线性代数第五章二次型

合集下载

线性代数 第五章 相似矩阵与二次型 第1节

线性代数 第五章  相似矩阵与二次型 第1节

就正交。
显然,零向量与任何向量正交。
定义 一组两两正交的非零向量,称为正交向量组。
定理 如果 n 维向量 1, 2 ,..., m 为正交向量组, 则1, 2 ,..., m 线性无关。
证明 设有1,2,m 使11 2 2 ... m m 0

T 1
左乘上式两端,得
1
T 1
1
0
因1 0, 故1T1 1 2 0,从而1 0。
1 3 1
4 6
1 2 1
5 3
1 1 ; 1
3
3
[ 3, 1] [1, 1]
1
[ 3, 2] [2, 2 ]
2
4 1 0
1
3
1 2 1
5
3
1 1 1
2 0
2
再把它们单位化,取
e1
1
1
1 6
1 2 , 1
e3
3
3
r1,n , 把1,r ,r1,n 正交规范化
就得到 Rn 的一个正交规范基。
五、正交矩阵与正交变换
定义 若 n 阶方阵A 满足 AT A E (即A1 AT )
则称 A 是正交矩阵。
若记 A 1 2 n ,则 AT A可表示为:
12TT
1
2
n E
T n

iT j
1 0
当i 当i
四、施密特正交化方法
把基 1, 2 ,..., n 化成标准正交基的具体步骤:
先正交化:

1

1
2
2
[ 2 , [1,
1] 1]
1
3
3
2 i 1
[ 3 [i

长安大学《线性代数》课件-第5章二次型 (2)

长安大学《线性代数》课件-第5章二次型 (2)

n
a
i , j 1
ij
xi x j
ann xn2
f ( x1 , x2 ,
, xn ) ax111 (xa1211x1a
a112xx2 2 aa1n1nxx1 xn )n
12 x
2
x
x

a
x
aa2 n2 nxx2 nx)n
ax21
(
a
x

a
x
2222 2 2
2 221 1 1
可逆变换 x = C z ,使 f (Cz) 为规范形.
如果要把 f = 2y12 + y22 + y32 化为规范形,令
y1 1 / 2 z1

y2 z 2
y z
2
2
可得 f 的规范形:f = z12 + z22 + z32
例 用正交变换化二次型为标准型,并求出所用的正交变换。
2 3

1 3 , 则Q是正交矩阵。

2 3

2
2
f ( x1 , x 2 , x 3 ) 2 x1 ax 2 4 x1 x 2 4 x 2 x 3
经正交变换 x Q y 化为标准形 f y12 by2 2 4 y 3 2
求 a,b;
解 二次型的矩阵为
2 2 0
ann xn2
2an1, n xn 1 xn
称为二次型.
例如: f ( x , y ) x 2 4 xy 5 y 2

2
2
都是二次型。
f ( x , y , z ) 2 x y xz yz

线性代数ppt 第五章 二次型

线性代数ppt 第五章 二次型

a11 a 21 a n1
a12 a 22 an2
a1n a2n , a nn
x =
x1 x2 , xn
则 二 次 型 可 记 作 f = xT Ax, 其 中 A为 对 称 矩 阵 .
(3)
此时A 此时A称为二次型 f 的矩阵, f 称为对称矩阵A 的矩阵, 称为对称矩阵A 对应的二次型. 对应的二次型. 对矩阵A的秩叫做二次型 的秩 二次型f的秩 二次型 的秩. f(x1,x2)=3x12+3x22+2x1x2 )=3x +3x +2x
k1 0 TAP = P … 0
0 k2 … 0
… … … …
0 0 … kn
第五章 二次型
§5.1 二次型及其矩阵表示
三. 矩阵的合同 可逆矩阵P, 使得PTAP = B. 记为: A B. 可逆矩阵 使得P 矩阵P 记为: 矩阵间的合同关系也是一种等价关系. 矩阵间的合同关系也是一种等价关系. An与Bn合同(congruent): 合同(congruent):
(1) 反身性: A A; 反身性: A; (2) 对称性: A B B A; 对称性: (3) 传递性: A B, B C A C. 传递性:
定理5.1. 实对称矩阵与对角矩阵合同. 定理5.1. 实对称矩阵与对角矩阵合同.
作业 P151 1. (B) 1(1), (3); 2
本章主要内容 (1) 二次型矩阵表示 (2) 标准二次型,规范二次型 标准二次型, 二次型 (3) 将二次型化为标准形 (4)二次型的正定型的判定—主要是利用顺序 (4)二次型的正定型的判定 主要是利用顺序 二次型的正定型的判定— 主子式判定 主子式判定 作业: 作业: P152 7(1); 20(1)

线性代数:第五章二次型

线性代数:第五章二次型

线性代数:第五章⼆次型第五章⼆次型§1 ⼆次型及其矩阵表⽰⼀、⼆次型及其矩阵表⽰设是⼀个数域,⼀个系数在数域中的的⼆次齐次多项式称为数域上的⼀个元⼆次型,简称⼆次型.定义1 设是两组⽂字,系数在数域P中的⼀组关系式(2)称为由到的⼀个线性替换,或简称线性替换.如果系数⾏列式,那么线性替换(2)就称为⾮退化的.线性替换把⼆次型变成⼆次型.令由于所以⼆次型(1)可写成把(3)的系数排成⼀个矩阵(4)它称为⼆次型(3)的矩阵.因为所以把这样的矩阵称为对称矩阵,因此,⼆次型的矩阵都是对称的.令或应该看到⼆次型(1)的矩阵A的元素,当时正是它的项的系数的⼀半,⽽是项的系数,因此⼆次型和它的矩阵是相互唯⼀决定的.由此可得,若⼆次型且,则.令,于是线性替换(4)可以写成或者经过⼀个⾮退化的线性替换,⼆次型还是变成⼆次型,替换后的⼆次型与原来的⼆次型之间有什么关系,即找出替换后的⼆次型的矩阵与原⼆次型的矩阵之间的关系.设(7)是⼀个⼆次型,作⾮退化线性替换(8)得到⼀个的⼆次型,⼆、矩阵的合同关系现在来看矩阵与的关系.把(8)代⼊(7),有易看出,矩阵也是对称的,由此即得.这是前后两个⼆次型的矩阵的关系。

