方根分别是2a﹣3和1﹣6a,求x的值.【答案】16【分析】根据正数的两个平方根互为相反数列出方程,进而平方根的定义即可求解.【详解】解:由题意得,2a﹣3+1﹣6a=0,解得,a=﹣,所以2a﹣3=﹣4,1﹣6a=4,所以x=(±4)2=16,答:x=16.【点睛】本题考查平方根,理解平方根的定义是正确解答的关键.变式9-1.(2022秋·江西南昌·七年级南昌二中校考期中)如果一个正数a的平方根是和,求a的值.【答案】【分析】根据一个数的平方根互为相反数得到关于的方程,然后求出的值即可得到的值.【详解】解:根据题意得:,解得:,则这个数a是.故答案是:.【点睛】本题考查平方根的性质:正实数有两个互为相反的数的平方实数根,零的平方根是零,负实数没有平方实数根,掌握平方根的性质是解题的关键.变式9-2.(2022秋·陕西渭南·七年级统考阶段练习)已知一个正数的两个不相等的平方根是与.(1)求的值及这个正数;(2)求关于的方程的解.【答案】(1)a=1,这个正数是49;(2)【分析】(1)由正数的两个平方根互为相反数得到+=0,求解即可得到答案;(2)将a=1代入方程,根据平方根的意义得到答案即可.【详解】解:(1)由题意得+=0,解得a=1,∴这个正数是;(2)将a=1代入方程,得-64=0,解得.【点睛】此题考查正数平方根的性质,根据平方根的定义解方程,正确理解平方根的性质是解题的关键.变式9-3.(2022秋·广东湛江·七年级校考期末)已知一个正数m的两个不相等的平方根是a+6与2a﹣9.(1)求a的值;(2)求这个正数m;(3)求关于x的方程ax2﹣16=0的解.【答案】(1)a=1;(2)49;(3)x=±4【分析】(1)根据一个正数的两个平方根互为相反数即可求得的值;(2)根据(1)的结论即可求得的值;(3)根据(1)的结论将代入方程,进而根据求一个数的平方根解方程即可【详解】解:(1)由题意得,a+6+2a﹣9=0,解得,a=1;(2)当a=1时,a+6=1+6=7,∴m=72=49;(3)x2﹣16=0,x2=16,x=±4.【点睛】本题考查了求一个数的平方根,平方根的性质,理解平方根的性质是解题的关键.。
人教版七年级数学第六章第1节《平方根》单元训练题 (2)(含答案解析)
【解析】
据非负数的性质列出方程,求出a、b的值,代入代数式计算即可.
解:由题意得, , ,
解得, , ,
∴ ,
故答案为: .
本题考查了绝对值、算术平方根和非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
24.2
【解析】
根据求算术平方根和平方根的定义可以解答本题.
4的算术平方根是 ,
【解析】
根据平方根和算术平方根的定义依次判断即可.
解:A. 9的平方根是±3,故原选项计算错误,不符合题意;
B.算术平方根等于它本身的数一定是1和0,原说法错误,不符合题意;
C.-2是4的平方根,正确,符合题意;
D. 的算术平方根是2,原说法错误,不符合题意;
故选:C.
本题考查平方根和算术平方根.熟练掌握相关定义是解题关键.
64的平方根是 .
故答案为: , .
本题考查了平方根与算术平方根,解答本题的关键是明确它们各自的求法.
25.
【解析】
直接利用非负数的性质进而得出1﹣3a=0,4b﹣3=0,求出a,b的值,再利用平方根的定义得出答案.
解:∵ 和|4b﹣3|互为相反数,
∴1﹣3a=0,4b﹣3=0,
解得:a= ,b= ,
解:81的平方根等于±9;
故答案为±9.
本题主要考查平方根,熟练掌握平方根是解题的关键.
22.0
【解析】
根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.
解:∵ +(y+1)2=0
∴x﹣1=0,y+1=0,
解得x=1,y=﹣1,
所以,(x+y)3=(1﹣1)3=0.
故答案为:0.
