2013挑战中考数学压轴题(整理好的)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关平行四边形的存在性问题一.知识与方法积累:
1.已知三个定点,一个动点的情况
在直角坐标平面内确定点M,使得以
点M、A、B、C为顶点的四边形是平行四边形,
请直接写出点M的坐标。
后计算。(可利用三角形全等性质和平行四边形性质,准确求点的坐标)
如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
例1 2012年扬州市中考第27题
如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
图1
图1
1.(2011•沈阳)如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),
与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式;
(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ=AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.
四.因动点产生的面积问题
例 1 2012年河南省中考第23题
如图1,在平面直角坐标系中,直线
1
1
2
y x
=+与抛物线y=ax2+bx-3交于A、B两点,点
A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求a、b及sin∠ACP的值;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.
图1
五.因动点产生的线段和差问题
例1 2012年山西省中考第26题
如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.
(1)求直线AC的解析式及B、D两点的坐标;
(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P 的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;
(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.
图1
因动点产生的相似三角形问题
原理:相似定理SAS (两边对应成比例且夹角相等,两个三角形相似.) 方法:
1观察两三角形是否为特殊三角形,找出两三角形相等的角
2、设所求点的坐标进而用函数解析式来表示各边的长度,之后运用相似对应边成比例来列方程求解。
题型一:
直角三角形相似的问题 例题1
1、如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;
(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;
(3)在直线AC 上方的抛物线上有一点D ,使得△DCA 的面积最大,求出点D 的坐标
答案:
练习. 如图所示,已知抛物线2
1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.
(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.
(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.
题型二
存在公共角的两三角形相似问题
例题如图,在平面指教坐标系内,已知A(0,6),B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向O移动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向A移动,设点P、Q移动的时间为t秒。
(1)求直线AB的解析式;
(2)当t为何值时,△APQ于△AOB相似?
(3)当t为何值时,△APQ的面积为24/5个平方单位?
答案:
(1)设直线AB的解析式为y=k x+b
由题意,得解得
所以,直线AB的解析式为y=-x+6.
(2)由AO=6,BO=8得AB=10
所以AP=t,AQ=10-2t
1)当∠APQ=∠AOB时,△APQ∽△AOB.
所以=解得t=(秒)