定义2 数域P上两个阶矩阵,称为合同的,如果有数域P上可逆的矩阵,使得.合同是矩阵之间的⼀个关系,具有以下性质:1) ⾃反性:任意矩阵都与⾃⾝合同.2) 对称性:如果与合同,那么与合同.3) 传递性:如果与合同,与合同,那么与合同.因此,经过⾮退化的线性替换,新⼆次型的矩阵与原来⼆次型的矩阵是合同的。

这样把⼆次型的变换通过矩阵表⽰出来,为以下的讨论提供了有⼒的⼯具。

最后指出,在变换⼆次型时,总是要求所作的线性替换是⾮退化的。

从⼏何上看,这⼀点是⾃然的因为坐标变换⼀定是⾮退化的。

⼀般地,当线性替换是⾮退化时,由上⾯的关系即得.这也是⼀个线性替换,它把所得的⼆次型还原.这样就使我们从所得⼆次型的性质可以推知原来⼆次型的⼀些性质.§2 标准形⼀、⼆次型的标准型⼆次型中最简单的⼀种是只包含平⽅项的⼆次型. (1)定理1 数域上任意⼀个⼆次型都可以经过⾮化线性替换变成平⽅和(1)的形式.易知,⼆次型(1)的矩阵是对⾓矩阵,反过来,矩阵为对⾓形的⼆次型就只包含平⽅项.按上⼀节的讨论,经过⾮退化的线性替换,⼆次型的矩阵变到⼀个合同的矩阵,因此⽤矩阵的语⾔,定理1可以叙述为:定理2 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.定理2也就是说,对于任意⼀个对称矩阵都可以找到⼀个可逆矩阵使成对⾓矩阵.⼆次型经过⾮退化线性替换所变成的平⽅和称为的标准形.例化⼆次型为标准形.⼆、配⽅法1.这时的变量替换为令,则上述变量替换相应于合同变换为计算,可令.于是和可写成分块矩阵,这⾥为的转置,为级单位矩阵.这样矩阵是⼀个对称矩阵,由归纳法假定,有可逆矩阵使为对⾓形,令,于是,这是⼀个对⾓矩阵,我们所要的可逆矩阵就是.2. 但只有⼀个.这时,只要把的第⼀⾏与第⾏互换,再把第⼀列与第列互换,就归结成上⾯的情形,根据初等矩阵与初等变换的关系,取⾏显然.矩阵就是把的第⼀⾏与第⾏互换,再把第⼀列与第列互换.因此,左上⾓第⼀个元素就是,这样就归结到第⼀种情形.3. 但有⼀与上⼀情形类似,作合同变换可以把搬到第⼀⾏第⼆列的位置,这样就变成了配⽅法中的第⼆种情形.与那⾥的变量替换相对应,取,于是的左上⾓就是,也就归结到第⼀种情形.4.由对称性,也全为零.于是,是级对称矩阵.由归纳法假定,有可逆矩阵使成对⾓形.取,就成对⾓形.例化⼆次型成标准形.§3 唯⼀性经过⾮退化线性替换,⼆次型的矩阵变成⼀个与之合同的矩阵.由第四章§4定理4,合同的矩阵有相同的秩,这就是说,经过⾮退化线性替换后,⼆次型矩阵的秩是不变的.标准形的矩阵是对⾓矩阵,⽽对⾓矩阵的秩就等于它对⾓线上不为零的平⽅项的个数.因之,在⼀个⼆次型的标准形中,系数不为零的平⽅项的个数是唯⼀确定的,与所作的⾮退化线性替换⽆关,⼆次型矩阵的秩有时就称为⼆次型的秩.⾄于标准形中的系数,就不是唯⼀确定的.在⼀般数域内,⼆次型的标准形不是唯⼀的,⽽与所作的⾮退化线性替换有关.下⾯只就复数域与实数域的情形来进⼀步讨论唯⼀性的问题.设是⼀个复系数的⼆次型,由本章定理1,经过⼀适当的⾮退化线性替换后,变成标准形,不妨假定化的标准形是. (1)易知就是的矩阵的秩.因为复数总可以开平⽅,再作⼀⾮退化线性替换(2)(1)就变成(3)(3)就称为复⼆次型的规范形.显然,规范形完全被原⼆次型矩阵的秩所决定,因此有定理3 任意⼀个复系数的⼆次型经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.定理3 换个说法就是,任⼀复数的对称矩阵合同于⼀个形式为的对⾓矩阵.从⽽有两个复数对称矩阵合同的充要条件是它们的秩相等.设是⼀实系数的⼆次型.由本章定理1,经过某⼀个⾮退化线性替换,再适当排列⽂字的次序,可使变成标准形(4)其中是的矩阵的秩.因为在实数域中,正实数总可以开平⽅,所以再作⼀⾮退化线性替换(5)(4) 就变成(6)(6)就称为实⼆次型的规范形.显然规范形完全被这两个数所决定.定理4 任意⼀个实数域上的⼆次型,经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.这个定理通常称为惯性定理.定义3 在实⼆次型的规范形中,正平⽅项的个数称为的正惯性指数;负平⽅项的个数称为的负惯性指数;它们的差称为的符号差.应该指出,虽然实⼆次型的标准形不是唯⼀的,但是由上⾯化成规范形的过程可以看出,标准形中系数为正的平⽅项的个数与规范形中正平⽅项的个数是⼀致的,因此,惯性定理也可以叙述为:实⼆次型的标准形中系数为正的平⽅项的个数是唯⼀的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.定理5 (1)任⼀复对称矩阵都合同于⼀个下述形式的对⾓矩阵:.其中对⾓线上1 的个数等于的秩.(2)任⼀实对称矩阵都合同于⼀个下述形式的对⾓矩阵:,其中对⾓线上1的个数及-1的个数(等于的秩)都是唯⼀确定的,分别称为的正、负惯性指数,它们的差称为的符号差..§4 正定⼆次型⼀、正定⼆次型定义4 实⼆次型称为正定的,如果对于任意⼀组不全为零的实数都有.实⼆次型是正定的当且仅当.设实⼆次型(1)是正定的,经过⾮退化实线性替换(2)变成⼆次型(3)则的⼆次型也是正定的,或者说,对于任意⼀组不全为零的实数都有.因为⼆次型(3)也可以经⾮退化实线性替换变到⼆次型(1),所以按同样理由,当(3)正定时(1)也正定.这就是说,⾮退化实线性替换保持正定性不变.⼆、正定⼆次型的判别定理6 实数域上⼆次型是正定的它的正惯性指数等于.定理6说明,正定⼆次型的规范形为(5)定义5 实对称矩阵A称为正定的,如果⼆次型正定.因为⼆次型(5)的矩阵是单位矩阵E,所以⼀个实对称矩阵是正定的它与单位矩阵合同.推论正定矩阵的⾏列式⼤于零.定义6 ⼦式称为矩阵的顺序主⼦式.定理7 实⼆次型是正定的矩阵的顺序主⼦式全⼤于零.例判定⼆次型是否正定.定义7 设是⼀实⼆次型,如果对于任意⼀组不全为零的实数都有,那么称为负定的;如果都有,那么称为半正定的;如果都有,那么称为半负定的;如果它既不是半正定⼜不是半负定,那么就称为不定的.由定理7不难看出负定⼆次型的判别条件.这是因为当是负定时,就是正定的.定理8 对于实⼆次型,其中是实对称的,下列条件等价:(1)是半正定的;(2)它的正惯性指数与秩相等;(3)有可逆实矩阵,使其中;(4)有实矩阵使.(5)的所有主⼦式皆⼤于或等于零;注意,在(5)中,仅有顺序主⼦式⼤于或等于零是不能保证半正定性的.⽐如就是⼀个反例.证明 Th8,设的主⼦式全⼤于或等于零,是的级顺序主⼦式,是对应的矩阵其中是中⼀切级主⼦式之和,由题设,故当时,,是正定矩阵.若不是半正定矩阵,则存在⼀个⾮零向量,使令与时是正定矩阵⽭盾,故是半正定矩阵.Th8记的⾏指标和列指标为的级主⼦式为,对应矩阵是,对任意,有,其中⼜是半正定矩阵,从⽽.若,则P234,12T,存在使与⽭盾,所以.◇设为级实矩阵,且,则都是正定矩阵.◇设为实矩阵,则都是半正定矩阵.证明是实对称矩阵,令,则是维实向量是半正定矩阵,同理可证是半正定矩阵.◇设是级正定矩阵,则时,都是正定矩阵.证明由于正定,存在可逆矩阵,使,,从⽽为正定矩阵.正定⼜正定, ,正定,正定.对称当时,,从⽽正定.当时,所以与合同,因⽽正定.第五章⼆次型(⼩结)⼀、⼆次型与矩阵1. 基本概念⼆次型;⼆次型的矩阵和秩;⾮退化线性替换;矩阵的合同.2. 基本结论(1) ⾮退化线性替换把⼆次型变为⼆次型.(2) ⼆次型可经⾮退化的线性替换化为⼆次型.(3) 矩阵的合同关系满⾜反⾝性、对称性和传递性.⼆、标准形1. 基本概念⼆次型的标准形;配⽅法.2. 基本定理(1) 数域上任意⼀个⼆次型都可经过⾮退化的线性替换化为标准形式.(2) 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.三、唯⼀性1. 基本概念复⼆次型的规范形;实⼆次型的规范形,正惯性指数、负惯性指数、符号差.2. 基本定理(1) 任⼀复⼆次型都可经过⾮退化的线性替换化为唯⼀的规范形式的秩.因⽽有:两个复对称矩阵合同它们的秩相等.(2) 惯性定律:任⼀实⼆次型都可经过⾮退化线性替换化为唯⼀的规范形式的秩,为的惯性指数.因⽽两个元实⼆次型可经过⾮退化线性替换互化它们分别有相同的秩和惯性指数.(4) 实⼆次型的标准形式中系数为正的平⽅项的个数是唯⼀确定的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.四、正定⼆次型1. 基本概念正定⼆次型,正定矩阵;顺序主⼦式,负定⼆次型,半正定⼆次型,半负定⼆次型,不定⼆次型.2. 基本结论(1) ⾮退化线性替换保持实⼆次型的正定性不变.(2) 实⼆次型正定①与单位矩阵合同,即存在可逆矩阵,使得;②的顺序主⼦式都⼤于零.③的正惯性指数等于.。

