一、磁环的尺寸优化

一、磁环的尺寸优化
一、磁环的尺寸优化

一、磁环的尺寸优化

注意事项:软件材料的工作点在磁化曲线上,永磁材料的工作点在退磁曲线上。永磁材料工

作点的磁感应强度不能高于软磁材料的饱和磁感应强度。

图1 磁环的剖面结构示意图

1. 厚度参数

内径R1=8cm ,外径R2=15cm ,厚度D=5~20cm 。从计算结果可见,为了获得最佳的利用效率,磁环厚度不能高于10cm 。

5101520

0.19

0.200.210.220.23

0.24

B 0,0,0 (T )

D (cm)

图2 磁环中心磁场随厚度的变化关系

2. 外径参数

内径R1=8cm ,外径R2=10~50cm ,厚度D=8cm 。从计算结果可见,为了

获得最佳的利用效率,磁环外径不宜高于20cm 。

10

152025

30

0.00.10.20.3

0.4

0.50.6

B 0,0,0 (T )

R 2 (cm)

再取内径R1=8cm ,外径R2=18cm ,厚度D=5~20cm 进行计算,从结果可见,为了获得最佳的利用效率,磁环厚度也不能高于10cm 。

4

6

8

10

12

14

16

18

20

22

0.23

0.240.250.260.270.28

0.290.300.31Y A x i s T i t l e

X Axis Title

B

根据计算结果综合考虑,初步确定磁环的尺寸为:内径R1=8cm ,外径R2=18cm ,厚度D=8cm 。

3. 基本规律

单磁环的轴向磁场(保持沿z 轴方向,而不讨论x 和y 方向)分布基本规律研究。选取坐标原点位于磁环中心,轴向为z 轴方向,剖面如如图1所示;磁环的磁化方向为z 轴负方向,磁环材料的剩磁为0.9T 。选取磁环尺寸为:内径R1=8cm ,外径R2=18cm ,厚度D=8cm 。

-30

-20

-10

10

20

30

-0.05

0.000.050.100.150.20

0.250.30Z (cm)B z (T )

at (0, 0, z)

图2 磁场在z 轴不同位置时沿z 轴方向的分布规律

观察路径为x=0,y=0,z 为变量,即磁场在z 轴不同位置时沿z 轴方向的分布规律,计算结果如图2所示。可见,(1)磁场在磁环中心处(0,0,0)获得最大值,接近中心位置的小范围内可以认为磁场值不变;(2)在远离磁环中心的两边,磁场出现反峰。

-40

-30-20-10

010203040

-0.6-0.4-0.20.00.2

0.4

at (x, 0, 0)

B z (T )

X (cm)

图3 磁场在x 轴不同位置时沿z 轴方向的分布规律

观察路径为x 为变量,y=0,z=0,即磁场在x 轴不同位置时沿z 轴方向的分布规律,计算结果如图3所示。可见,(1)磁环本身(x=8~15 cm )与其内部空间(x<8 cm )和外部空间(x>8 cm )的磁场方向相反;在磁环的内部空间,当x 为0时磁场最小,偏离中心时磁场略有增加,在接近磁环的内径时,磁场分布发生突变。由对称性可知,X 和Y 坐标对于磁环的意义相同,可以互换。 -30

-20-10

0102030

-0.3

-0.2-0.10.00.10.20.3B x (T )

Z (cm)

(0, 0, z) (2, 0, z) (4, 0, z) (7, 0, z)

图4 磁场在x 轴不同位置时沿x 轴方向的分布规律

观察路径为x为变量,y=0,z=0,即磁场在x轴不同位置时沿x轴方向的分布规律,计算结果如图4所示。可见,当x为0时,沿x轴方向的径向磁场Bx几乎为零,可以忽略不计,但是随着x的增加,Bx在特定位置出现逐渐增加的峰值,该磁场量不能忽略。由对称性可知,X和Y坐标对于磁环的意义相同,可以互换。

(3)开口参数

开口系数k的定义:设全磁环体积为V1,开口体积为V2,令系数k=V2/V1,则k表示与全磁环相比,缺口所占有的比例。一般情况下磁环开口较小,满足0≤V2≤0.5V1,即k≤0.5。

