发光二极管主要参数与特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发光二极管主要参数与特性
LED 是利用化合物材料制成
pn 结的光电器件。它具备pn 结结型器
件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED 电学特性
1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。
如左图:
(1) 正向死
区:(图oa 或oa ′段)a 点对于V 0
为开启电压,当V <Va ,外加电
场尚克服
不少因载
流子扩散
而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同,GaAs 为1V ,红色GaAsP 为1.2V ,GaP 为1.8V ,GaN 为2.5V 。 (2)正向工作区:电流I F 与外加电压呈指数关系
I F = I S (e qV F /KT
–1) -------------------------I S 为反向饱和电流 。
V >0时,V >V F 的正向工作区I F 随V F 指数上升 I F = I S e qV F /KT
(3)反向死区 :V <0时pn 结加反偏压 V= - V R 时,反向漏电流I R (V= -5V )时,GaP 为0V ,GaN 为10uA 。 (4)反向击穿区 V <- V R ,V R 称为反向击穿电压;V R 电压对应I R
为反向漏电流。当反向偏压一直增加使V <- V R 时,则出现I R 突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。 1.2 C-V 特性
鉴于LED 的芯片有9×9mil (250×250um),10×10mil ,11×11mil (280×280um),12×12mil
(300×300um),故pn 结面积大小不一,使其结电容(零偏压)
C ≈n+pf 左右。
C-V 特性呈二次函数关系(如图2)。由1MH Z 交流信号用C-V 特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED 的电流为I F 、
管压降为U F则功率消耗为P=U F×I F
LED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj、外部环境温度为Ta,则当Tj>Ta时,内部热量借助管座向外传热,散逸热量
(功率),可表示为P = K T(Tj – Ta)。
1.4 响应时间
响应时间表征某一显示器跟踪外部信息变化的快慢。现有几种显示LCD(液晶显示)约10-3~10-5S,CRT、PDP、LED都达到10-6~10-7S(us级)。
①响应时间从使用角度来看,就是LED点亮与熄灭所延迟的时间,即图中t r 、t f 。图中t0值
②响应时间
主要取决于载
流子寿命、器
件的结电容及
电路阻抗。
LED的点亮时
间——上升时
间t r是指接通
电源使发光亮
度达到正常的
10%开始,一直
到发光亮度达
到正常值的
90%所经历的
时间。
LED 熄灭时间——下降时间t f是指正常发光减弱至原来的10%所经历的时间。
不同材料制得的LED响应时间各不相同;如GaAs、GaAsP、GaAlAs其响应时间<10-9S,GaP为10-7 S。因此它们可用在10~100MH Z高频系统。
2 LED光学特性
发光二极管有红外(非可见)与可见光两个系列,前者可用辐射度,后者可用光度学来量度
其光学特性。
2.1 发光法向光强及其角分布Iθ
2.1.1 发光强度(法向光强)是表征发光器件发光强弱的重要性能。LED大量应用要求是圆柱、圆球封装,由于凸透镜的作用,故都具有很强指向性:位于法向方向光强最大,其与水平面交角
为90°。当偏离正法向不同θ角度,光强也随之变化。发光强度随着不同封装形状而强度依赖
角方向。
2.1.2 发光强度的角分布Iθ是描述LED发光在空间各个方向上光强分布。它主要取决于封装的工艺(包括支架、模粒头、环氧树脂中添加散射剂与否)
⑴为获得高指向性的角分布(如图1)
①LED管芯位置离模粒头远些;
②使用圆锥状Array(子弹头)的模粒
头;
③封装的环氧树
脂中勿加散射剂。
采取上述措施可
使LED 2θ1/2 = 6°
左右,大大提高了指
向性。
⑵当前几种常
用封装的散射角
(2θ1/2角)
圆形LED:5°、
10°、30°、45°
2.2 发光峰值波长及其光谱分布
⑴LED发光强度或光功率输出随着波长变化而不同,绘成一条分布曲线——光谱分布曲线。当此曲线确定之后,器件的有关主波长、纯度等相关色度学参数亦随之而定。
LED的光谱分布与制备所用化合物半导体种类、性质及pn结结构(外延层厚度、掺杂杂质)等有关,而与器件的几何形状、封装方式无关。
LED 光谱分布曲线
1蓝光InGaN/GaN 2 绿光 GaP:N 3 红光 GaP:Zn-O
4 红外GaAs
5 Si光敏光电管
6 标准钨丝灯
①是蓝色InGaN/GaN发光二极管,发光谱峰λp = 460~465nm;
②是绿色GaP:N的LED,发光谱峰λp = 550nm;
③是红色GaP:Zn-O的LED,发光谱峰λp = 680~700nm;
④是红外LED使用GaAs材料,发光谱峰λp = 910nm;
⑤是Si光电二极管,通常作光电接收用。
由图可见,无论什么材料制成的LED,都有一个相对光强度最强处(光输出最大),与之相对应有一个波长,此波长叫峰值波长,用λp表示。只有单色光才有λp波长。
⑵谱线宽度:在LED谱线的峰值两侧±△λ处,存在两个光强等于峰值(最大光强度)一半的点,此两点分别对应λp-△λ,λp+△λ之间宽度叫谱线宽度,也称半功率宽度或半高宽度。
半高宽度反映谱线宽窄,即LED单色性的参数,LED半宽小于40 nm。
⑶主波长:有的LED发光不单是单一色,即不仅有一个峰值波长;甚至有多个峰值,并非单色光。为此描述LED色度特性而引入主波长。主波长就是人眼所能观察到的,由LED发出主要单色光的波长。单色性越好,则λp也就是主波长。
如GaP材料可发出多个峰值波长,而主波长只有一个,它会随着LED长期工作,结温升高而主波长偏向长波。
2.3 光通量
光通量F是表征LED总光输出的辐射能量,它标志器件的性能优劣。F为LED向各个方向发光的能量之和,它与工作电流直接有关。随着电流增加,LED光通量随之增大。可见光LED的光通量单位为流明(lm)。
LED向外辐射的功率——光通量与芯片材料、封装工艺水平及外加恒流源大小有关。目前单色LED的光通量最大约1 lm,白光LED的F≈1.5~1.8 lm(小芯片),对于1mm×1mm的功率级芯片制成白光LED,其F=18 lm。
2.4 发光效率和视觉灵敏度
① LED效率有内部效率(pn结附近由电能转化成光能的效率)与外部效率(辐射到外部的效率)。前者只是用来分析和评价芯片优劣的特性。