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

|[, ] | [, ][ , ]
长为 1 的向量称为单位向量.
例1
01,
1
0
2

0
1
2
若向量
1
3
x ≠0 ,

1 x
x
1 都是3 维单位向量.
3
1
是 单 位 向 量.
3
例 已知
1
2
2
,
3
,
1
1
0
0
计算两个向量单位化后的内积.
解:
12 22 (1)2 02
1 0 2
所以A的特征值为 1 2,2 3 1
当 1 2解齐次线性方程组 (2E A)x 0 即
3x1 x2 0 4x1 x2 0 x1 0
3 1 0 1 0 0

2E
A
4 1
1 0
00
0 0
1 0
0 0
0
得基础解系
p1
10
故对应于 1 2的全体特征向量为 k1 p1(k1 0)
y yT y xT PT Px xT x x
说明经正交变换向量长度保持不变,这是正交变换的优 良特性.
2 方阵的特征值 特征向量
内容分布 一、特征值与特征向量 二、特征值与特征向量的性质
基本要求 会求特征值与特征向量
2.1 特征值与特征向量
定义8 设A是n阶方阵,如果数 和n维非零向量x使
量为
k11 k22 kss (k1, ···,ks不同时为0)
例1 求矩阵
A
2 1
解: A的特征方程为
1 2
的特征值和特征向量
2 1
| E A |