如何做结构设计优化

如何做结构设计优化 一、结构设计优化必不可少 设计优化对于成本控制来说具有极端重要性,不可不察。而设计优化往往是被忽略的,更多的则是不具备这个能力。 设计优化主要是从成本控制的角度对原设计进行排查,排除设计的盲区和死角,发现差错、纠正不足,降低不安全因素,为您找回流失的成本。剔除原来设计中的虚高的, 无用的,不安全的,不合理的成本。 结构设计优化,也如同人减去多余脂肪,达到健美目的,杜绝不必要的浪费。加大构件截面,提高配筋率,并不一定增加结构的安全度,有时反而是坏事,如增加建筑自重,形成超筋破坏等反作用。 结构设计优化并不是单纯的“挑毛病”,而是通过交流、沟通,找到更为合理、更经济的设计。结构设计的优化,不是以牺牲建筑适用性、结构安全度和抗震性能来求得经济效益。 在所有的设计优化中,结构设计优化空间最大,结构成本的弹性和离散性大,最有成本控制的意义,是优化的重点。 二、结构设计优化重点 结构设计优化根据优化深度难易分几个层次,一是结构体系与基础类型的优化与比 选;二是规范方面解理错误的纠正;三是结构说明不适用条款的修正;四是钢筋构造不合理的改正;五是设计图纸纠错。 结构优化不是单方面以降低成本减少含量钢量为目的,结构优化是对原结构设计改 进,不是追求局部最优,而是为了达到整体最优。 通过对多种结构方案进行选型和经济分析,提供决策依据;对影响结构的因素(如地

勘、安评报告等)进行分析,统一技术措施;对构件截面及布置等进行调整,对荷载、计算参数等进行复核。 注重概念设计,从宏观上控制结构安全,根据力学概念和工程经验进行判断。 结构设计优化有“尺寸优化,形状优化,拓扑优化,布局优化、配筋优化、构造优化“等。 结构设计优化着重于以下几个方面: 1、选择规则的平面方案和立面方案,避免过大的外挑和内收,避免应力的突变,避免薄弱层,保持受力的均衡。尽量不设转换层,尤其是高位转换,同一建筑不要做多功能多用途设计。这受制于建筑设计。建筑设计往往追求外观的新奇现代,天马行空,不计成本,也不考虑抗震等因素。越是复杂的不规则的建筑造型其抗震性能下降建筑成本增加。应该追求简约而美的设计理念,摒弃复杂而丑的设计风格。 2、刚度与延性的平衡。结构刚度大,含钢量高,延性反而差,地震反应大,抗震 性能低。延性的本质是提高结构的变形能力,控制结构整体破坏形态。可以通过减少刚 度增加延性既提高抗震能力又能节约钢筋。 3、如结构体系的选择对造价影响甚大,如异形柱框架比普通框架含钢量大;短肢剪力墙含钢量比普通剪力墙结构高。 4、选择合理的基础形式,基础形式有独基、条基、桩基、筏基、基础梁、承台等, 般选择复合基础,即几种基础类型的组合,组合种类不宜过大,基础体系应简洁, “承台+筏板”、“基梁+筏板”、“承台+基梁”等,尽量设计成无梁板。当底板采用梁板式时,基础梁计算应充分考虑承台的作用。特别是裂缝宽度计算时,梁取承台边处的弯矩进行控制,承台算至柱边。

常用铁氧体磁芯规格

常用铁氧体磁芯规格、型号与技术参数来源:中国变压器供应网发布时间:2007-10-20 0:00:00 功率铁氧体磁芯 EI EE EE PQ EC EI60EE80EE35PQ50/50EC90 EI50EE72EE30PQ40/40EC70 EI40EE70EE25PQ35/35EC52 EI35EE60EE19PQ32/30ECI70 EI33EE55EE16PQ32/20EER49/54 EI30EE50EE13PQ26/25EER49/43 EI28EE49EE10PQ26/20EER49/38 EI25EE42—PQ20/20EER42/43 EI22EE42/20—PQ20/16EER42/45 EI19———EER40/45 EI16——UF102EER28L 常用功率铁氧体材料牌号技术参数 项目条件单位PC30PC402500B B253C8N27μi——250023002500230020002000

Bms H=1200A/m mT510510490510450510 Br H=800A/m mT11795100130——Hc—A/m1214.315.915.918.820 Tc —℃>230>215>230>220>200>220 P200mT23℃ 25KHz60℃ 100℃KW/m31306009560090048 —KW/m390—70————KW/m3100—75————100mT60℃ 100KHz100℃ KW/m3—450—450———KW/m3—410—410—— 公司——TDK TDK TOKIN TOKIN FERROC XLUBE SIEMENS EI型磁芯规格及参数 型号A B C D E F H Ae (c㎡) Le (cm) Ve (cm3) AL nH/N2 μe EI1616——512.2—20.198 3.460.6711001575

