工程热力学第二章
工程热力学第二章

为内部储存能 U 与外部储存能之 和 它包括组成物体 的所有微观粒子 所具有的能量 随工质进出开口 系所转移的能量 闭口系与外界交 换的功
也称总储存能
热力学能 描述热 力系能 量的概 念 描述热 力系与 外界作 的概念
U 是热力系内部工质的 能量 H = U + pV
包括内热能,化学能,原子核能
焓
焓的变化等于热力系在定压过程中与外界 交换的热量 1、 它是简单可压缩热力系所有功的源泉 2、 若过程逆,则W =
2 ������������������,又称压力功。 1
流动功
1、 对可逆过程 δ������ = ������d������,该式反应了热量的本质 2、 对任意过程δ������ = cdT,其中 c 为该过程
的比热容,也是过程量。该是只是热量 的计算式子。
(4)热力学第一定律的主要应用 名称 热力发动机 能量转换方程 主要应用领域
2 ������������������ 1
体积功
热力系通过体积变化 与外界交换的功
3、 否则外界获得多少功计算,是过程量 4、 往往是比闭口系所做的功 轴功 热力系通过轴旋转与 外界交换的功 它是工质发生跨越热 力系边界的宏观移动 时与外界所交换的功 开口系与外界所 交换的净功 ������������������������ = ������������ 它是工质进出开 口系所携带的能 量 1、 它是开口系与外界交换的功 2、 它是技术功的一部分,当忽略进出口动 能、位能差时就等于技术功 1、 流动功只取决于工质进出口的状态,不 是过程量 ������������ = ������2 ������2 − ������1 ������2 2、它是与流动相关的量,若是没有流 动则没有意义 3、经常和热力学能合并在 技术功 技术上可资利用的功 由流体的宏观位 能、宏观动能、轴 功组成 来自体积功,是体积功与流动功之差。 1、 对非稳定流动,有 ������������ = ������ − [������������������������ ������������ ������������������ − ������������������ ������������ ������������ ] 2、 对于稳定流动,则有 1 ������������ = ∆������������ 2 + ������∆������ + ������������ = ������ − ∆(������������) 2 3、 对于可逆稳定流动,则有 ������������ = − 热量 一个质量不变的热力 系, 不做功而通过边界 传递的能量 热力系与外界之 间通过温差传递 的热量
工程热力学 第二章 热力学第一定律

wt
1 2
cf22
cf21
gz2
z1 ws
(2-11)
将轴功的表达式代入上式,即有:
2
1 d ( pv)
2
2
1 pdv 1 vdp
wt 12 pdv p2v2 p1v1 12 vdp (2-11a)
由上式可知,准静态过程的 技术功的大小可用过程线左边的 面积来表示。
准静态 pdv d( pv) wt
wt pdv d( pv) pdv ( pdv vdp) vdp
wt vdp wt vdp
准静态
q du pdv
q dh vdp
热一律解析式之一 热一律解析式之二
技术功在示功图上的表示
q12 (u2 u1) w12
Q dU pdV (2-4)
2
Q12
(U2
U1)
pdV
1
(2-4a)
q du pdv (2-4b)
2
q12
(u2 u1)
pdv
1
(2-4c)
2-3 开口系统能量方程 Energy balance for open system
式中各项的正负号规定为:系统吸热为正,放热为负; 系统对外作功为正,外界对系统作功为负。
上式既适用于准静态过程,也适用于非准静态过程。
对于无耗散的准静态过程, w pdv
因此上述诸式可写为:
Q dU W
Q12 (U2 U1) W12
对1kg工质,有:
q du w
所以有:
h1 h2
1 2
工程热力学 第二章 图文

思考
宏观动能和内动能的区别?
§2-3 热力学第一定律导出
热力学第一定律基本表达式
加入系统的能量总和—热力系统输出的能量总和 = 热力系总储存能的增量
加入系统的能量总和-热力系统输出的能量总和
= 热力系总储存能的增量
δW
δ mi ei
E
δm jej
E+dE
δQ
d
如果是闭口系,如何简化?
闭口系统的热一律基本表达式
来源:
19世纪30-40年代,迈耶,焦耳等发现并确 定了能量转换与守恒定律。恩格斯将这列为19世 纪三大发现之一(细胞学说、达尔文进化论)。
能量转换与守恒定律定律指出:一切物质都 具有能量。能量既不可能创造,也不能消灭,它 只能在一定的条件下从一种形式转变为另一种形 式。而在转换中,能量的总量恒定不变。
能量转换与守恒定律
认识个别、特殊能量 机械能、电能、磁能等有序能的守恒 热现象不是一个独立的现象,
其它形式的能量都最终转化为热能
热力学第一定律的本质
本质:能量转换及守恒定律在热过程中的应用
18世纪初,工业革命,热效率只有1% 1842年,J.R. Mayer阐述热一律,但没有
引起重视 1840-1849年,Joule用多种实验的一致性
系统的能量
能量是物质运动的度量,运动有各种不同 的形态,相应的就有各种不同的能量。
系统储存的能量称为储存能,它有内部储 存能与外部储存能之分。系统的内部储存 能即为热力学能
§2-2 热力学能(内能)
Internal energy
定义
系统内部各种形式能量的总和称为系 统的热力学能,简称为内能 U。单位质量 的热力学能称为比内能 u。
闭口系, δmi 0 δm j 0 忽略宏观动能Uk和位能Up, E U
工程热力学(高教社第四版)第2章课件