线性代数 第五章二次型PPT课件

线性代数 第五章二次型PPT课件
an1
f xAx
a12
a1n x1
a22
a2n
x2
an1
ann xn
aij a ji
二次型 f
对称矩阵 A
对称矩阵 A 的秩定义为二次型 f 的秩
设 二 次 型 f 3 x 1 2 6 x 1 x 2 8 x 1 x 3 5 x 2 2 x 2 x 3 x 3 2 求 f的 矩 阵 A ,当 x 1 = 3 , x 2 = 1 , x 3 = - 2时 , 求 f的 值 。
1 2 1
得特征值
1 10
2 15
可求得的单位特征向量顺次为
0.6
e1
0.8
0 .8
e2
0 .6
P
0.6 0.8
0.8
0.6
经 正 交 变 换 xPy,
f 10y1 215y2 2
1 2 4
A
2
4
2
,
4 2 1
x1
x
x2
x3
试用正交变换化二次型
e2
2 2
( 1 ,0, 2
1 ) 2
e3
3 3
( 2,2 2, 2) 63 6
2
3
1 2
2
6
作正交变换
Pe1
e2
e3
1
3
2
3
0
2
2
(x 1 ,x 2 ,x 3 ) P (y 1 ,y 2 ,y 3 )
设B为n阶方阵, 求证f xBx的矩阵是A 1 (B B)
显然A是对称矩阵,xRn xAx1(xBx2xBx) 2
xBx(xBx) xBx xAx1(xBxxBx)xBx

第五章 相似矩阵及二次型 线性代数 含答案

第五章 相似矩阵及二次型  线性代数  含答案

第五章 相似矩阵及二次型5.4.1 基础练习 1. (1223),(3151),(,)αβαβ==∠求.2. 若λ=2为可逆阵A的特征值,则1213A -⎛⎫⎪⎝⎭的一个特征值为 .3. 试证n阶方阵A的满足2A A =,则A的特征值为0或者1.4.已知三维向量空间中,12(111),(121)TTαα==-正交,试求3123,,αααα,使得是三维向量空间的一个正交基.5. 已知向量1(111)T α=,求3R 的一个标准正交基.6. 已知122224242A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,问A 能否化为对角阵?若能对角化,则求出可逆矩阵P ,使1P AP -为对角阵.7. 将二次型222123121323171414448f x x x x x x x x x =++---,通过正交变换x Py =化成标准型.8. 判别二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定?5.4.2 提高练习1. 设n 阶实对称矩阵A 满足2A A =,且A 的秩为r ,试求行列式det(2E -A).2. 设460350361A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭,问A 能否对角化?若能对角化,则求出可逆矩阵P ,使得-1P AP 为对角阵.3. 已知实对称矩阵220212020A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,分别求出正交矩阵P ,使1P AP -为对角阵. 4. 化二次型()123121323,,f x x x x x x x x x =++为标准形,并求所作的可逆线性变换.5. 设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵ACB⎛⎫= ⎪⎝⎭是否为正定矩阵?6. 判别二次型22256444f x y z xy xz=---++的正定性.7. 判断下列两矩阵A,B是否相似11100111100,111100nA B⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第五章 参考答案5.4.1 基础练习 1.[,]cos ||||||||4αβπθθαβ===∴=2.34. 3.略.4. 设3123()0Tx x x α=≠,则[][]1223,0,,0αααα==,即 12313312321002001x x x x x x x x x α-⎛⎫++==-⎧⎧ ⎪⇒⇒=⎨⎨ ⎪-+==⎩⎩ ⎪⎝⎭5. 设非零向量23,αα都与2α正交,即满足方程11230,0T x x x x α=++=或者,其基础解 系为: 12100,111ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 令 121321101,0,1111ααξαξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1)正交化令 121122121111[,]1,0,[,]11βαβαβαβαββ⎛⎫⎛⎫⎪⎪===-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1323233312321122221[,][,][,]12[,][,][,]21βαβαβαβαββαβββββββ-⎛⎫⎪=--=-= ⎪ ⎪-⎝⎭2)标准化令1||||i i i ςββ=,则1231111,0,2111ςςς-⎛⎫⎛⎫⎛⎫⎪⎪⎪===⎪⎪⎪⎪⎪⎪--⎭⎭⎭6. 由2122224(2)(7)242A E λλλλλλ---=---=--+--得,1232,7λλλ===-将12λ=λ=2代入()1A-λE x=0,得方程组 12312312322024402440x x x x x x x x x --+=⎧⎪--+=⎨⎪+-=⎩解值得基础解系 12200,111αα⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 同理,对3λ=-7,由()3A-λE x=0,求得基础解系()31,2,2Tα=,由于201120112≠,所以123,,ααα线性无关,即A 有3个线性无关得特征向量,因而A 可对角化,可逆矩阵为:123201(,,)012112P ααα⎛⎫⎪== ⎪ ⎪⎝⎭7. 第一步,写出对应得二次型矩阵,并求其特征值 172221442414A --⎛⎫ ⎪=-- ⎪⎪--⎝⎭, ()()2172221441892414A E λλλλλλ---⎛⎫⎪-=---=-- ⎪⎪---⎝⎭,从而A 的全部特征值为1239,18λλλ===。

线性代数 第五章 相似矩阵及二次型

线性代数  第五章  相似矩阵及二次型

1 2
也是 R4 的一个规范正交基.
1 1 1 1
e1
0 0
,
e2
1 0
,
e3
1 1
,
e4
1
1
0
0
0
1
是 R4 的一个基,但不是规范正交基.
§1 向量的内积、长度及正交性
设 e1, e2, …, er 是向量空间 V 中的一个正交基,则V 中任意一
个向量可唯一表示为 x = l1e1 + l2e2 + …+ lrer
[x + y, z] = [x, z] + [y, z] 当 x = 0(零向量) 时, [x, x] = 0;
当[xl x≠,0y(] 零(l向x量)T )y 时l,xT[xy, x]l>( x0T.y) l[x, y] 施瓦兹(Schwarz)不等式 [ x y, z] ( x y)T z[x, (yx]2T ≤[yxT, )x]z[y,(yx]T.z) ( yT z) [ x, z] [ y, z]
y
x
§1 向量的内积、长度及正交性
定义:两两正交的非零向量组成的向量组成为正交向量组.
定理:若 n 维向量a1, a2, …, ar 是一组两两正交的非零向量, 则 a1, a2, …, ar 线性无关. 证明:设 k1a1 + k2a2 + … + kr ar = 0(零向量),那么 0 = [a1, 0] = [a1, k1a1 + k2a2 + … + kr ar]
当 x ≠ 0 且 y ≠ 0 时,
[x, y] 1≠ 0 且 y ≠ 0 时,把
arccos [ x, y]