专家教你如何透彻理解电感

一、电感器的定义。 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律-磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。 当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3电感的符号与单位

基于模态灵敏度分析的机载控制台尺寸优化

CAD/CAE/CAPP/CAM现代制造工程(ModernManufacturingEngineering)2018年第2期 基于模态灵敏度分析的机载控制台尺寸优化* 朱维兵,巫发茂,晏静江,王和顺 (西华大学机械工程学院,成都610039) 摘要:机载控制台杆件较多,结构复杂,尺寸优化过程中设计变量较多,在尺寸优化前必须对其进行灵敏度分析。以多目标拓扑优化后的某机载控制台下台体为研究对象;以下台体各构件的厚度尺寸作为设计变量;以质量为约束条件;以第一、第二阶固有频率作为优化目标进行灵敏度分析。获得了下台体第一、第二阶模态频率及质量对杆件厚度的灵敏度变化情况及第一、第二阶固有频率相对于质量的灵敏度值。以下台体质量作为优化目标函数;结构第一、第二阶模态频率作为约束条件;选择第一、第二阶模态频率对质量的灵敏度绝对值较大的杆件厚度尺寸作为设计变量进行尺寸优化。分析结果表明,尺寸优化后结构的低阶固有频率明显提高,质量稍有减少,具有较好的动态性能。为下台体结构尺寸的确定提供依据。 关键词:机载控制台;尺寸优化;灵敏度分析;固有频率 中图分类号:TP391 文献标志码:A文章编号:1671-3133(2018)02-0092-07 DOI:10.16731/j.cnki.1671-3133.2018.02.017 Dimensionaloptimizationofairborneconsolebasedon modalsensitivityanalysis ZhuWeibing,WuFamao,YanJingjiang,WangHeshun (SchoolofMechanicalEngineering,XihuaUniversity,Chengdu610039,China) Abstract:Theairborneconsoleconsistsofanumberofbars,thestructureiscomplex,therearemanydesignvariablesinthesizeoptimizationprocess,sensitivityanalysismustbeperformedpriortoitssizeoptimization.Basedontheconceptualdesignandre-constructionmodelofmulti-objectivetopologyoptimization,thethicknessofeachbarcomponentistakenasdesignvariable,thequalityofairborneconsoleistakenasconstraints,andthefirstandsecondordernaturalfrequenciesaretakenastheoptimizationtargets,thesensitivityanalysisiscarriedout.Thesensitivityofthefirstandsecondordermodalfrequencyandthemasstothethicknessofthebarisobtained,andthesensitivityvaluesofthefirstandsecondnaturalfrequencieswithrespecttothemassaregot.Themassofdownthebodyistakenasoptimizationobjectivefunction,thefirstandsecondordermodalfrequenciesareusedasconstraints,selectthebarwhosesensitivityabsolutevalueofthefirstandsecondordermodalfrequencyrespecttothemassislargerasadesignvariable,sizeoptimizationiscarriedout.Theresultsshowthatthenaturalfrequencyofthesizeoptimizationstructureisimprovedobviously,thequalityisslightlyreducedandthedynamicperformanceisgood,whichprovidesbasisforde-terminingthesizeofthesubstructure. Keywords:airborneconsole;sizeoptimization;sensitivityanalysis;naturalfrequency 0 引言 航空电子设备种类繁多,其特点、要求及使用环境等也各不相同,对设备体积、重量及耐力学环境等也要求很高。机载设备在工作中通常会面临严酷的振动环境条件,大量级、较低频率经常会使其产生疲劳损坏。目前对机载设备的结构优化设计研究已经开始从传统的定性、定量设计方法向CAD与CAE技术相结合的智能设计方法转变,其理论也在不断完善。结构拓扑优化较尺寸优化与形状优化更为复杂,在产品开发过程中通过拓扑优化设计法,使产品结构设计结果达到综合最优或较优[1-4]。某机载控制台主要由上台体、下台体和设备控制盒安装架等组成,下台体是整个控制台的主要承载部分。下台体结构优 29*教育部“春晖计划”合作科研项目(Z2014072);四川省教育厅重点项目(15ZA0126)万方数据

