传感器结构图

合集下载

变隙电感式压力传感器结构图

变隙电感式压力传感器结构图

接头 图5.20 微压传感器
壳体
插头 通孔
图5.21 CPC型差压计
1、测量振动和加速度 差动变压器式加速度传感器:由悬臂梁和差动变压器构成。测量时,将 悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动 体相连, 此时传感器作为加速度测量中的惯性元件,它的位移与被测加 速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以 Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。
线圈2 衔铁
P

被测压力之间成比例关系, 所以只要用检测仪表测量出
图4-31 变隙式差动电感压力传感器
输出电压, 即可得知被测压
力的大小。
二、 差动变压器式传感器的应用
可直接用于位移测量,也可以测量与位移有关的任何 机械量,如振动、加速度、应变、比重、张力和厚度等。
线路板
差动变压器 衔铁
底座 膜盒
当被测压力进入C形弹簧管时,
线圈 1
C形弹簧管产生变形, 其自 C形弹 簧管
由端发生位移,带动与自由
端连接成一体的衔铁运动,
使线圈1和线圈2中的电感发
输出
生大小相等、符号相反的变
化。即一个电感量增大,另 调机 械 一个电感量减小。电感的这 零点 螺钉 种变化通过电桥电路转换成 电压输出。由于输出电压与
体置于交变磁场中,或在磁场中做切割磁力线运动时,导 体内将产生涡旋状的感应电流,此即电涡流效应。激磁线 圈通交变电流,周围形成交变磁场,导体内产生涡流,电 涡流磁场反抗原磁场,引起线圈等效阻抗发生变化,即可 建立阻抗与变量的单值关系,测量阻抗值,即可求得该被 测量。
工作时,将传感器安装在机器上,在机器振动时, 线圈与磁铁相对运动、切割磁力线,产生感应电压, 该信号正比于被测物体的振动速度值,对该信号进行 积分放大处理即可得到位移信号。

电感式传感器PPT课件

电感式传感器PPT课件

2
LC
2LC
Q2
(1
2LC)2
2LC Q
2
(4-17)
第4章 电感式传感器
当Q>>ω2LC且Ω2lc<<1
Z
R
(1 2LC)2
;

L'
L
(1 2LC)2

Z R' jL'
从以上分析可以看出,并联电容的存在,使有效串联损耗电阻及 有效电感增加,而有效Q值减小,在有效阻抗不大的情况下,它 会使灵敏度有所提高,从而引起传感器性能的变化。因此在测量 中若更换连接电缆线的长度,在激励频率较高时则应对传感器的 灵敏度重新进行校准。
为了使输出特性能得到有效改善,构成差动的两个变隙 式电感传感器在结构尺寸、材料、电气参数等方面均应完全 一致。
第4章 电感式传感器 图4-3 差动变隙式电感传感器
第4章 电感式传感器 4.1.3 测量电路
电感式传感器的测量电路有交流电桥、变压器式交流电桥 以及谐振式等。
1.
从电路角度看,电感式传感器的线圈并非是纯电感,该电 感由有功分量和无功分量两部分组成。有功分量包括:线圈线 绕电阻和涡流损耗电阻及磁滞损耗电阻,这些都可折合成为有 功电阻,其总电阻可用R来表示;无功分量包含:线圈的自感L, 绕线间分布电容,为简便起见可视为集中参数,用C来表示。 于是可得到电感式传感器的等效电路如图4-4所示。
其自由端发生位移,带动与自由端连接成一体的衔铁运动, 使线圈1和线圈2中的电感发生大小相等、符号相反的变化。 即一个电感量增大,一个电感量减小。电感的这种变化通 过电桥电路转换成电压输出,所以只要用检测仪表测量出 输出电压,即可得知被测压力的大小。
第4章 电感式传感器 4.1.5

第7章 位移传感器

第7章  位移传感器

可以实现高灵敏的位移测量。
7.2.2光栅位移传感器的结构及工作原理

如图7-9所示,由主光栅、指示光栅、光 源和光电器件等组成。 主光栅和被测物体相连,它随被测物体的 直线位移而产生移动。当主光栅产生位移时, 莫尔条纹便随着产生位移。 用光电器件记录莫尔条纹通过某点的数目, 便可知主光栅移动的距离,也就测得了被测 物体的位移量。