第5章(二次型)线性代数及其应用.ppt

第5章(二次型)线性代数及其应用.ppt
a11x12 a12x1x2 a13x1x3 a1n x1xn a21x2 x1 a22x22 a23x2 x3 a2n x2 xn a31x3 x1 a32x3 x2 a33x32 a3n x3 xn an1xn x1 an2 xn x2 an3 xn x3 ann xn2
x1 c11 y1 c12 y2
x
2
c21 y1
c22 y2

c1n yn , c2n yn , 即 x cy

xn cn1 y1 cn2 y2 cnn yn
称为由x1, x2, , xn到y1, y2, , yn的线性变换 .
若C可逆,称之为可逆线性变换; 若C是正交矩阵,称之为正交线性变换.
x2 ,
x3
)


x1 ,
x2
,
x3


1

0
1 2 3

0 3 2



x1 x2 x3


1
2
1 0 0 x1
(2)
f
(
x1
,
x2
,
x3
)


x1
,
x2
,
x3


0
1
0


x2

0 0 4 x3
问题: 如何将一个二次型经过可逆(满秩)的线
f x12 3 x32 2x1 x2 4x1 x3 2x2 x3 ( x12 2x1 x2 4x1 x3 ) 3x32 2x2 x3 ( x1 x2 2x3 )2 x22 2x2 x3 7 x32

线性代数-二次型

线性代数-二次型
二次型也用于描述平面或三维空间中的曲面,如椭球面、抛 物面、双曲面等。这些曲面也可以通过调整二次型的系数来 改变其形状和大小。
在物理中的应用
在经典力学中,二次型常常用来描述物体的运动轨迹。例如,行星的运动轨迹可 以用一个二次型来表示,通过求解这个二次型的根,可以得到行星的运动轨迹。
在量子力学中,二次型也用于描述粒子的波函数。例如,一个自由粒子的波函数 可以用一个二次型来表示,通过求解这个二次型的根,可以得到粒子的能级和波 函数。
02
矩阵$A$的元素由二次型中各项的系数决定,即$A =
(a_{ij})$,其中$a_{ij} = frac{1}{2}(b_{ij} + b_{ ji})$。
03
矩阵表示的二次型可以方便地进行代数运算和变换,
例如求导数、求极值等。
二次型的几何意义
二次型在几何上表示一个二次 曲面或曲线,其形状由矩阵 $A$决定。
THANKS
感谢观看
在经济学中的应用
二次型在经济学中也有广泛的应用。 例如,在微观经济学中,二次型可以 用来描述消费者的效用函数,通过求 解这个二次型的最大值,可以得到消 费者的最优消费决策。
VS
在宏观经济学中,二次型可以用来描 述一个国家的生产函数,通过求解这 个二次型的最大值,可以得到一个国 家最优的产出水平。此外,二次型也 用于描述成本函数、需求函数等。
正定二次型
01
正定性
对于正定二次型,其矩阵的所有主子式都大于0,且没有实数根。
02
特征
正定二次型的特征值都大于0。
03
实例
对于二次型 $f(x,y,z)=x^2+y^2+z^2$,它是一个正定二次型,因为其
矩阵的所有主子式都大于0,且没有实数根。

线性代数第五章答案

线性代数第五章答案

线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。

线性代数 第五章 相似矩阵与二次型 第3节

线性代数 第五章  相似矩阵与二次型 第3节
P1 E A P E A
又特征值就是特征方程的根,从而有相同的特征值.
推论 若 n 阶矩阵 A 与对角矩阵 diag(1, 2,n )
相似 则 1 ,2 ,,n 是A 的n 个特征值。
三、相似变换矩阵的求法
问题:
对一个 n 阶方阵 A,是否存在相似变换
1
矩阵
P,
使
P 1 AP
2Байду номын сангаас
求特征向量 将 1 5 代入 (E - A)X 0

42xx1 124xx2 222xx3 300
解得特征向量
1 X11 1
2x1 2x2 4x3 0
1
再将 2 1 代入 (E - A)X 0

2 x1 2 x1
2x2 2x2
2x3 2x3
0 0
2 x1 2x2 2x3 0
于是有 Api i pi i 1,2,, n.
可见 i 是A的特征值,而P的列向量 pi 就是 A的对应于特征值i的特征向量.
反之, 如果 n 阶方阵 A 有n 个线性无关的特征向量 P1, P2 ,, Pn 满足 APi iPi , i 1,2,, n
那么令 P (P1, P2 ,, Pn ) 则 P 可逆,且 P 1 AP diag(1 ,2 ,n )
1
则A有3个线性无关的特征向量 ,因而A可对角化.
例设
1 A 2
2 1
2 2
判断A是否可以对角化,
2
2
1
若可以对角化,求出可逆阵P,
使得 P 1 AP 为对角阵,并求 A100
解 (1)求特征值 1 2 2
E A 2 1 2 5 12
2 2 1
解得 : 1 5, 2 3 1