电感理论与计算

一、电感器的定义 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L

绿城地下车库覆土厚度 柱网尺寸 楼板布置体系结构优化设计探讨及管控措施

地下车库柱网尺寸、覆土厚度、楼板布置体系 结构优化设计探讨及管控措施 随着社会经济的发展以及人民生活水平的逐步提高,汽车保有量越来越大,停车难的问题越来越突出。现在新建的项目,不管是住宅小区还是商业写字楼,地下车库的面积越做越大,地下车库在整个项目投资中所占的比重也越来越高,而现在房地产行业的竞争日趋激烈,行业已从暴利时代过渡到微利时代,所以从设计源头有限控制成本就显得尤为重要。本文对经济柱网尺寸、覆土厚度以及楼盖结构布置体系三种影响地下室工程造价的因素进行全面梳理,并对其进行定性定量分析比较,得出一些结论和管控措施,可供设计人员及设计管理者参考。 一.经济柱网尺寸分析 1.一般钢筋混凝土结构的经济跨度在8米左右,每个车位宽2.4米,三个车位的尺寸最接近8米,车库的最经济柱净距为7.2(3X 2.4)米,但随着车辆大型化的趋势,有些当地交警部门要求车位白线内净宽为2.4米,则最经济柱净距变成了7.5(3X2.4+2X0.15)米,考虑柱边长一般不超过600,一般采用8.1米的柱距,舒适经济型柱网采用8.1mX8.1m。但为了考虑工程成本要求,在无当地特殊规定的情况下,可以采用更经济型柱网7.8mX8.1m,同时另设10%大型尺寸停车位,解决大型车停车问题;如车库局部零散位置不足以布置标准车位,可设小车位及子母车位,充分利用地下室面积。8.1mX8.1m经济柱网车位布置图见图(一)。 图(一)8.1mX8.1m柱网车位布置示意图

2.根据项目的实际情况也可以采用短跨小柱距的结构方案,尤其是杭州、宁波等对停车位尺寸要求高的城市,虽然立柱数量较8.1mX8.1m方案有所增加,但立柱对总成本影响甚微,如果设备管线从短跨柱网内通过,层高可以降低 200mm~300mm。在地质情况复杂、水位较高且基坑维护条件较差的项目中,可以节省相当的开挖量和基坑支护费用。但此柱网选用,须经过结合具体地库方案的经济性比较后采用。小柱网车位布置图见图(二)、图(三),各主要城市地下车库适应柱网尺寸表见表(一)。 图(二)6.6mX8.1m~5.0mX8.1m并排三车位柱网布置示意图 图(三)6.6mX5.7m~5.0mX5.7m并排两车位柱网布置示意图

电感基础知识详细图示讲解

一、 电感概述 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟 电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电 流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有 阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火 花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势 ,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。 电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L 电感单位:亨 (H)、毫亨(mH)、微亨 (uH),1H=103mH=106uH。 1.4 电感的分类: 按 电感形式 分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。 按 工作性质 分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按 绕线结构 分类:单层线圈、多层线圈、蜂房式线圈。 按 工作频率 分类:高频线圈、低频线圈。 按 结构特点 分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。 二、 电感的主要特性参数 2.1 电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2.2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为 XL=2πfL 2.3 品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。 线圈的Q 值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常 为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。 2.4 分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。

结构优化设计的综述与发展

结构优化设计的综述与发展 摘要:结构优化设计,就是在计算机技术等高科技手段的支持下,为了提升机械产品的性能、工作效率,延长机械产品的工作寿命,对机械产品的尺寸、形状、拓扑结构和动态性能进行优化的过程。这是机械行业发展的必然要求,也是信息时代的必然要求。结构优化设计,必须在保证机械产品满足工作需要的前提下,通过科学的计算来实行。文章将简单对结构优化设计的发展状况进行介绍,列举几种优化设计方法,以及讨论未来优化的发展情况。 关键词:结构优化设计发展优化设计方法 1 结构优化设计 结构优化简单来说就是在满足一定的约束条件下,通过改变结构的设计参数,以达到节约原材料或提高结构性能的目的。结构优化设计通常是指在给定结构外形,给定结构各元件的材料和相关载荷及整个结构的强度、刚度、工艺等要求的条件下,对结构进行整体和元件优化设计。结构优化设计一般由设计变量、约束条件和目标函数三要素组成。评价设计优、劣的标准,在优化设计中称为目标函数;结构设计中以变量形式参与的称为设计变量;设计时应遵守的几何、刚度、强度、稳定性等条件称为约束条件,而设计变量、约束函数与目标函数一起构成了优化设计的数学模型。结构优化的目的是让设计的结构利用材料更经济、受力分布更合理。 结构优化设计根据设计变量选取的不同可以分为截面(尺寸)优化、形状优化、拓扑优化三个层次。尺寸优化是选取结构元件的几何尺寸作为设计变量,例如,杆元截面积、板元的厚度等等[1]。而形状优化是选取结构的内部形状或者是节点位置作为设计变量。拓扑优化就是选取结构元件的有无作为设计变量,为0-1型逻辑型设计变量。 2 结构优化设计研究概况与现状 结构优化设计最早可以追溯到17世纪,伽利略和伯努利对弯曲梁的研究从而引发了变截面粱形状优化的问题。后来Maxwell和Michell提出了单载荷仅有应力约束条件下最小重量桁架结构布局的基本理论,为系统地分析结构优化理论作出了重大的贡献。然而长期以来,由于缺乏高速可靠的计算手段和理论,结构优化设计一直无法获取较大发展。 到上世纪六十年代,有限元技术借助于计算机技术,得到了极大的发展。1960年Schmit在求解多种载荷情况下弹性结构的最小重量问题时,首次在结构优化中引入入数学规划理论,并与有限元方法结合应用,形成了全新的结构优化思想,标志着现代结构优化技术的开始[2]。 1973年Zienkiewicz和Campbell[3]在解决水坝的形状优化问题时,首次以节点坐标作为设计变量,在结构分析方面使用了等参元,在优化方法上使用了序列线性规划的方法。其后,众多的学者在此基础上,逐渐发展形成了使用边界形状参数化方法描述连续