工程热力学(高教社第四版)第2章课件第二章热力学第一定律2-1 热力学第一定律的实质实质:能量守恒及转换定律在热现象中的应用能量守恒和转换定律—能量是可以相互转换的,且转换前后的总量保持不变。
热力学第一定律—热能与机械能是可以相互转换的,且转换前后的总量保持不变。
焦耳实验1、重物下降,输入功,绝热容器内气体T ↑2、绝热去掉,气体T ↓,放出热给水,T 恢复原温。
焦耳实验水温升高可测得热量,重物下降可测得功热功当量1 cal = 4.1868 J热力学第一定律热可以变为功,功也可以变为热,一定量的热消失时,必产生与之数量相当的功;消耗一定量的功时必出现与之对应的一定量的热。
闭口系循环的热一律表达式系统经历一个热力循环后,它所接受的净热量转换为对外所作的净功。
即:δQ = ∫ δW ∫要想得到功,必须花费热能或其它能量热一律又可表述为“第一类永动机是不可能制成的”关于永动机问题的思考各种永动机问题长期困扰着科技界与社会第一类永动机—不消耗能量而能对外连续作功的机器。
第二类永动机—从单一热源取热,并将其全部转变机械功的机器(或:热效率等于100%的机器)[有关问题在第五章中将详细讨论]。
长期以来一直有人在追求、研究各种形式的永动机,无一有所收获。
希望同学们树立正确的思想方法,不要误入歧途。
大气机压气机从大气中取气压力容器pw取回部分功量驱动压气机某人的永动机构思机水分解装置 H2 w 氢气发动机水取回部分功量驱动水分解装置2-2 热力学能(内能)和总能一、热力学能(internal energy) UUch Unu Uth 平移动能旋转动能振动动能UkEf1(T)U=U(T,v)UpE f2(T,v) —二、总(储存)能(total stored energy of system) 热力学能,内部储存能E=U+EK+Ep总能宏观动能宏观位能外部储存能e=u+ek+ep热力学能的性质热力学能说明: ? 热力学能是状态量 ? U : 广延参数 [ kJ ] ? u : 比参数 [kJ/kg]√ 分子动能(移动、转动、振动)分子位能(相互作用)√ 核能化学能系统总能外部储存能宏观动能宏观位能 Ek= mc2/2 Ep= mgz 机械能系统总能 E = U + Ek + Ep e = u + ek + ep2-3 能量的传递和转化能量传递的两种方式:作功,传热借作功传递的能量总是伴随着物体的宏观动能借传热来传递能量不需要有物体的宏观移动热能转变为机械能由两类过程组成:能量转换的热力学过程单纯机械能过程热一律的文字表达式热一律: 能量守恒与转换定律进入系统的能量 - 离开系统的能量 = 系统内部储存能量的变化热力学能U 的物理意义定义dU = δ Q - δ W δQ 热力学能U 状态函数δQ = dU + δW Q=?U+W δW闭口系热一律表达式dU 代表某微元过程中系统通过边界交换的微热量与微功量两者之差值,也即系统内部能量的变化。
工程热力学第2章 热力学基本定律

卡诺循环热机效率
任意正循环的热效率:
t
w q1
q1 q2 1 q2
q1
q1
T
卡诺循环热效率:
T1
t,C1T T12ss22 ss111T T12 T2
T1
q1
Rc
w
q2 T2
Q1
Q2 S1
S2 S
t,c的说明
t,C
1
T2 T1
• t,c 只取决于T1和T2 ,而与工质的性质无关;
Q1 > Q’1 ,Q2 < Q’2
多热源可逆循环t < t c
引入:平均吸热温度:T 1 平均吸热温度:T 2
t
1Q2 Q1
T2 T1
T
Q1
T1
T1
A
T2
T2 Q2
S1
Q’1
B
Q’2
S2
S
卡诺定理的意义
1、从理论上确定了通过热机循环,实现热能 转变为机械能的条件。
2、指出了提高热机热效率的方向,是研究热 机性能不可缺少的准绳。
• T1 或 T2 或 温差
t,c
• T1 ≠ ∞, T2 ≠ 0 K, t,c < 100%, 热二律 • 当T1=T2, t,c = 0, 单热源热机不可能实现
[例1] 某热机工作于1500K的高温热源和300K的低温热源 之间,从高温热源吸取1000kJ 热量,最多能做多少功?
逆向卡诺循环制冷
理解:
系统和外界
1、第二类永动机不可能实现, 热机的热效率<100%
2、热二律:功可全变热、而热不能全变功? No!
若允许产生其它变化,则热能全变功,如理想气体定温过程:
工程热力学第二章