《线性代数》第五章相似矩阵及二次型精选习题及解答

《线性代数》第五章相似矩阵及二次型精选习题及解答

故, β 3 = ( −
1 3
1 3
1 3
1) T ⇒ γ 3 =
β3 3 = (− 6 β3
3 6
3 3
3 T ) 2
⎛ 3 2 4⎞ ⎜ ⎟ 例 5.3 计算 3 阶矩阵 A= 2 0 2 的全部特征值和特征向量. ⎜ ⎟ ⎜ 4 2 3⎟ ⎝ ⎠
n n
f ( x) = xT Ax ,其中 A T = A .
6.熟悉矩阵 A 合同(或相合)于 B 的定义,理解合同关系是等价关系. 7.熟练掌握化二次型 xT Ax 为平方和(标准形)或求实对称矩阵 A 的相合标准形的 3 种方法:正交变换法;配方法;和同型初等行、列变换法. 8.了解惯性定理,会求矩阵 A 的正、负惯性指数和符号差,会求二次型的规范形. 9.熟练掌握正定二次型(正定矩阵)的定义和判别方法. 10.熟悉实对称矩阵 A 正定(二次型正定)的各种等价命题(正定的充要条件). 11.理解 A 正定的必要条件: a ii > 0( i = 1, 2, L , n ); det( A ) > 0 . 12. 会利用正交变换化二次型为标准型和极坐标平移方法判别一般二次曲线和曲面的类 型.
故 A 是正交矩阵. 例 5.2 已知向量 α 1 = (1,1, 0, 0 ) , α 2 = (1, 01, 0 ) , α 3 = ( − 1, 0, 0,1) 是线性无关向
T T T
量组,求与之等价的正交单位向量组. 解法一 先正交化,再单位化 (1) 取 β 1 =
α1
(2) 令 β 2 = k β 1 + α 2 ,使得 β2 与 β 1 正交
T −1 ∗
5.3 例题分析
例 5.1 设 a 是 n 阶列向量, E 是 n 阶单位矩阵,证明 A = E −

同济大学线性代数课件__第五章相似矩阵及二次型

同济大学线性代数课件__第五章相似矩阵及二次型

p3
0 4
30

1 0 1
P ( p1, p2 , p3 ) 0 1 0
1 1 4

1
P 1AP 2
2
31
性质:若l 是 A 的特征值, 即 Ax = lx (x≠0),则
(1) kl 是 kA 的特征值(k是常数),且 kAx = klx (2) lm 是 Am 的特征值(m是正整数),且 Amx = lmx (3) 若 A可逆,则l-1是 A-1的特征值, 且 A-1x = l-1x
16
定义4 若 n 阶矩阵 A 满足 A A E 则称 A 为正交矩阵, 且 A1 A
令 A (1,2 , ,n )
A
A
1
2
(1
,
2
,
n
,n
)
11
21
n1

[i , j ] i j
ij
1, 0,
i i
j j
1 2 2 2
n 2
1 n 2 n
nn
17
特征值及二次型问题是线性代数的重要问题。
[ x ty, x ty] 0, t [ x, x] 2[ x, y]t [ y, y]t 2 0
(1) [ x, y ] = [ y, x ]; [ x, y]2 [x, x][ y, y]
(2) [lx, y] = l[ x, y ];
(3) [ x + y, z ] = [ x, z ] + [ y, z ];
解: (1) A2 2A 3E 有特征值 l 2 2l 3
(2) 3阶阵 A有特征值 1, -1, 2,故 | A | 2,A可逆。 A 3A 2E 有特征值 -1,-3,3

《线性代数》教学课件—第5章 二次型 第三节 相似矩阵

《线性代数》教学课件—第5章 二次型 第三节 相似矩阵
= diagP(-1A1 ,P=2 ,B·P·,·-1,APn)= B , 相故似,则 故1 , 2 , ···, n 即是 A 的 n 个特征值.
定理 若定矩阵理A 与若矩矩阵阵 AB与相似矩,阵且B矩相阵似A, 且矩阵
可逆, 则矩可阵逆B, 也则可矩逆阵, B且也A可-1 逆与,B且-1A相-1似与. B-1 相似.
三、矩阵对角化的步骤
设 n 阶方阵 A 可对角化,则把 A对角化的 步骤如下:
步骤 1 :求出矩阵 A 的所有特征值,设 A
有 s 个不同的特征值 1 , 2 , ···, s ,它们的重
数分别为 n1, n2 , ···, ns , 有 n1 + n2 + ···+ ns = n.
步骤 2 : 对 A 的每个特征值 i ,求(A - iE)x = 0
证毕
在矩阵的运算中, 对角矩阵的运算很简便, 如
果一个矩阵能够相似于对角矩阵, 则可能简化某
些运算. 例如, 如果令
P 11
32
,
A
7 9
86
.
不难验算,
P
1
AP
1 0
02 记为
.
如果我们要计算 A10 或 An , 直接计算, 运算 量很大也不易找出规律. 利用 A 相似于对角矩阵 的性质,可得
相似矩阵具有下列性质:下设 A,B 是同阶 矩阵.
定理 3 若矩阵 A 与矩阵 B 相似, 则
|A - E| = |B - E| ,
因而 A 与 B 有相同的特征值、相同的行列式.
证明 只需证证明A 与只需B 证有相A 同与的B特有征相多同项的式特即征多项 可. 推由论于 A可若与. nB由阶相于方似A阵,与所AB以与相, 对必似角有, 所矩可以阵逆,矩必阵有可P,使逆得矩阵 P

线性代数第5章课件

线性代数第5章课件

内积是向量的一种运算,用矩阵的记号表示,当 x与 y 都是列向量时,有
[x,y] = x' y
例 计算[x, y],其中x, y如下 : (1)x = (0,1,5,-2), y = (-2,0,-1,3); (2)x = (-2,1,0,3), y = (3,-6,8,4),
解 (1) [ x, y] = 0 • (-2) 1• 0 5• (-1) (-2) • 3 = -11
第五章
特征值与二次型
第五章主要内容
第一节 向量的内积 第二节 方阵的特征值与特征向量 第三节 相似矩阵 第四节 化二次型为标准型 第五节 正定二次型
第一节 向量的内积
定义1 设有n 维向量
x1
y1
x = x2 , y = y2
....
xn
yn
令 [x,y] = x1 y1+ x2 y2 +…+ xn yn, 则 [x,y] 称为向量x与 y 的 内积
定义2 令 x = [x, x] = x12 x22 xn2
称为 n 维向量 x 的长度(或范数)
x
若向当量xx
=10时,则, 称xxx为是单单位位向量向.量.
向量的长度具有下述性质:
(i)非负性:当x 0时,x 0;当x = 0时,x =0;
(ii)齐次性: x = x ;
(iii)三角不等式 : x y x y ;
上述从线性无关向量组a1 , …,ar 导出 1, 2 ,K , r 的 过程称为施密特正交化过程。它不仅满足1, 2 ,K , r 与a1 , …,ar 等价,还满足:对任何k ( 1≤ k ≤r ) ,向量组 1, 2 ,K , k 与a1 , …,ak 等价。

