建筑金属围护系统抗风性能检测方法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑金属围护系统抗风性能检测方法

彭耀光,唐建伟,鲁胜虎

(澳门金属结构协会 澳门)

摘要:金属屋面板属于薄板结构,具有质量轻、柔性大、阻尼小、自振频率低的特点,属于风敏感性结构,所以风荷载是金属屋面的主要荷载之一,由于建筑的特殊造型和金属围护产品的多样化,人们即使参照某些已有的资料也很难对金属围护系统构件的截面特性和实际抗风性能进行准确的评估。为正确评估金属围护系统的结构性能,需对金属围护系统做抗风承载力检测,采用科学的检测方法对金属围护系统进行检测,有助于对金属围护系统的实际性能做出合理的评估。本文通过分析,论述了金属围护系统的实验室静压箱检测法及对金属围护系统进行动态风荷载检测的必要性。

关键词:金属围护系统 抗风承载力 静态抗风压检测 动态抗风压检测 金属疲劳效应

1. 前言

20世纪70年代末我国也开始了对金属屋面的应用,经过30多年的发展,已广泛的应用于各种工业和民用建筑中。然而金属屋面在我国的使用状况并不太理想,许多金属屋面工程在使用中出现问题。如2007年一场突然大风造成某机场主候机楼金属屋面破坏,面板掀起约100平方米(图1),屋顶内部上部PC板几乎吹落或掀起,面积约3000平方米,该候机楼屋顶按GB50009-2006年版50年一遇基本风压设计,原设计能抗12级大风,机场航站气象台记录当时风速为29m/s,相当于11级大风,屋面破坏时风压未超过设计风压,面板破坏处T形支座、主次檩条连接均良好,是由于屋面板卷边扣合拉脱导致屋面破坏;另有2012因受台风影响某火车站园区站房金属屋面15块1.0mm厚的铝镁锰合金直立锁边屋面板遭到破坏(图2),该火车站园区金属屋面按GB50009-2006年版设计应能抗12级台风,但在10级大风破损,原因是直立边锁扣抗负风压强度不够。

图1 某机场屋顶破坏照片 图2 某火车站园区站房金属屋面损坏照片 上述被风吹坏的金属屋面都是在未达到风荷载设计值出现破坏,出现这种情况的原因是金属屋面围护系统的应用在国外已有相当长的历史,其产品、设计、检测等相对完善,而我国早期的金属屋面主要是穿透式的,后来从国外大量引进扣合、咬合等隐藏式固定的压型金属板屋面系统,在压型金属屋面系统应用中的技术和标准等相对滞后,因此不能通过计算准确的评估金属屋面产品的承载力。金属屋面板属于薄板结构,具有质量轻、柔性大、阻尼小、自振频率低的特点,属于风敏感性结构,所以风荷载是大型金属屋面的控制荷载之一;尽管在设计阶段依据荷载规范对金属屋面的抗风承载力进行了计算,但都是对单一构件的结构承载力进行计算,再将最小破坏荷载作为金属屋面的极限承载力,这显然是不对的,因为在屋面系统的设计阶段还需要通过模拟风荷载作用的检测方法对屋面系统的结构性能进行评估。

2. 金属围护系统抗风性能检测方法的发展

对金属围护系统影响较大的荷载为以(负)风荷载为主的均布荷载,因此对金属围护系统的试验检测应采用的理想加载方式为均布荷载而非集中荷载。金属围护系统发展早期,受当时技术条件的限制,对金属屋面进行检测是采用沙袋或水袋来进行加载,但随后人们发现采用沙袋或水袋进行加载的均匀性较差且沙袋和水袋只能提供正向的压力,要模拟风荷载的负压作用则需要将屋面板反向安装,这样在检测系统时就无法对金属屋面做出评估;此外,该方法只能对单板金属屋面系统进行检测,无法对有金属底板的屋面系统进行检测。对图3所示的金属屋面系统上施加正向荷载时只对上部的金属面板和檩条结构产生作用,如果将此金属屋面系统反向安装进行加载时,则只有屋面系统的金属底板受力,金属面板则不会受力,所以采用沙袋或水袋进行加载的检测方法不理想。随着技术的进步就出现了当下采用较多的气囊(薄膜)加载(图4)测试方法。从金属屋面的检测方法发展上来看,尽管施加荷载的均匀性有所改进,但与实际风荷载对金属屋面的作用效果仍有一定的差距,仍不能很好的反映出风荷载对金属围护结构的影响。

图3 采用沙包对金属屋面系统进行加载

图4 气囊加载

以采用气囊(薄膜)的加载方式对直立锁边金属屋面加载为例,气囊加载的原理是利用往气囊中充入空气时气囊膨胀对金属屋面产生向上的推力。为保证气囊气密性良好就要求气囊连续不能有穿孔,从金属屋面受力上看,采用气囊加载与采用水袋加载对屋面的效果几乎相同,只是测试时无需将金属屋面系统反向安装,同样不能真实反映风荷载对金属屋面的作用效应。具体表现在:a.气囊膨胀时只有与气囊薄膜接触的金属板受到力的作用(图5),而实际上当金属屋面系统受负风荷载作用时整个屋面板是均匀受力的,除屋面板翼缘受力外进入卷边扣合处的空气对板肋也有力的作用(图6),该作用力会直接影响金属屋面的卷边扣合力;b.采用气囊加载的方式,即使气囊膨胀到极限金属屋面板的变形也很有限,因为气囊薄膜阻止了空气进入固定支座与屋面板卷边结合的位置,限制了屋面板的变形;c. 采用气囊进行加载的方式容易出现气囊尺寸过小,气囊充满气体时屋面板系统达不到最大变形或极限承载力;d. 屋面板受力变形后屋面系统的气密性会发生改变,卷边的扣合力也会变小,进而对屋面的结构性能产生影响,采用气囊加载的方法忽略了屋面系统气密性对结构性能的影响,使测得的金属屋面系统的抗风极限承载力偏大不安全。

图5 气囊加载的单板金属屋面 图6 静态风荷载加载单板金属屋面 以上是对于单层板金属屋面进行的加载,对于有保温隔热和隔声等辅助层的金属屋面系统,采用薄膜加载的方式进行试验则更加的不合理,因为多层金属屋面系统有设置金属底板,采用气囊对多层金属屋面系统进行加载时只能使屋面系统的底板受力,上部金属屋面则不受力(图7)。事实上,当金属屋面受风荷载作用时主要受力的是最上面的金属屋面板,在负风压的作用下屋面板产生变形,卷边扣合处出现张开(图8),且由于室内外压力差的存在,屋面系统底板同时也受到力的作用,当达到屋面系统的极限承载力时屋面系统破坏。若只对上部的金属屋面板进行抗风承载力试验则与实际情况不符,所以采用薄膜加载的金属屋面承载力试验方法不合理。

要与实际情况相符合,最合理的测试方法应是除了在屋面系统试件周边进行密封外,试件其他部分不采用任何密封措施,通过使屋面系统两侧形成空气压力差来对屋面系统进行加载。在现有技术条件下,能模拟风荷载作用的金属屋面系统检测方法为实验室静压箱法,其可实现模拟真实的风荷载均匀的作用于屋面系统,产生静态和动态的检测过程。

图7 气囊加载屋面系统 图8 静态风荷载加载屋面系统

3. 屋面组装系统连接性能检测

相关文档
最新文档