8
∫ pdv
q = ∫ Tds
条件
7
准静态或可逆
4、示功图与示热图 p W T Q
二、储存能
1、内部储存能——热力学能 储存于系统内部的能量, ,与系统内工质粒子的微 储存于系统内部的能量 观运动和粒子的空间位置有关。 观运动和粒子的空间位置有关。 分子动能( 分子动能(移动、 移动、转动、 转动、振动) 振动)T 分子位能( 分子位能(相互作用) 相互作用)V 核能 化学能
对推进功的说明
1、与宏观流动 与宏观流动有关 流动有关, 有关,流动停止, 流动停止,推进功不存在 2、作用过程中, 作用过程中,工质仅发生位置 工质仅发生位置变化 位置变化, 变化,无状 态变化 3、w推=p v与所处状态有关, 与所处状态有关,是状态量 4、并非工质本身的能量( 并非工质本身的能量(动能、 动能、位能) 位能)变化引 起,而由外界做出, 而由外界做出,流动工质所携带的能量 流动工质所携带的能量 可解为: 可理解为:由于工质的进出, 由于工质的进出,外界与系统之间 所传递的一种机械功 所传递的一种机械功, 机械功,表现为流动工质进出系 统使所携带 统使所携带和所 携带和所传递 和所传递的一种 传递的一种能量 的一种能量
15 16
三、焓
内能+流动功 焓的定义式 焓的定义式: 定义式:焓=内能+ 对于m 对于m千克工质: 千克工质: H = U + pV 对于1 对于1千克工质: 千克工质: h=u+ p v 焓的物理意义: 焓的物理意义: --对 --对流动工质 流动工质( 工质(开口系统 开口系统) 系统),表示沿流动方向传递 的总能量中, 的总能量中,取决于热力状态 取决于热力状态的那部分能量 热力状态的那部分能量. 的那部分能量. --对 --对不流动工质 不流动工质( 闭口系统) 焓只是一个复合状 工质(闭口系统 系统),焓只是一个复合状 态参数 思考: 思考:特别的对理想气体 h=f(T h=f(T) f(T) 17
工程热力学第二章气体的热力性质..

u cv ( )v ( ) v dT T
q
h cp ( ) p ( ) p dT T
q
• 定容比热:在定容情况下,单位物量的物体, 温度变化1K(1℃)所吸收或放出的热量,称 为该物体的定容比热。 • 定压比热:在定压情况下,单位物量的物体, 温度变化1K(1℃)所吸收或放出的热量,称 为该物体的定压比热。
第二章 气体的热力性质
●理想气体与实际气体 ●理想气体比热容 ●混合气体的性质 ●实际气体状态方程 ●对比态定律与压缩因子图
本章基本要求
1 掌握理想气体状态方程的各种表述形式,
并应用理想气体状态方程及理想气体定值 比热进行各种热力计算
2掌握理想气体平均比热的概念和计算方法
3理解混合气体性质
4掌握混合气体分压力、分容积的概念
ni R0 R0 nR0 R i 0 M m m
n
mi
i 1
n
R0 Mi
m
gi Ri
i 1
n
2 、若已知各组成气体的容积成分及气体常数.
R R0 R0 M r1M1 r2 M 2 rn M n 1 r1 r2 R1 R2 rn Rn 1 ri i 1 Ri
t1 t2
c c2
2 A 1
q c t (t2 t1 )
1
t2
c=f (t)
q ct 1 (t2 t1 )
t2
ct
t1
t2
1
B
c1
D
0
q cdt cdt cdt
t1 0
t2
t2
q
F E
q D2E 0D D1F 0D
工程热力学课件第2章

1. 确定所研究的系统,建立坐标系;
2. 分析过程中系统本身的能量变化及与外界交换的能量;
3. 列出平衡方程;(包括能量的、质量的) 4. 求解。
8
一、闭口系统的热力学第一定律表达式
Q
ΔU
W
取封闭气缸中的工质为研究对象,忽略系统动能和位能的 变化,则:
Ek 0
不花费能量就可以产生功的第一类永动机是 不可能制造成功的。
3
2–2 热力学能和总能
一、热力学能(internal energy)
Uch-化学能
U
Unu-原子核能 平移动能 Uk 转动动能 振动动能 Uth Up— 内位能
f 1 T
f 2 T , v
U U (T , v)
在无化学反应及原子核反应的过程中,化学能和原子 核能都不变化,可以不考虑,热力学能的变化只是内位能 和内动能的变化。
33
流入:
1 2 1 2 qm1 h1 cf 1 gz1 qm2 h3 cf 3 gz3 2 2
流出:
1 1 qm1 h2 cf22 gz2 qm2 h4 cf24 gz4 2 2
根据能量平衡方程:
E p 0
则:E U
对于微元过程:
δQ dU δW
热力学第一定律解析式 9
注意:
1. 表达式中Q、W、ΔU都是代数值,规定:系统吸热Q为正值,系统 对外作功W为正,反之则为负。系统的热力学能增大时, ΔU为正,反 之为负。 2.对于单位质量工质:
δq du δw
17
在 时间段内系统的能量变化为: 根据热力学第一定律可得 :
工程热力学第二章