《线性代数》教学课件—第5章 二次型 第五节 二次型及其标准型

《线性代数》教学课件—第5章 二次型 第五节 二次型及其标准型
解 设 f = xTAx , 则
A 12
12
,
x
x y
.
显然,二次型的秩为 R( A) 2.
例 23 已知二次型
f (x1,x2,x3,x4 ) x12 3x22 x32 4x42 2x1x2 4x1x3 6x1x4 8x2 x3 4x2 x4,
写出二次型的矩阵 A ,并求出二次型的秩.
aijபைடு நூலகம்xi x j xT Ax,
i1 j1
其中 AT = A 为实对称矩阵, 称 A 为二次型的矩
阵. 称矩阵 A 的秩 R(A) 为二次型的秩. 这样,
实二次型与实对称矩阵之间就建立起一一对应的
关系.
例 22 已知二次型 f (x,y) x2 4xy y2 ,
写出二次型的矩阵 A , 并求出二次型的秩.
(2) f (x1,x2,x3) x12 4x22 x32 4x1x2 8x1x3 4x2x3 .
(1) 解 二次型 f 的矩阵 A 为 (2) 解 0二1次型1 f 的矩阵 A 为
本若请本若请本若请节想本单若请节想本单若请节想本单若内请结节击想本 本单若 若内请 请结节击想本 本单若 若内请 请结节击想本 本容单若 若束内请 请返结节节击想 想本 本容单单若 若束内请 请返结节节击想 想本 本 本容单 单若 若 若束内请 请 请返结节 节已想击想本本 本容单单若 若回束内内请 请返结 结节 节已击想击想本本容单单若回束内内请返结 结节 节 节已击 击想 想想本本容单 单 单若回束内 内结请返结结堂节节已击想 想击按本本容容单 单若回束 束内 内结请返返结结堂节已击击想按本本容容单若回束 束内 内 内结请返 返结 结结堂节已击 击 击想按本本容 容束单若回束束课内内结请返返结 结钮堂节已已击 击想按本 本本容 容束单若回回束束课内结请返返结钮堂节已已击想按本 本容 容 容束单回 回束束 束课内结返 返 返结钮堂节已 已击想按本本,容容束单回回束 束课.内结结!返 返结钮堂 堂节已 已击想按按本本,容束单回回束课.内结结!返结钮堂 堂已 已 已击按 按本 本本,容束回 回 回束课.内结 结!返结钮堂堂已已击按按本 本,容束束回 回束课 课.内结 结!返结钮钮堂堂已击按按本,容束束回束课 课.结 结 结!返钮 钮堂堂 堂已按 按 按本,容束 束回束课课.结结!返钮钮堂 堂已按 按本,,容束束回束课课..结!!返钮钮堂已按本,,束束束回课 课课..结!!钮 钮 钮堂已按本,,束束回课 课..结!!钮 钮堂已按本,,束回课..结!!钮堂按,,,束课...结!!!钮堂按,,束课..结!!钮堂按,束课.!钮,束课.!钮,束课.!钮,.!,.!,.!

线性代数之相似矩阵及二次型

线性代数之相似矩阵及二次型

λ − a22 ⋯
⋯ λ − ann
= λn − c1λn − 1 + c 2 λn − 2 + ⋯ + ( −1) n − 1 c n − 1λ + ( −1) n c n
特征多项式, 特征方程。 称为 A 的特征多项式,而 f (λ ) = λE − A = 0 称为 A 的特征方程。
-18-
性质
对特征值 i , 解(λi E − A) X = 0, 得基础解系 1 ,⋯,αr λ α
λi所对应的特征向量为 k1α1 +⋯+ krαr , k1 ,⋯, kr不全为零
-20-
−1 1 0 例: 求矩阵 A = −4 3 0 的特征值和全部特征向量 的特征值和全部特征向量. 1 0 2
1 b3 1 1 = ξ3 = b3 6 − 2 0
-13-
六、正交矩阵 定义 若 n 阶方阵 A 满足 AT A = E , 则称 A 为正交矩阵 正交矩阵. 例4 验证(1)旋转矩阵是正交矩阵 验证 旋转矩阵是正交矩阵
cos ϕ A= sin ϕ − sin ϕ cos ϕ
T 0 ⇒ α1 α1
= α1
2
≠ 0, 从而有 λ1 = 0 .
同理可得 λ2 = ⋯ = λr = 0. 故α1 ,α 2 ,⋯,α r 线性无关 .
-8-
例1
(P115 例3)
1 1 α1 = 1 , α 2 = − 2 1 1
(2)镜像矩阵是正交矩阵 (P40 例8) 镜像矩阵是正交矩阵
H = E − 2αα (α ∈ R , α α = 1)
T n T

