物理整体法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整体法与隔离法的综合应用

在研究静力学问题或力和运动的关系问题时,常会涉及相互关联的物体间的相互作用问题,即“连接体问题”。连接体问题一般是指由两个或两个以上物体所构成的有某种关联的系统。研究此系统的受力或运动时,求解问题的关键是研究对象的选取和转换。一般若讨论的问题不涉及系统内部的作用力时,可以以整个系统为研究对象列方程求解–––“整体法”;若涉及系统中各物体间的相互作用,则应以系统某一部分为研究对象列方程求解–––“隔离法”。这样,便将物体间的内力转化为外力,从而体现其作用效果,使问题得以求解,在求解连接问题时,隔离法与整体法相互依存,交替使用,形成一个完整的统一体,分别列方程求解。

一. 在静力学中的应用

在用“共点力的平衡条件”求解问题时,大多数同学感到困难的就是研究对象的选取。整体法与隔离法是最常用的方法,灵活、交替的使用这两种方法,就可化难为易,化繁为简,迅速准确地解决此类问题。

例1. 在粗糙的水平面上有一个三角形木块,在它的两个粗糙的斜面上分别

放置两个质量为m

1和m

2

的木块,,如图1所示,已知三角形木块和两个

物体都是静止的,则粗糙水平面对三角形木块()

A. 在摩擦力作用,方向水平向右;

B. 有摩擦力作用,方向水平向左;

C. 有摩擦力作用,但方向不确定;

D. 以上结论都不对。

图1

解析:这个问题的一种求解方法是:分别隔离m

1、m

2

和三角形木块进行受力

分析,利用牛顿第三定律及平衡条件讨论确定三角形木块与粗糙水平面间的摩擦力。

采用整体法求解更为简捷:由于m

1、m

2

和三角形木块相对静止,故可以看成

一个不规则的整体,以这一整体为研究对象,显然在竖直平面上只受重力和支持力作用,很快选出答案为D。

例2. 如图2所示,重为G的链条(均匀的),两端用等长的轻绳连接,挂在等高的地方,绳与水平方向成角,试求:

(1)绳子的张力;

(2)链条最低点的张力。

图2

解析:(1)对整体(链条)分析,如图3所示,由平衡条件得①所以

图3

(2)如图4所示,隔离其中半段(左边的)链条,由平衡条件得

图4

由①②得

例3. 有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间有一根质量可忽略,不可伸长的细绳相连,并在某一位置平衡,如图5所示,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相

比较,AO杆对P环的支持力和细绳上的拉力的变化情况是()

图5

A. 不变,变大;

B. 不变,变小;

C. 变大,变大;

D. 变大,变小。

解析:先用隔离法,对环Q:因OB杆光滑,故细绳拉力的竖直分量等于环的重力,当P环向左移动一小段时,细绳与竖直方向的夹角变小,故细绳的拉力变小。

再用整体法。对两环和细绳构成的系统,竖直方向只受到OA杆的支持力

和重力,故在P环向左移动一小段距离后,保持不变,故应选B。

点评:(1)绳的拉力还可用极端法分析,当P环移到最左端O时,最小,。当环移到细绳接近于水平时,趋于无穷大,故知,环P向左移动,

变小。

(2)我们还可以隔离环P,分析其受到的摩擦力的变化情况,P环左移,

变小,细绳与OA的夹角变大,故的水平分量变小,P环的静摩擦力变小。

例4. 如图6所示,人重600N,平板重400N,若整个系统处于平衡状态,则人必须用多大的力拉住绳子?(滑轮和绳的质量及摩擦不计)

图6

解析:设定滑轮两边绳中的张力为F

1,动滑轮两边绳中的张力为F

2

,板对人

的支持力为F

N

解法1:把定滑轮下方的各物体组成一个整体,这一整体受力如图7所示,由平衡条件得

图7

所以

再以动滑轮为研究对象,受力如图8所示,由平衡条件得

图8

所以

解法2:以人为研究对象,受力如图9,由平衡条件得

图9

以板为研究对象,受力如图10,由平衡条件得

图10

又③

解①②③④可得

解法3:选人和板构成的系统为研究对象,受力如图11所示,由平衡条件得

图11

由①②可解得

二. 在动力学中的应用

在运用牛顿运动定律处理连接体问题时,中的F指的是合外力,对于连接体问题,若将连接体作为整体,则不必分析连接体之间的相互作用,只需分析外界对连接体物体的作用力,从而简化受力过程,加快解题速度,这就是所谓的“整体法”;题中若求解连接体物体之间的相互作用力,这时必须将物体隔离出来,化内力为外力,才能求解,这就是“隔离法”。“整体法”和“隔离法”在求解连接体问题中经常交替采用,此类问题的特点是相互作用的物体具有相同的加速度,这一点特别重要。

例5. 如图12所示,两个用轻线相连的位于光滑平面上的物块,质量分别为

m 1和m

2

。拉力F

1

和F

2

方向相反,与轻线沿同一水平直线,且。试求在两

个物块运动过程中轻线的拉力。

图12

解析:设两物块一起运动的加速度为a,则对整体有

对m

1

解以上二式可得

点评:该题体现了牛顿第二定律解题时的基本思路:先整体后隔离––––即一般先对整体应用牛顿第二定律求出共同加速度,再对其中某一物体(通常选受力情况较为简单的)应用牛顿第二定律,从而求出其它量。

例6. 如图13所示,叠放的a、b、c三块粗糙物块,其上面的接触处均有摩擦,但摩擦系统不同,当b物体受到一水平力F作用时,a和c随b保持相对静止,做向右的加速运动,此时()

A. a对c的摩擦力的方向向右;

B. b对a的摩擦力的方向向右;

C. a对b、a对c的摩擦力大小相等;

D. 桌面对c的摩擦力大于a、b间的摩擦力。

相关文档
最新文档