n
i
i
混合气体的折合气体常数
R R = eq Meq R nR ∑ni Mi R ∑mR i i i = 0= 0= = m m m m n = ∑gi R i
五、分压力的确定
piV = ni R T pi ni 0 = = xi 或 pi = xi p = ri p pV = nR T p n 0
混 合 气 体 第i种组成气体 相对成分
m mi
n ni
V Vi
相对成分= 相对成分=
分 总
量 量
质量分数:
摩尔分数:
体积分数:
m gi = i , m ni xi = , n V r= i, i V
∑g =1
i
∑x =1
i
∑r =1
i
Vi为分体积
gi、xi、ri的转算关系
V ni i = ⇒xi = r i V n
=q02-q01
= ∫ cdt − ∫ cdt
0 0 t2 t1
= c 0 ⋅ t2 − c 0 ⋅ t1
t2 t1
c 0 , c 0 表示温度自 °C到t1和0°C到t2的平均比热容. 0
t2 t1
q ct = 1 t2 −t1
t2
∫ = ∫ =
t
t2
t1
cdt
t2
t2 −t1
0 t1
cdt + ∫ cdt
通用气体常数不仅与气体状态无关,与气 体的种类也无关 R =8.314J /(mol ⋅ K)
0
气体常数与通用气体常数的关系:
m pV = nR T = R T 0 0 M pV = mR T
R0 R= 或 R0 = M R M
《工程热力学》第二章—热力学基本定律

在孤立系统中,能的形式可以相互转换, ● 在孤立系统中,能的形式可以相互转换,但能 的总量保持不变。 的总量保持不变。 第一类永动机是不可能制成的。 ● 第一类永动机是不可能制成的。 ● 工程热力学中常以热力系统为对象来研究能量 的传递、转换和守恒。 的传递、转换和守恒。 对任一热力系统,热力学第一定律可表述为: ● 对任一热力系统,热力学第一定律可表述为: 进入系统的能量 - 离开系统的能量 = 系统中储存能量的变化
2
热力学基本定律
2.1 热力学第一定律的实质
能量守恒与转换定律: ● 能量守恒与转换定律:自然界中的一切物质都具有 能量,能量既不可能被创造,也不可能被消灭; 能量,能量既不可能被创造,也不可能被消灭;但 它可以从一种形式转变为另一种形式,从一个物体 它可以从一种形式转变为另一种形式, 传递给另一个物体,在转换和传递过程中, 传递给另一个物体,在转换和传递过程中,能的总 量保持不变。 量保持不变。 第一定律的实质: ● 第一定律的实质:能量守恒与转换定律在热现象中 的应用。 的应用。
2.2.3 储存能
能量是物质运动的量度, ● 能量是物质运动的量度,运动是物质存 在的形式,因此一切物质都有能量。 在的形式,因此一切物质都有能量。 物质本身具有的能量称为储存能 储存能。 ● 物质本身具有的能量称为储存能。
◆ 外部储存能 内部储存能(内能) ◆ 内部储存能(内能)
一、外部储存能
2.2.1 功
一、定义
● 在力学中,功的定义为:物体所受的力F和物体在 在力学中,功的定义为:物体所受的力 和物体在 力的方向下的位移X的乘积, 力的方向下的位移 的乘积,即W=FX。 的乘积 。 ●在热力学中,系统与外界相互作用而传递的能量, 在热力学中,系统与外界相互作用而传递的能量, 若其全部效果可表现为使外界物体改变宏观运动状 态,则这种传递的能量称为功。 则这种传递的能量称为功。
工程热力学 第二章 热力学第一定律

是系统为维持工质流动所需的功
对推动功的说明
1、与宏观流动有关,流动停止,推动功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、w推=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界做出,流动工质所携带的能量
可理解为:由于工质的进出,外界与系统之间
The work depends on the process path
作功的说明
“作功”是系统与外界间的一种相互作用,是越过系统边
界的能量交换。
功是指作功过程中在传递着的能量的总称,过程一旦结束
就再无所谓功。
机械能与机械功、电能与电功等同吗?
系统可以拥有电能,机械能,但决不会拥有电功、机械功之类的功。 功只不过是特定条件下在过程中传递着的能量。
实质:能量守恒及转换定律在热现象中的应用
• 18世纪初,工业革命,热效率只有1% • 1842年,J.R. Mayer阐述热力学第一定律, 但没有引起重视
• 1840-1849年,Joule用多种实验的一致性 证明热力学第一定律,于1850年发表并得 到公认
热力学第一定律的普遍表达式
第一定律的表述: 热是能的一种,机械能变热能,或热能 变机械能的时候,他们之间的比值是一定的。 或:热可以变为功,功也可以变为热;一定量的热消失时 必定产生相应量的功;消耗一定量的功时,必出现与之相 应量的热。
系统是否作功应以过程在外界所引起的效果来判断,而不
应从系统的内部去寻找依据,对系统的内部来说无所谓 “功”。
功是有序能量传递。
传热
系统与外界之间的另一种相互作 用,是系统与外界之间依靠温差进行 的一种能量传递现象,所传递的能量 称放热为负
工程热力学第二章