常用铁氧体磁芯规格

常用铁氧体磁芯规格、型号与技术参数 功率铁氧体磁芯 EI EE EE PQ EC EI60 EE80 EE35 PQ50/50 EC90 EI50 EE72 EE30 PQ40/40 EC70 EI40 EE70 EE25 PQ35/35 EC52 EI35 EE60 EE19 PQ32/30 ECI70 EI33 EE55 EE16 PQ32/20 EER49/54 EI30 EE50 EE13 PQ26/25 EER49/43 EI28 EE49 EE10 PQ26/20 EER49/38 EI25 EE42 — PQ20/20 EER42/43 EI22 EE42/20 — PQ20/16 EER42/45 EI19 — — — EER40/45 EI16 — — UF102 EER28L 常用功率铁氧体材料牌号技术参数 项目 条件 单位 PC30 PC40 2500B B25 3C8 N27 μi — — 2500 2300 2500 2300 2000 2000 Bms H=1200A/m mT 510 510 490 510 450 510 Br H=800A/m mT 117 95 100 130 — — Hc — A/m 12 14.3 15.9 15.9 18.8 20 Tc — ℃ >230 >215 >230 >220 >200 >220 P 200mT23℃ 25KHz60℃ 100℃ KW/m3 130 600 95 600 900 48 KW/m3 90 — 70 — — — KW/m3 100 — 75 — — — 100mT60℃ 100KHz100℃KW/m3 — 450 — 450 — — KW/m3 — 410 — 410 — — 公司 — — TDK TDK TOKIN TOKIN FERROCXLUB E SIEMENS

美磁铁硅铝77191A7

名称:正品美国MAGNETICS铁硅铝磁芯77191A7 材料:Kool Mu(铁硅铝磁芯) 磁导率:26U,AL =60nH/N2 尺寸:外径58.0mm,内径25.6mm,高度16.1mm 净重:165克 磁导率26U,AL:60,颜色:灰色 对应行业料号: CSC CS571026; ARNOLD MS-226026-8; 美磁简介:美磁是世界电子行业中居领先地位的精密软磁元件和材料的供应商。其专注于研究,设计和生产范围广泛的高质量磁粉芯,粉末磁芯,铁氧体磁芯和绕带磁芯,应用于各类型扼流圈,电感器,滤波器,变压器,使用替代能源的供电系统,电信,航空航天,汽车,军事,计算机,医疗等电子系统。 产品特点:美磁的铁硅铝磁芯是一种具有均匀分布式气隙,在高频率下有较低损耗,由85%的铁,9%的硅,和6%的铝合金粉末所组成的磁芯。

?高饱和度(1.05 T); ?磁芯损耗比铁粉芯低; ?适量的成本; ?低磁滞伸缩; ?居里温度高; ?高温下性能稳定; ?各种可用形状(环形,E形,U形,块状,分段磁芯等) 。 用途: ?铁硅铝磁芯非常适合用于开关电源中的储能滤波电感器。与同样大小和磁导率的间隙铁氧体或铁粉芯相比,10,500高斯饱和度的铁硅铝磁芯提供更高的储存能量的能力。 ?与铁粉芯相比,铁硅铝在高温下的表现较好,在一些应用中,使用铁硅铝也比用铁粉芯尺寸更小。 ?在必须通过大型交流电压,而不产生饱和的噪音滤波电感器中,非常适合使用铁硅铝磁芯。采用铁硅铝磁芯可缩小在线滤波器的尺寸,因为需要的匝数比使用铁氧体少。铁硅铝还具有接近零的磁致伸縮系数,也就是说,在可听频率范围内噪音或在线电流的糙作中非常安静。 ?高磁通密度和低磁芯损耗的特性,使铁硅铝磁芯非常适用于功率因数校正电路,以及单向驱动的应用,如回扫变压器,脉冲变压器。