第5章(二次型)线性代数及其应用

第5章(二次型)线性代数及其应用
2 2 f (x1, x2) = a11x1 +a22x2 +2a12x1x2 2 2 = (a1x1 +a12x1x2) +(a22x2 +a12x1x2)
= x1(a11x1 +a12x2) + x2(a12x1 +a22x2) a11x1 +a12x2 = (x1, x2) a12x1 +a22x2
2 2 f = y12 + 2 y2 + 5 y3 . 通过正交变换化为标准形 (1)求参数 ,并指出二次曲面 f ( x1 , x2 , x3 ) = 10 所属的 求参数a 求参数
曲面类型; 曲面类型 (2)当 x T x = 1 时,求 f 的最大值, 其中 x = ( x1 , x2 , x3 )T . 当 的最大值
二次型的矩阵表示
a11 = (x1, x2) a12 x1 a11 其 x = ,A= 中 x2 a12
a12 x1 = xT Ax, a22 x2
a12 为 阶 称 阵 , A 二 对 矩 . a22
一般地, 一般地,对n元二次型 元二次型
第5章 二次型
建立了实二次型和实对称矩阵之间的 对应关系; 对应关系;从矩阵变换和函数化简两个角 度给出了二次型标准化的三种方法,进一 度给出了二次型标准化的三种方法, 步得到了二次型的规范形; 步得到了二次型的规范形;并对正定二次 型和正定矩阵的判别进行了讨论. 型和正定矩阵的判别进行了讨论.
第5章 二次型
λ1 λ2 T 求正交矩阵Q, ②求正交矩阵 ,使得 Q AQ = Λ = O λn
为对角阵; 为对角阵; ③正交变换x =Qy化二次型为标准形 f =yT Λy . 正交变换 化二次型为标准形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 求出A的所有特征值 1 , 2 ,, n ; 3. 求出对应于特征值的特 征向量1 , 2 ,, n ;
4. 将特征向量 1 , 2 ,, n正交化, 单位化, 得
1 , 2 ,, n , 记C 1 , 2 ,, n ;
2 2 f 1 y1 n yn .
y C 1 x
代入二次型xTAx, 则
x Ax Cy A Cy yT C T AC y yT By
T T


其中B=CTAC为对称矩阵.
因此yTBy是以B为矩阵的n元二次型
例题 将以下二次型化为标准形
2 2 2 x1 2 x1 x 2 2 x1 x3 2 x2 4 x2 x3 x3
只含有平方项的二次型 称为二次型的标准形. 定义 特别地,称
2 2 2 f ( x1 , x2 ,, xn ) x1 x2 x x p p 1 p q
( p q n)
为二次型的规范形.
2 f ( x1 , x2 ,, xn ) a11 x1 a12 x1 x2 a1n x1 xn 2 a21 x2 x1 a22 x2 a2 n x2 xn 1、二次型 2 a x x a x x a x 的和式表示 n1 n 1 n2 n 2 nn n
aij xi x j
i 1 j 1
n
n

x1
x2
2、二次型 的矩阵表示
a11 a12 a1n x1 a x a a 21 22 2 n 2 xn ③ a a a n2 nn xn n1
5.2二次型与对称矩阵的标准形 (一)用配方的法化二次型为标准形. 定理5.1 任何一个二次型都可以通过非退化线 性替换化为标准形. 例题
定理5.2 对任意一个对称矩阵A,存在一个非奇
异矩阵C,使得CTAC为对角形.即任何一个对称矩阵都
与一个对角矩阵合同.
例题
(三) 用正交替换法化二次型为标准形.
a11 a12 a1n x1 令 a x a a 21 22 2n A X 2 a a a n2 nn n1 xn
T f x Ax .其中矩阵A为对称矩阵. 则二次型
! 对称矩阵A 任一二次型f
任一对称矩阵A
!
二次型f
一一对应
f称为对称矩阵A的二次型; A称为二次型f的矩阵;
对称矩阵A的秩称为二次型f的秩.
练习
写出下列二次型的对称矩阵.
例11)实数域R上的2元二次型
f ax 2bxy cy
2
2
2)实数域上R的3元二次型
f ( x1 , x2 , x3 ) 2 x 4 x1 x2 6 x1 x3 5 x 3 x2 x3 7 x
定义 设A,B为n阶方阵,若存在n阶可逆阵P, 使得 P T AP B, 则称A合同于B,记为 A B. 性质 ①反身性 ②对称性 ③传递性

等价
④合同矩阵具有相同的秩. ⑤与对称矩阵合同的矩阵也是对称矩阵.
5.2二次型与对称矩阵的标准形 (一)用配方的法化二次型为标准形. 定理5.1 任何一个二次型都可以通过非退化线 性替换化为标准形.
线性替换
矩阵
c11 c12 c1n c c22 c2 n 21 C cn1 cn 2 cnn
线性替换的矩阵. C 0 时称该线性替换为
非退化的线性替换. 以上线性替换可以表示为
x Cy
x Cy
若 C 0, 即线性替换是非退化的,则
定理5.3 任何一个二次型
f x x T Ax
一定存在正交矩阵Q,使得经过正交替换,
xQ y
把它化为标准形
2 2 2 1 y1 2 y2 n yn
其中1 , 2 ,, n 是矩阵A的全部特征值.
用正交变换化二次型为标准形的具体步骤
1. 将二次型表成矩阵形式 f xT Ax, 求出A;
2 2
2 ann xn

称为二次型. n 或记为 f ( x1 , x2 ,, xn ) aii xi2 2 aij xi x j i 1 1 i j n 注 ①当常数项为实数时,称为实二次型;
②当常数项为复数时,称为复二次型.
2 2 2 定义 f ( x1 , x2 ,, xn ) a11 x1 a22 x2 ann xn
化为标准形.
2 1 2 2
2 3
3)复数域C上的4元二次型
2 f ( x1 , x2 , x3 , x4 ) ix1 x2 3 x1 x4 5 x2 (3 i ) x2 x3
(二).线性变换
定义5.2 关系式
x1ห้องสมุดไป่ตู้ c11 y1 c12 y2 c1n yn x c y c y c y 2 21 1 22 2 2n n xn cn1 y1 cn 2 y2 cnn yn 称为由变量 x1,x2 , , xn 到变量 y1,y2 , , yn 的一个线性变量替换,简称
一、n元二次型的概念 1、二次型及其矩阵 定义5.1 含有n个变量 x1 , x2 , , xn 的二次齐次多项式 2 f ( x1 , x2 ,, xn ) a11 x1 2a12 x1 x2 2a1n x1 xn
a22 x 2a23 x2 x3 2a2 n x2 xn 2 a33 x3 2a3 n x3 xn
5. 作正交变换x Cy , 则得f的标准形
例2 将二次型
2 2 2 f 17 x1 14 x2 14 x3 4 x1 x2 4 x1 x3 8 x2 x3
通过正交变换 x Py , 化成标准形.
例3 求一个正交变换x Py , 把二次型 f 2 x1 x 2 2 x1 x 3 2 x1 x 4 2 x 2 x 3 2 x2 x4 2 x3 x4
相关文档
最新文档