Mc c c 0 22.4
2.对比参数:各状态参数与临界状态的同名 参数的比值。 3.对比态定律:对于满足同一对比状态方程 式的各种气体,对比参数中若有两个相等, 则第三个对比参数就一定相等,物质也就处 于对应状态中。
一、填空题 1.气体常数与气体的种类 有 关,与状态 无 关。 通用气体常数与气体种类无关,与状态无关。 在SI制中通用气体常数的数值是 8314 , 单位是 J/Kmol.K 。 2.质量比热容,摩尔比热容与体积比热容之 间的换算关系为 。 3.理想气体的 cp 及 cv 值与气体的种类有关, 与温度有关。它们的差值与气体种类有关, 与温度无关。它们的比值 与气体种类有关, 与温度有关。
Mi Mi i R 相互间的换算关系: gi xi M ri M ri R ri i
6.混合气体的折合分子量与气体常数
(1)折合分子量
M ri M i
i 1 n
1 M n gi i 1 M i
n
(2)折合气体常数
R0 R M
R gi Ri
i 1
R
p [ 合气体中组成气体具 有与混合气体相同的温度和压力时,单独存 在占有的容积。
4.阿密盖分特容积定律
V [Vi ]T , p
i 1 n
5.混合气体的成分表示方法及换算 m g (1)质量成分: m
i i
Vi (2)容积成分:ri V ni x (3)摩尔成分: i n
工程热力学第二章

公式小结
QEW
一般表达形式
quw
闭口系统,任意过程
2
qu1 Pdv
q h1 2 c2 f g zw s hw t
2
q h1 vdP
dECV
Q Wnet
M in
h
1 2
c2f
g
z
in
M out
h
1 2
c
2 f
g
z
out
闭口系统,准静态过程
稳定流动系统,任意过程 稳定流动系统,准静态过程 开口系统,任意过程
H2 H1
2-9 非稳定流动的能量方程式
Q dEWf Wnet
时间内:系统储存能 dE=dEC.V (eoutmout einmin)
流动功
Wf poutvout mout pinvinmin
e
u
1 2
c2f
gz
及
h
u
pv
得到非稳定流动能量方程:
Q dEC.V+mout
(h
1 2
c2f
gz)out
复习
1.热力系 2.热力系的描述 3.根本状态参数 4.状态参数方程式、状态参数坐标图 5.热力过程及热力循环
第二章 能量与热力学第一定律
❖主要内容: 热力学第一定律及其在不同系统中的应用 ❖要求:
1、深刻认识热力学第一定律的实质—能量守恒 2、热和功的定义,特性及计算 方法 3、掌握第一定律的方程并能熟练应用
Wnet H1H2
气轮机
某蒸汽轮机,进口参数P1=9.0MPa,t1=500 ℃, h1=3386.8kJ/kg,cf1=50m/s,出口参数为P2=4.0kPa, h2=2226.9kj/kg,cf2=140m/s,进出口高度差12m,每千 克蒸汽经气轮机散热损失为15kJ,求
工程热力学第二章课件

要二者相等,函数fAC、fBC须取以下形式:
fAC= ( XC ) A ( X A,YA ) ( XC )
(2-7)
fBC= ( X C ) B ( X B ,YB ) ( X C )
将式(2-7)与(2-8)代入式(2-6),得
(2-8)
A( X A,YA ) B ( X B ,YB )
2. 温度测量--温度计与温标
我们已得到了热力学第零定律的一个重要推论——状态参数温度存在。
现将温度这一性质定量化。若要判断两个系统温度是否相等,根据 热力学第零定律,可用第三个系统分别与它们接触,如果都是处于热平 衡的,即没有热的相互作用,则这两个系统也处于热平衡,它们的温度 相等。如果第三个系统和其中一个热平衡而和另一个有热的相互作用, 则这两系统温度不等。对于一般第三个系统和它们可能均达不成热平衡 的情况,我们进一步推想,若选的第三个系统的热容相对很小,它与其 它系统接触时,即使有热的相互作用,对它们的状态也几乎没有影响, 而自己的状态却有明显的改变,那么当其与第一个系统达成热平衡处于 某一状态后,若与第二个系统达不成热平衡,状态继续变化,则这两系 统温度不等。这里比较两个系统的温度,它们无须接触,第三个系统状 态参数的变化可指示温度的异同。因此,我们得到了热力学第零定律的 另一个重要推论--温度计存在。
二是选定一种温度的数值表示法——温标。它又包括两部分:基准点和分度
方法。我们最常见的是摄氏温标(℃)。它将标准大气压下纯水的冰点和汽点分
(2-11)
上述证明很易推广到任意多个系统处于热平衡且每个系统有任意独立
变量个数的情况。
这一结果表明:任何系统均有一个状态函数存在,它对于所有相互处于 热平衡的系统数值相同。我们将这个状态函数定义为温度,作为判断 一个系统与其它系统是否处于热平衡的宏观性质。一切处于热平衡的 系统,其温度均相等。
工程热力学课件第2章