人字架结构尺寸优化设计

% 人字架结构尺寸优化设计 % 1-主程序 % 人字架优化调用两级减速器目标函数文件与非线性约束文件 % 设计变量(钢管平均直径D和人字架高度H)的初始值 x0=[100;800]; % 设计变量(钢管平均直径D和人字架高度H)的下界与上界 Lb=[20;200]; Ub=[140;1200]; % 调用多维约束优化函数 % 线性不等式约束放入约束函数文件,参数A,b定义为空矩阵 % 没有线性等式约束,参数Aeq,beq定义为空矩阵 options=optimset('largescale','off','display','iter'); % 'largescale','off'关闭了大规模方式; % 'display'用来控制计算过程的显示; % 'iter'表示显示优化过程的每次计算结果。 [x,fn,exitflag,output]=fmincon(@rzjyh_f,x0,[],[],[],[],Lb,Ub,@rzjyh_g,options); % 返回值exitflag:>0表示计算收敛,=0表示超过了最大的迭代次数,<0表示计算不收敛;% 返回值output有3个分量,其中: % iterations是优化过程中迭代次数,funcCount是代入函数值的次数,algorithm是优化所采用的算法 disp ' ******** 人字架结构尺寸优化设计最优解********' fprintf(' 钢管平均直径 D = %3.4f mm \n',x(1)) fprintf(' 人字架高度H = %3.4f mm \n',x(2)) fprintf(' 人字架体积V = %3.4f mm^3 \n',fn) % 调用多维约束优化非线性约束函数(jsqyh_g)计算最优点x*的性能约束函数值 g=rzjyh_g(x); disp ' ======== 最优点的性能约束函数值========' fprintf(' 人字架钢管压缩强度g1 = %3.4f MPa \n',g(1)) fprintf(' 人字架钢管稳定性g2 = %3.4f MPa \n',g(2)) % 2-目标函数(rzjyh_f) function f=rzjyh_f(x); % 人字架跨距B;钢管厚度T; B=1520;T=2.5; f=2*pi*x(1)*T*sqrt((B/2)^2+x(2)^2); % 3-约束函数(rzjyh_g) function [g,ceq]=rzjyh_g(x); % 人字架跨距B;钢管厚度T;载荷P;弹性模量E;许用压应力Cy; B=1520;T=2.5;P=294300;E=2.119e5;sigma_y=690; % 钢管压缩强度条件 Q=0.5*P*sqrt((B/2)^2+x(2)^2)/x(2); % 钢管轴向压力 sigma=Q/(pi*T*x(1)); % 钢管压应力

磁芯材料的介绍

电力电子电路常用磁芯元件的设计 一、常用磁性材料的基本知识 磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。 1.低碳钢 低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。这种材料大多应用于低频场合,工频磁性元件常用这种材料。 2.铁氧体 随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。 铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。 高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。 3.粉芯材料