人教版七年级数学下册6.1《平方根(第1课时)算术平方根 》习题含答案
6.1 平方根第1课时算术平方根一、选择题(共10小题)1.9的算术平方根为()A.3 B.C.D.±32.的值等于()A.4 B.﹣4 C.±4 D.±23.如果=5,那么y的值是()A.5 B.﹣5 C.10 D.254.某数的算术平方根等于它本身,那么这个数一定是()A.0 B.1 C.1或0 D.﹣15.一个自然数的算术平方根为a,则下一个自然数的算术平方根是()A.B.C.﹣a+1 D.a2+16.的值等于()A.B.﹣C.±D.7.的算术平方根是()A.±B.C.±D.58.一个矩形的围栏,长是宽的2倍,面积是30m2,则它的宽为()A.m B.2m C.m D.2m 9.若|x|=3,y是4的算术平方根,且|y﹣x|=x﹣y,则x+y的值是()A.5 B.﹣5 C.1 D.﹣110.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对二、填空题(共8小题)11.(﹣9)2算术平方根是.12.的算术平方根是.13.计算:(﹣2)3+=;1﹣=.14.若=2,则x的值为.15.的算术平方根是3,则a=.16.若与互为相反数,则x=,y=.三、解答题(共6小题)17.求下列各式的值:(1);(2);(3);(4);(5).18.求下列各数的算术平方根:121,,1.96,(-10)6.19.已知2a﹣1的算术平方根是3,18﹣b的算术平方根是4,求a+2b的算术平方根.20.小华的书房面积为10.8m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?21.探究发散:(1)填空:①=;②=;③=;④=;⑤=;⑥=.(2)根据计算结果回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.22.根据如表回答下列问题:x16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 x2262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289 (1)275.56的平方根是;(2)=;(3)在哪两个相邻数之间?为什么?参考答案与试题解析一、选择题(共10小题)1.实数9的算术平方根为()A.3 B.C.D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.的值等于()A.4 B.﹣4 C.±4 D.±2【解答】解:=4.故选:A.3.如果=5,那么y的值是()A.5 B.﹣5 C.10 D.25【解答】解:因为=5,所以y=25,故选:D.4.某数的算术平方根等于它本身,那么这个数一定是()A.0 B.1 C.1或0 D.﹣1【解答】解:某数的算术平方根等于它本身,那么这个数一定是1或0.故选:C.5.一个自然数的算术平方根为a,则下一个自然数的算术平方根是()A.B.C.﹣a+1 D.a2+1【解答】解:一个自然数的算术平方根为a,则下一个自然数的算术平方根是,故选:B.6.的值等于()A.B.﹣C.±D.【解答】解:原式==,故选:A.7.的算术平方根是()A.±B.C.±D.5【解答】解:因为=5,所以的算术平方根是,故选:B.8.一个矩形的围栏,长是宽的2倍,面积是30m2,则它的宽为()A.m B.2m C.m D.2m【解答】解:∵一个矩形的围栏,长是宽的2倍,面积是30m2,∴它的宽为:=(m).故选:A.9.若|x|=3,y是4的算术平方根,且|y﹣x|=x﹣y,则x+y的值是()A.5 B.﹣5 C.1 D.﹣1【解答】解:因为|y﹣x|≥0,所以x﹣y≥0,即x≥y.由|x|=3,y是4的算术平方根可知x=3、y=2.则x+y=5,故选:A.10.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.二、填空题(共8小题)11.(﹣9)2的算术平方根是9 .【解答】解:∵(﹣9)2=81,∴(﹣9)2的算术平方根是9,故答案为:912.的算术平方根是.【解答】解:∵=,∴的算术平方根为,故答案为:.13.计算:(﹣2)3+=﹣5 .计算:1﹣=.【解答】解;原式=﹣8+3=﹣5;原式=1﹣=,故答案为:﹣5,14.若=2,则x的值为 5 .【解答】解:由=2,得到x﹣1=4,解得:x=5.故答案为:5.15.的算术平方根是3,则a=80 .【解答】解:∵的算术平方根是3,∴=9,a+1=81a=80,故答案为80.16.若与互为相反数,则x=8 ,y= 2 .【解答】解:∵与互为相反数,∴+=0,所以,x﹣8=0,y﹣2=0,解得x=8,y=2.故答案为:8,2.三、解答题(共6小题)17.求下列各式的值:(1);(2);(3);(4);(5)【解答】解:(1)=7;(2)=;(3)=0.3;(4)=1.2;(5)=0.1.18.求下列各数的算术平方根:121,,1.96,(-10)6.【解答】解:=11、=、=1.4、()6-=1000.1019.已知2a﹣1的算术平方根是3,18﹣b的算术平方根是4,求a+2b的算术平方根.【解答】解:由题意可知:2a﹣1=9,18﹣b=16.解得:a=5,b=2.∴a+2b=5+2×2=9.∴a+2b的算术平方根是3.20.小华的书房面积为10.8 m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?【解答】解:设每块地砖的边长是x m,则有120x2=10.8,即x2=0.09.∵x>0,∴x=0.3.答:每块地砖的边长为0.3 m.21.探究发散:(1)填空:①= 3 ;②=0.5 ;③= 6 ;④=0 ;⑤=;⑥=.