相对误差=
煤气表上读得煤气消耗量是68.37m3,使用 例 煤气表上读得煤气消耗量是 期间煤气表的平均表压力是44mmH2O,平均温 期间煤气表的平均表压力是 , 度为17℃ 大气平均压力为751.4mmHg,求: 度为 ℃,大气平均压力为 , 消耗多少标准 的煤气。 消耗多少标准m3的煤气。 标准
4、实际气体 、
如果气体的状态处于很高的压力或很低的温度, 如果气体的状态处于很高的压力或很低的温度, 很高的压力 气体有很高的密度, 气体有很高的密度,以致分子本身的体积及分 子间的相互作用力不能忽略不计时, 子间的相互作用力不能忽略不计时,就不能当 作理想气体看待了,这样的气体称为实际气体。 作理想气体看待了,这样的气体称为实际气体。 实际气体 实际气体不能用简单的式子描述, 实际气体不能用简单的式子描述,是真实的工 不能用简单的式子描述 如火力发电的水和水蒸气、 质。如火力发电的水和水蒸气、制冷空调中制 冷工质等。 冷工质等。
夏天, , 夏天,自行车在被晒得很热的马路上行驶 答:夏天,自行车在被晒得很热的马路上行驶 夏天 为何容易引起轮胎爆破? 时,为何容易引起轮胎爆破? 轮胎内的气体(空气)被加热,温度升高, 时,轮胎内的气体(空气)被加热,温度升高, 而轮胎的体积几乎不变, 而轮胎的体积几乎不变,所以气体容积保持不 轮胎内气体的质量为定值, 变,轮胎内气体的质量为定值,其可视为理想 气体, 可知, 气体,根据理想气体状态方程式 可知, pV = mRT 轮胎内气体的压力升高, 轮胎内气体的压力升高,即气体作用在轮胎上 的力增加,故轮胎就容易爆破。 的力增加,故轮胎就容易爆破。
Mc c' = = cρ0 22.4
二、定容比热容和定压比热容
一定量的物质在吸收或放出热量时, 一定量的物质在吸收或放出热量时,其温度 变化的大小取决于工质的性质、 变化的大小取决于工质的性质、数量和所经 历的过程。 历的过程。 经验表明,同一种气体在不同条件下,如在 经验表明,同一种气体在不同条件下, 保存容积不变 压力不变的条件下加热 容积不变或 的条件下加热, 保存容积不变或压力不变的条件下加热,同 样温度升高1K所需的热量是不同的 所需的热量是不同 样温度升高 所需的热量是不同的。
工程热力学第二章

解:根据公式Q = U + W 因此 W Q U 60 70 130kJ W<0,说明外界对空气作功,即空气被 压缩。 提示:热量的正负值及功的正负值的物理 意义要记住.
符号规定
系统吸热Q为正,放热Q为负; 系统对外作功W为正,反之为负; 系统热力学能增大ΔU为正,反之为负。
δq du δw
δQ dU pdV
q u w
Q U pdV
1 2
3.对于可逆过程:
4. 对于单位质量工质可逆过程: 5. 动能位能变化不能忽略时:
δq du pdv
Ek 0 Ep 0
q u pdv
1
2
Q E W
34
q e w
e u ek ep
外部储存能
比总能e还可写成:
28
宏观动能与内动能的区别
3.热力学第一定律的一般表达式
热是能的一种,机械能变热能,或热能变 机械能的时候,他们之间的比值是一定的。 或: 热可以变为功,功也可以变为热;一定量 的热消失时必定产生相应量的功;消耗一定量 的功时,必出现与之相应量的热。
能量不能产生,也不能消灭;不同形式能 量之间可以相互转换,但能的总量不变 热力学第一定律实质上就是能量守恒和转换定律对热 现象的应用
⑵ 热力学第一定律的普遍表达方式
对任何系统的任何过程都应有如下能量平衡关系: 进入系统的能量 = 离开系统的能量 + 系统能量贮存的增量
2014-9-27
22
热力学第一定律的实质
功的正负规定
系统对外界作功为正;外界对系统作功为负
2014-9-27
10
准静态过程中功的计算
工程热力学2 温度与热力学第零定律详解

温度通常指的是物体的冷热程度。
这一概念来源于人们对于冷热现象的经验感觉,譬如通过触觉,可以把各种
物体按冷、凉、温、热等作一排列。但感觉不能成为科学概念,感觉往往也 可能会是错觉。
常与热的概念混淆-- 物体“冷热”的热与物体间传递“热量”的热是同一个字,不
像英语中可分别用Hotness和Heat区分,但此热非彼热也。人们用手触摸物体感受其温 度时,他所感到的实际上是单位时间物体传给他的热量。诚然,热量源自于温差,即 外界物体的温度越高,势差也越大,传给我们手的热量也越多,这种感觉似乎也能指 示物体的温度。但要知道物体所传的热量不仅和温差有关,还和物体本身材料的导热 性质又称导热系数有关。触摸处于相同环境同一温度的铁与木头,冬天你会觉得铁比 木头冷,夏天又可能会觉得铁比木头热。
上述证明很易推广到任意多个系统处于热平衡且每个系统有任意独立
变量个数的情况。
这一结果表明:任何系统均有一个状态函数存在,它对于所有相互处于 热平衡的系统数值相同。我们将这个状态函数定义为温度,作为判断 一个系统与其它系统是否处于热平衡的宏观性质。一切处于热平衡的 系统,其温度均相等。
在我们的温度感觉可以信赖的范围内,所有各个物体相互接触一段足够 长的时间之后,这些物体的冷热程度都将变得相同。因此,这个温度 概念与我们日常估量系统冷热程度的温度概念是一致的。
2. 温度测量--温度计与温标
我们已得到了热力学第零定律的一个重要推论——状态参数温度存在。
现将温度这一性质定量化。若要判断两个系统温度是否相等,根据 热力学第零定律,可用第三个系统分别与它们接触,如果都是处于热平 衡的,即没有热的相互作用,则这两个系统也处于热平衡,它们的温度 相等。如果第三个系统和其中一个热平衡而和另一个有热的相互作用, 则这两系统温度不等。对于一般第三个系统和它们可能均达不成热平衡 的情况,我们进一步推想,若选的第三个系统的热容相对很小,它与其 它系统接触时,即使有热的相互作用,对它们的状态也几乎没有影响, 而自己的状态却有明显的改变,那么当其与第一个系统达成热平衡处于 某一状态后,若与第二个系统达不成热平衡,状态继续变化,则这两系 统温度不等。这里比较两个系统的温度,它们无须接触,第三个系统状 态参数的变化可指示温度的异同。因此,我们得到了热力学第零定律的 另一个重要推论--温度计存在。
工程热力学 第2章 热力学第一定律