磁环选择方法

制作巴伦的磁环选择方法(大全) 制作巴伦的磁环应该怎么选? 磁环应该选择高频的,导磁率(不要很高的)100比较合适!现在高频磁环比较难找。过去大家都到北京协会总部去买,大约5元一只,不知现在还有没有。也有的火腿使用一般磁环绕制,只要芯线绞的比较紧密也能用,但频率高、功率大时会发热。MTV推荐的空心巴仑也是很好的解决办法-。磁环是高频铁氧体,具有高导磁(u大)和低损耗的特点。磁芯类型一般有NXO镍锌铁氧体和MXO锰锌铁氧体两系列。 大直径的高频磁环,用粗芯线也可以大功率到1000瓦以上! 广大无线电爱好者在制作巴伦,功率合成器(分配器)时经常在选择磁环,导线等问题大伤脑筋,且这些问题如果处理不当,必定效果不理想。经常在频率上和网上听到或看到有人抱怨,加了巴伦还不如不加……为了解决这些问题,要从高频变压器问题解决。本人根据一些资料,总结了一些关于传输线变压器的一些问题和大家共同探讨,有不当之处,请大家予以指正。 将高频传输线绕在具有高导磁率(u)低损耗的铁氧体磁环上就变成传输绝变压器,其电路从表面上看似乎与普通变压器没有多大差别,但实际上它们传递能量的方式是不相同的。普通变压器信号电压加在初级绕组的1、2端,使初级线圈有电流流过,然后由此产生的磁力线在次级(3、4端)感应出相应的交变电压,能量就是这样由输入端传到负载。而传榆线变压器的信号电压却加在1、3端,能量在两导线的介质间传播到负载。传输线变压器能量传输原理如图l-a所示。出于两根导线是紧靠绕在一起,所以导线任意点的线间电容都是很大的,而且在整个线长上是均匀分布的。由于导线是绕在高u磁芯上,故导线每一小段Δl的电感量是很大的,而且均匀分布在整个线段上。这些电容和电感量通常叫分布参数,由线间电容和导线电感组成的电路叫分布参数电路,如图1-b所示。 因此,传输钱可以看成由许多电感、电容组成的耦合链,从而产生了新的传输能量的方式。当信号电压U1加在图2的输入端(1、3端)时,出于传输线间电容较大,因此信源向电容C1充电,使C1贮能。而C1又通过电感L1放电,使电感贮能.电能变为磁能。然后,电感Ll又向电容C2充电,磁能又变成了电能。如此循环不止,且把电磁能送到终端负载,最后被负载吸收。如果忽略了导线的欧姆损耗及导线问的介质损耗则输出端能量将等于输入端的能量,也就是说,通过传输线变压器,负载可以取得信源供给的全部能量。因此,在传输线变压器中,线间的分布电容不但不会影响高频能量传输而且是电磁能转换必要条件。由于电磁波主要是在导线间的介质中传播的,磁芯的铁磁损耗对信号传输的影响就大大减少,所以传输线变压器的最高工作频率就可以大大提高,这就构成了传输线变压器传递宽频带信号的可能。 传输线变压器的一个最基本构造单元是两条长度相等,且高频损耗很小的导线乎行并绕在磁环上(磁环是高频铁氧体),具有高导磁(u大)和低损耗的特点。磁芯类型一般有NXO镍锌铁氧体和MXO锰锌铁氧体两系列。MXO通常用于频率较低的场合,当信号频率超过500K-1MHz用NXO为宜。由传输线理论可知,当传输线阻抗Zc= ,传输线处于无反射波的行波状态,能量全部送到负载。 例如:当Rs=12.5Ω,Rl=50Ω,则Zc=25Ω,也就是要选用25Ω得传输线。当Rs=50Ω,Rl=50Ω,则Zc=50Ω,也就是要选用50Ω得传输线。 综上所述,传输线变压器的最重要的问题是传输线的的分布参数的均匀度和传输线的阻抗。好多爱好者在业余条件都是用双绞或三绞和的漆包线绕制,这样不可