(2)根据计算结果回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.【解答】解:(1)①==3;=0.5;==6;④=0;⑤=;⑥=故答案为:3;0.5;6;0;;;(2)不一定等于a,当a<0时,=﹣a;当a≥0时,=a;故不一定等于a;从中可以得到规律:正数和零的平方的算术平方根为其本身,负数的平方的算术平方根为其相反数.22.根据如表回答下列问题:x16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 x2262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289 (1)275.56的平方根是±16.6 ;(2)= 1.68 ;(3)在哪两个相邻数之间?为什么?【解答】解:(1)±=±16.6,(2)=1.68,(3)由表得在16.4与16.5之间;故答案为±16.6,1.68.。
(人教版)七年级数学下册第六章第1节《平方根、立方根》同步练习(含答案)
课题:6.1平方根授课类型:新授 执笔人: 修改人: 审核人学习目标:1.掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系; 3.培养学生的探究能力和归纳问题的能力. 学习重点:平方根的概念和求数的平方根. 学习难点:平方根和算术平方根的联系与区别 . 教学过程: 一 、复习引入: 1. 什么叫算术平方根? 2. 求下列各数的算术平方根: (1)400; (2)1; (3)6449; (4)0.0001 (5)0 二、新授:问题: 如果一个数的平方等于9,这个数是多少? 又如:2542=x ,则x 等于多少呢? 填表:1.平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的____________.即:如果a x =2,那么x 叫做a 的平方根.记作:±a ,读作“正、负根号a ”. 2. 开平方的概念:求一个数a 的平方根的运算,叫做_____________.例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.例2:求下列各数的平方根:(1) 100 (2) 169(3) 0.25 (4)0思考:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?归纳:正数有____ 个平方根,它们____________________; 0的平方根是_________;负数_______________________________.引入符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示,正数a 的平方根可以用a ±表示. 例3:求下列各式的值:(1)144,(2)-81.0,(3)196121±(4)256,(5)()256 , (6三、课堂练习:课本第75页练习 1、2、3 1. 下面说法正确的是( )A 、 0的平方根是0 ;( )B 、 1的平方根是1;( )C 、 ﹣1的平方根是﹣1;( )D 、 (﹣1)2平方根是﹣1. ( ) 2. 求下列各数的平方根: (1)0.49 (2)4936(3)81 (4)0 (5)-100四、课堂检测:1.算术平方根等于它本身的数是__________________. 2. 下列各数没有平方根的是( )A 、64B 、0C 、(﹣2)3D 、(﹣3)43.(-3)2的平方根是( )A 、3B 、-3C 、±3D 、±94.下列各数有平方根吗?如果有,求出它的平方根;如果没有,说明理由. ⑴ 256 ⑵ 0 ⑶ (-4)2 ⑷ 1001⑸ -645.求下列各式的值-★6. x+2和3x -14是同一个数的平方根,则x 等于( ) A.-2 B.3或4 C.8 D.36.2《立方根》同步练习知识点:立方根:一般地,如果一个数的立方等于a ,那么这个数是a 的立方根 立方根性质:正数的立方根是正数 0的立方根是0 负数的立方根是负数3a - = —3a同步练习:【模拟试题】(共60分钟,满分100分) 一、认认真真选(每小题4分,共40分) 1.下列说法不正确的是( ) A.-1的立方根是-1 B.-1的平方是1 C.-1的平方根是-1 D.1的平方根是±1 2.下列说法中正确的是( ) A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-3.在下列各式中:327102=34,3001.0=0.1,301.0=0.1,-33)27(-=-27,其中正确的个数是( ) A.1B.2C.3D.4﹡4.若m<0,则m 的立方根是( )A.3mB.-3mC.±3mD.3m -﹡5.如果36x -是x -6的三次算术根,那么x 的值为( ) A.0 B. 3 C.5 D.66.已知x 是5的算术平方根,则x2-13的立方根是( ) A.5-13 B.-5-13 C.2 D.-27.在无理数5,6,7,8中,其中在218+与2126+之间的有( )A.1个B.2个C.3个D.4个﹡8.一个正方体的体积为28360立方厘米,正方体的棱长估计为( ) A.22厘米 B.27厘米 C.30.5厘米D.40厘米﹡9.已知858.46.23=,536.136.2=,则00236.0的值等于( ) A .485.8 B .15360 C .0.01536 D .0.04858﹡﹡10.若81-x3x 的值是( )A.0B. 21C. 81D. 161二、仔仔细细填(每小题4分,共32分)11.-81的立方根是 ,125的立方根是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册第六章第一节平方根复习试题(含答
案)
)﹣1×|﹣3|.