6
可逆膨胀过程:
系统内部准静→系统的压力与外界压力相差只是无穷小 →可看作过程中P=Ps→微元过程中系统对外界所作的膨 胀功可完全用系统内部参数表示:
W PdV
对1kg工质的微元过程 对1→2的有限过程
m kg工质:
w Pdv
1 kg工质:
以上公式适用于任何简单可压缩物质可逆过程
2020/1/10
• 系统温度的变化与传热并无必然的联系 • 热能是微观粒子无序紊乱运动的能量;传热是微观粒
子间无序运动能量的传递
2020/1/10
12
⑵ 可逆过程的热量计算
①利用熵参数进行热量计算
热力学状态参数熵的定义
经历可逆的微元过程时,系统的熵变 量dS等于该微元过程中系统所吸入的热 量đQ与吸热当时的热源温度T之比
这时
E=U
2020/1/10
20
§2.5 控制质量(CM)能量分析
⑴热力学第一定律基本表达式
控制质量 热力过程中吸入热量Q, 对外界作功W,热力学能增加∆U 根据热力学第一定律
Q = ∆E + W W——广义功
输入能量 贮能增量 输出能量
若系统固定不动,U=E,则
Q = ∆U + W
对于微元能
⑴状态参数热力学能
物质内部拥有的能量统称为热力学能(内能)
分子平移运动、转动和振动的动能(内动能) 分子间因存在作用力而相应拥有的位能(内位能) 维持一定分子结构的化学能、分子的结合能 U 电偶极子和磁偶极子的偶极矩能 原子核能(原子能) ……(电子的运动能量等)
第2章 热力学第一定律
( The First Law of Thermodynamics )
主要内容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-1 热力学第一定律的实质
能量守恒定律:自然界中的一且物质都具有能量,能量不可能
被创造,也不可能被消灭;能量可以从一种形态转变为另一种
形态,且在能量的转化过程中能量的总量保持不变。 热力学第一定律:能量守恒在热力学中的具体应用
2-2 热力学能和总能
一、热力学能
内动能
分子动能(移动、转动、振动) 分子位能(相互作用)
二、稳定流动能量方程 稳定流动:开口系统各点的热力学状态不随时间变化。 瞬变流动: 稳定流动条件下:
dE cv 0 d
2
2
qm1 qm2 qm
dEcv 0
m1 m2 m
c 21 f 2 gz1 )m1 (h2
c 21 f 2
Q (h1
c2 2 f 2
如:重力位能
以外界为参考坐标的系统宏观运动所具有的能量
1 2 Ek mc f 2
如:宏观动能
系统总能
E = U + Ek + Ep
1 2 e u ek e p u c f gz 2
常用U, dU, u, du
2-3 能量的传递与转化
一、作功和传热 物体之间的能量传递总依赖于作功和传热两种方式: •借作功传递能量总是和物体的宏观位移有关 •借传热来传递能量不需要物体的宏观位移。
gz w i
q u h wt u
技术功也源 自于膨胀功
h u pv
q u w
wt w ( pv)
wt w ( p2v2 p1v1 )
对可逆过程
w pdv
1
2
wt vdp
1
2 2 1 1
2
( pv ) d ( pv ) pdv vdp
c
2 f1
δwi dEcv 2 z1
δws
2
gz1 )m1
δQ
δm2
z2
u2,p2 v2,cf2
流出控制体的能量 Wi ( h2 控制体储存能的变化 dEcv
c2 2 f 2
gz2 )m2
由热力学第一定律
Q (h1
c 21 f 2
gz1 )m1 (h2
c2 2 f 2
gz)out mout (h
i
c2 f 2
gz)in min Wi
将各项除以dτ:
热流率
m m Wi Q , qm,in in , qm,out out , Pi d d d d
质流率 内部功率
cf cf dEcv (h gz)out qm,out (h gz)in qm,in Pi d 2 2 j i
习题:2-1,2-3,2-8,2-9,2-10,2-13, 2-15,2-17,2-19
4~1
1500
0
例题2-1
定量气体在气缸内体积从0.9m3可逆膨胀到1.4m3,过程中压 力保持不变p=0.2MPa。若过程中气体热力学能增加12000J, 求:(1)此过程中气体吸入或放出的热量,(2)若活塞的质量 为20kg,且初始时静止,求终态时活塞的速度。已知环境压 力p0=0.1Mpa。
2-6 开口系统能量方程
一、开口系统能量方程
u1,p1 v1,cf1 1
控制容积:CV
δm1 dEcv
δwi 2 z1
δws
能量守恒原则:
δQ
δm2
z2
u2,p2 v2,cf2
进入系统的能量-离开系统的能量=系统储存能量的变化
