等比数列前n项和教学设计第二课时(最新整理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列前 n 项和性质:
性质 1:若 S n 是等比数列{a n }的前 n 项和,则数列 S n ,S 2n -S n ,S 3n -S 2n ……也构成等比数列。
【例 1】等比数列前 n 项和为 54,前 2n 项和为 60,则前 3n 项和为?
高一数学集体备课学案与教学设计
【练习 1】正项等比数列中,前 2 项和是 7,前 6 项和是 91,则前 4 项和是多少?
性质 2:在等比数列中,若项数为偶数(设 2n),则 S 偶:S 奇=q
【例 2】已知一个等比数列项数是偶数,奇数项和是 85,偶数项和是 170,这个 数列的公比是多少?
【练习 2】已知一个等比数列其首项是 1,项数是偶数,奇数项和是 85,偶数项 和是 170,这个数列的项数是?
性质 3:若{a } 是公比为 q 的等比数列,则 S n n
m
n = S q n S m
【例 3】在等比数列{a n }中,前 3 项和为 7,前 8 项和为 255,且公比为 2,求前 11 项和.
性质 4:公比不为 1 的等比数列, S = A - Aq n
,
n A = a 1
1 - q
【例 4】等比数列{a }的前 n 项和S = 2 ⨯ 3n
+ a ,则 a 为? n n
【练习 4】在等比数列{a } 中,已知对n ∈ N , a + a *
+ ⋅⋅⋅
+ a n = 2 -1 ,求 n n 1 2 a 2 + a 2 + ⋅⋅⋅ + a 2
1 2 n 【练习 5】求数列1, a + a 2 , a 3+ a 4 + a 5 ,⋅⋅⋅ 的前 n 项和
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!