计算:(π﹣2016)0+(1
【答案】-2
【解析】
试题分析:原式利用零指数幂、负整数指数幂法则,算术平方根定义,以及绝对值的代数意义化简,计算即可得到结果.
试题解析:原式=1+3﹣2×3=1+3﹣6=﹣2.
82.求下列式中的x的值.(2x+1)2= 9.
【答案】x=1或x=-2.
【解析】试题分析:利用平方根定义开方即可求出x的值.
试题解析:开方得:2x+1=±3,
即2x+1=3或2x+1=-3,
解得:x=1或x=-2.
83.已知2
与
--互为相反数,求ab的平方根.
a b
(3)12
【答案】±6
【解析】
试题分析:根据非负数的性质列出算式,求出a、b的值,计算即可.
试题解析:∵(a-3)2与|b-12|互为相反数,
∴(a-3)2+|b-12|=0,
∴a-3=0,b-12=0
∴a=3,b=12,
∴ab=36,
∴ab 的平方根为±6.
84()1
2
013201746-⎛⎫--⨯-+ ⎪⎝⎭ 【答案】13.
【解析】
试题分析:原式利用乘方的意义,绝对值的代数意义,算术平方根、零指数幂、负整数指数幂法则计算即可得到结果.
试题解析:原式=2+9-1×4+6 =13
85.(1)已知x 、y 是实数,且y 1
2
,则xy 的值等于________.
(2)已知31x y --x +4y 的平方根.
【答案】(1)-18
;(2)±3 【解析】
试题分析:(1)根据被开方数是非负数,可得x ,y 的值,根据有理数的乘法,可得答案;
(2)根据只有符号不同的两个数互为相反数,可得x 、y 的值,根据开平方,可得答案.
试题解析:(1)由题意,得
4x-1=0,
解得x=14,y=-12
. xy=14×(-12)=-18
, (2)由题意,得3x-y-1=0且2x+y-4=0.
解得x=1,y=2.
x+4y 的平方根=
±3.
86.计算下列各题: (1) °
sin45° (2)
)
2126021--+︒-+︒ 【答案】(1)72;(2) 112
. 【解析】
试题分析:(1)分别把各特殊角的三角函数值代入进行计算即可.
(2)本题涉及零指数幂、负指数幂、二次根式化简及特殊角三角函数值等知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.
试题解析:(1)原式325
=+=2222
(2)原式=1+12
=1-4+9-+12
=112
87.计算:(1)- (-2)2+(-0.1)0;(2)(x ―2)2―(x +3)(x ―1).
【答案】(1) 0 (2)-6x+7
【解析】
试题分析:(1)分别计算算术平方根、有理数的乘方和零次幂即可得解;
(2)分别运用完全平方和多项式乘以多项式把括号展开,再合并同类项即可得解.
试题解析:(1)原式=3-4+1
=0.
(2)原式=x-4x+4-(x+2x-3)
=x-4x+4-x-2x+3
=-6x+7.
88.已知2
a b
-++=,求20042004891
2(1)0
a b
()(1)2()
--+-+⋅
a
【答案】21
2
【解析】
试题分析:根据绝对值及偶次方的非负性,可得出a、b的值,代入即可得出答案.
试题解析:∵|a-2|+(b+1)2=0,
∴a=2,b=-1,
)9
原式=(-2+1)2004+1+28×(1
2
)9
=1+1+28×(1
2
=21
.
2
89.按要求填空:
(1)填表:
(2)根据你发现规律填空:
;
=61.64,则x=__.
【答案】(1)0.02,0.2,2,20;(2)26.38,0.02638;3800.【解析】
试题分析:(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10-4,继而可得出答案;再根据61.64化为0.06164×10-3可得答案.
试题解析:
(1=0.2=2;
(2=2.638×10=26.38,
=2.638×10﹣2=0.02638;
=0.06164=61.64,61.64=0.06164×103∴x=3800.
故答案为0.02、0.2、2、20;26.38、0.02638;3800.
90.按要求填空:
(1)填表:
(2)根据你发现规律填空:
,;
==
,则.
61.64x
【答案】(1)0.02;0.2;2;20;(2)26.38;0.2638;3800.
【解析】
(1)=0.02,=0.2,=2,=20;…………4分(2)26.38;0.2638;3800.。