u1,p1 v1,cf1
δm1
1
τ到τ+dτ时刻内 进入控制体的能量 Q (h1
gz2 )m2 Wi dEcv
τ到τ+dτ时刻内
开口系能量 方程一般表 达式
Q dEcv (h2
c2 2 f 2
gz2 )m2 (h1
c 21 f 2
gz1 )m1 Wi
有若干股流体流进流出系统时:
Q dEcv (h
j
c2 f 2
2
gz wi
微元过程 q dh 流过mkg工质时:
dc f 2 H m
m gz Wi
三、稳定流动能量方程的分析
q h c f 2
2
gz wi
技术功
q h wt
wt
c 2f 2
q dh wt
m2u2 m1u1 m2 m1 h 0
u2
m2u2 m1u1 m2 m1 u m2 m1 pv 0
m2 m1 h m1u1
m2
例题2-4
本章重点
• 本章基本要求 • 本章重点 • 深刻理解热量、总能 • 熟练应用热力学第一 量、功的概念,深刻 定律解决具体问题 理解热力学能、焓的 物理意义 • 理解膨胀(压缩)功、 技术功、流动功的联 系与区别
内位能
核能
化学能
说明:热力学能是状态量
u f (v, T )
u f ( p ,T ) u f ( v , p )
U : 广延参数 [ kJ ]
u : 比参数 [kJ/kg]
二、总能 构成系统的物质具有的热力学能
System U
cf
z
系统工质与外力场的相互作用 所具有的能量 组 成
E p mgz
u2
m2 m1 h m1u1
m2
方法二 取终态时气罐内全部(m2)空气为封闭系 闭口系能量方程
Q =ΔU+W
Q:容器刚性绝热充入气体与管内气体温度相等 Q = 0
U :
W:
U m2 u 2 m1u1 m2 m1 u
W m2 m1 pv
二、推动功和流动功 开口系统由于工质的流动而传递的功——推动功
p A x p
Fdx pAdx pdV m pv 流进1kg工质 : pv
推动1kg工质进、出控制体时:
p1
x2
( pv) p2v2 p1v1
流动功
A1
x1
A2
p2
注意: 流动功取决于控制体进出口界面工质的热力状态
1
2
技术功在示功图上的表示
vdp pdv p1v1 p2v2
12ba1
12341
140a 230b
wt w p1v1 p2v2
wt w ( pv)
2-7 能量方程的应用
一、汽轮机等动力机械
cf1
q h
c f 2
2
gz wi
Δz ≈ 0
焓=热力学能+推动功
对于1千克工质: 对于m千克工质: 焓是状态参数
h u pv
H U pV
h f ( p ,v ) f ( p ,T ) f ( v ,T )
2
1
dh h2 h1 ,
dh 0
对流动工质(开口系统),随工质的流动而转移的能量不等 于热力学能,而等于焓。
1 2 1 2 δQ dECV h cf gz δmout h cf gz δmin δW 2 2 out in
hidmi dE d mu
hi dmi
d mu
hi mi m2u2 m1u 1 m2u2 mi m2
gz2 )m2 Wi dEcv
c2 2 f 2 gz2 )m wim 0
qm (h1
gz1 )m (h2
c 2 2 c 21 f f 2
q (h2 h1 )
g ( z2 z1 ) wi
简化为:
q h
c f 2
h=303kJ/kg
解:取A为CV—— 非稳定开口系
1 2 1 2 δQ dECV h cf gz δmout h cf gz δmin δW 2 2 out in
容器刚性绝热
δQ 0
δW 0
δmout 0
忽略动能差及位能差,则
2-5 热力学第一定律的基本能量方程
建立能量方程的基础:
进入系统的能量-离开系统的能量=系统中储存能量的增加
基本能量方程——闭口系统能量方程
∆E
W
E U U 2 U1 Q W U
Q
对1kg工质:
q u w
J / kg
对于微元过程:
q du w
w pdv
hi u2 故
由 或
303 T2 420 .83 K 147 .83C 0.72
pV 40105 1 m 33.12kg RgT 287 420.83
流入:hinδmin 流出: 0 内增:u δm
hin u δm 0
hin u
讨论:
1)非稳态流动问题可用一般能量方程式也可用基本原则。 在一些条件下,后者常更方便。 2)能量方程中若流体流出、入系统,物质能量用h,若不 流动用u。
cf2
现 q = 0; Δcf2 ≈ 0; 故
wi h1 h2 h wt
二、压气机
2 现 Δcf2 = 0 Δz = 0
故
q h
c f
2
gz wi
wc wi h2 h1 q wt
三、锅炉和各种热交换器
q h
c 2 f
2
gz wi