磁芯规格对照表

Dimensions (mm)Ap Ae Aw A L Le Ve Wt P CL 100kHz 200mT Pt 100kHz 幅寬mm 窗口面积mm 2 PIN A * B * C ( cm 4 ) ( mm 2 )( mm 2 )(nH/N 2) ( mm ) ( mm 3 ) ( g ) @100℃(W) (W) 可配合BOBBIN EC353C8535.3*17.3*9.5 1.374184.30163.002100.077.406530.038.0021.5 8H EC413C8541.6*19.5*11.6 2.5894121.00214.002700.089.3010800.060.0024.58H EC523C8552.2*24.2*13.4 5.5980180.00311.003600.0105.0018800.0112.0028.312H EC703C8571.7*34.5*16.417.8281279.00639.003900.0144.0040100.0254.0041.412/34H EE05PC40 5.25*2.65*1.950.0013 2.63 5.00285.012.6033.10.160.02 1.1 2.76-8H EE6.3PC40 6.1*2.85*7.950.0015 3.31 4.46405.012.2040.40.240.02 2.76H EE8PC408.3*4.0*3.60.00917.0013.05590.019.47139.00.700.06 1.9 4.78 5.36H EE10/11PC4010.2*5.5*4.750.028712.1023.70850.02 6.60302.0 1.500.16 6.612.28V EE13PC4013.0*6.0*6.150.05701 7.1033.351130.030.20517.0 2.700.2357.422.210V EE16PC4016*7.2*4.80.076519.2039.851140.035.00672.0 3.300.31 8.527.36-10V H EE19PC401 9.1*7.95*5.00.124323.0054.041250.039.40900.0 4.800.42933.16-8V H EE19/16PC4019.29*8.1*4.750.119122.4053.151350.039.10882.0 4.800.41933.16-8V H EE20/20/5PC4020.15*10*5.10.119131.0050.701460.043.001340.07.500.51EE22PC4022*9.35*5.750.119141.0038.792180.039.401610.08.800.618.45208 V EE2329S PC4023*14.7*6 0.119135.80122.001250.064.902320.012.00 1.16EE25/19PC4025.4*9.46*6.290.119140.0078.202000.048.701940.09.100.99.842.5EE25.4PC4025.4*9.66*6.350.119140.3078.732000.048.701963.010.000.9EE2825PC4028*12.75*10.60.119186.9098.103300.057.705010.026.00 2.519.639.410V EE30 PC4030*13.15*10.70.1191109.0073.354690.057.706310.032.00 2.913.743.210-12V EE30/30/7PC4030.1*15*7.050.119159.70124.872100.066.904000.022.00 1.51EE3528PC4034.6*14.3*9.30.119184.80158.002600.069.705910.029.00 2.9615.788.712V EE40PC4040*17*10.70.1191127.00173.234150.077.009810.050.00 4.217.3 108 12 V EE4133PC4041.5*17*12.70.1191157.00180.004200.079.0012470.064.00 6.25EE42/21/15PC4042*21.2*150.1191178.00278.003800.097.9019510.088.008.8EE42/21/20PC4042*21.2*20 0.1191235.00275.005000.097.8023000.0116.0011.6EE47/39PC4047.12*19.63*15.620.1191242.00196.406660.090.6021930.0108.009.7EE50 PC4050*21.3*14.60.1191226.00253.736110.095.8021600.0116.009.421.317012V EE55/55/21PC4055.15*27.5*20.70.1191354.00386.347100.0123.0043700.0234.0011.0(150MT) EE57/47PC4056.57*23.6*18.80.1191344.00282.368530.0102.0035100.0190.008.5EE60PC4060*22.3*15.60.1191247.00399.025670.0110.0027100.0135.0012.523.829412V EE50.3 PC4050.3*25.6*6.10.1191120.85152.642900.0104.9012676.068.00 5.8328.2596.0512H EE62.3/62/6PC4062.3*31*6.10.1191153.01198.223100.0125.7419240.0102.008.8533.85115.0912H EE65/32/27 PC40 65.15*32.5*27 0.1191 535.00 575.00 8000.0 147.0078700.0 399.00 5.9(100MT) EC EE CORE参数对照表 形狀 TYPE MATE-RIAL

ZCAT磁环规格书

Clamp Filters For Cable ZCAT Series FEATURES ?Unique plastic case ensures simple, convenient installation and includes a self-holding mechanism to prevent slippage on cables. ?Ferrite core provides excellent absorption of high-frequency EMC. ?Highly effective as countermeasure against common mode EMC without adverse effect on signal quality. ?Large core size prevents saturation during large signal surges. APPLICATIONS Personal computers, word processors, monitors, hard disk drives, digital telephones, audio devices, electronic musical instruments, video games, copiers and facsimiles. PRODUCT IDENTIFICATION (1) Series name (2) Outer dimensions(mm) (3) Length(mm) (4) Inner dimensions(mm)(5) Material code (6) Fixed type code A: Cable fixed Hold the cable to secure it with the main body AP:Cable fixed (with lock mechanism)B: Clamp fixed C: Cable coil securing type (Coil the cable one time within the case to fix it/with lock mechanism.)D: Flat cable type DT: Flat cable type (Hold with adhesive pad.) Non code: Band fixed (Secure the cable and main body with the nylon belt.) (7) Outer color code BK: Black Non code: Gray ZCAT-C TYPE Conformity to RoHS Directive ZCA T 2436–1330 A –BK (1) (2) (3)(4) (5) (6)(7) PACKAGING STYLE AND QUANTITIES Part No.Quantity ZCAT3035200 pieces/box ZCAT2017-B 350 pieces/box ZCAT2235400 pieces/box ZCAT2436400 pieces/box ZCAT2032420 pieces/box ZCAT2132480 pieces/box ZCAT2749400 pieces/box ZCAT1730840 pieces/box ZCAT2017640 pieces/box ZCAT13251344 pieces/box ZCAT3618-D 480 pieces/box ZCAT4625-D 240 pieces/box ZCAT6819-D 160 pieces/box ?Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

相关文档
最新文档