图7-3
电位器电路

常见用于传感器的电位器有: 线绕式电位器、 合成膜电位器、 金属膜电位器、 导电塑料电位器、 导电玻璃釉电位器、 光电电位器。
2.电位器的主要技术参数
(1)最大阻值和最小阻值,指电位器阻值变化
能达到的最大值和最小值;
(2)电阻值变化规律,指电位器阻值变化的规

f=Z· n
根据测定的脉冲频率,即可得知被测物体 的转速。如果配接数字电路,组成数字式转 速测量仪,可直接读出被测物体的转速。 当被测转速很低时,输出脉冲电势的幅值 很小,以致无法测量出来。 所以,这种传感器不适合测量过低的转速, 其测量转速下限一般为50转/秒左右,上限可 达数百千转/秒。
7.5.2


磁栅的种类可分为单型直线磁栅、
同轴型直线磁栅和


旋转型磁栅等。
磁栅主要用于大型机床和精密机床作为位 置或位移量的检测元件。
图7-10 磁栅的基本结构

磁栅和其它类型的位移传感器相比,具有


结构简单、
使用方便、


动态范围大(1~20m)和
磁信号可以重新录制等优点。


缺点是需要屏蔽和防尘。

如果水位上升到与检知电极端部接触时, 由于水有一定的导电性,方波发生器输出的 矩形波被短路,比较器输出高电平,LED熄 灭。 如果水位低于检知电极端部时,比较器 输出低电平,LED闪烁,告知水箱缺水。 如果把比较器输出电压和控制电路连接 起来,可对供水系统进行自动控制。

力传感器

力传感器
2020/3/1
2020/3/1
1.应变式称重传感器的工作原理
电阻应变式称重传感器由弹性元件、应 变片和外壳组成。
弹性元件是称重传感器的基础,被测物 的重量作用在弹性元件上,使其在某一部位产 生较大的应变或位移;弹性元件上的应变片作 为传感元件,将弹性元件敏感的应变量或位移 完全地同步地转换为电阻值的变化量,转换成 电信号,完成了重力的测量。
这种测量方法简单、方便,成本低。 但容易损坏,受环境影响大,使用寿命短 。长期使用时,零点漂移大,需要在使用 前调节零点。
2020/3/1
方案二:在本课题中也
可以直接采用电子吊秤的方 法(课题二介绍)。购买电 子吊秤接在起重设备下,可 实现货物在线装卸测量、在 线称重,随时改变称量地点 ,可实现分次分批称重,提 高效率,但成本较高。
2020/3/1
[任务实施]
方案一:测量、控制起重设备吊运货物 的重量,可以采用在吊钩的圆柱壁上粘贴应 变片的方法,检测起吊重量。
测量吊运货物的重量, 量程较大,一般在吊钩的圆 柱壁上横竖各粘贴一片应变
片,组成双臂半桥电路。
2020/3/1
为应变电桥提供±2V稳压电源,电桥 输出信号接入差动直流放大电路,测量输 出电压。根据输出电压值可以推算出应力 的大小,即重力。也可以使用应变片专用 测量仪—电阻应变仪进行检测。
❖ 半导体应变计应用较普遍的有体型、薄膜型、 扩散型、外延型等。体型半导体应变计是将 晶片按一基片 定取向切片、研带磨状引、线 再切割P-Si 成细条, 粘贴于基片上制作而成。几种体型半导体应 变计示意图如图所示。
晶片
N-Si
电阻应变式传感器的测量电路
应变电阻变化是极其微弱的,电阻 相对变化率仅为0.2%左右。例如:应变 电阻为300Ω,电阻变化量为0.6Ω,要 精确地测量这么微小的电阻变化是非常 困难的。通常采用惠斯登电桥电路进行 测量,将电阻相对变化△R/R,转换为 电压的变化,再用测量仪表应变式传感 器测量电路便可以简单方便地进行测量。

传感器技术与应用第9章加速度传感器

传感器技术与应用第9章加速度传感器
由图9-5可知,它采用简谐振子结构形式。激光束通过 分光器分为两束光,透射光作为参考光束,反射光作为测量 光束。当光纤感受到加速度作用时,由于质量块m对光纤的 作用,从而使光纤被拉伸,引起光程差的改变。相位改变的 激光束由单模光纤射出后与参考光束汇合产生干涉效应。激 光干涉检测器把干涉条纹的移动经光电接收器件转换为电信 号,通过信号处理电路处理后,便可在显示器上正确地显示 出加速度的测量值。
F ma
图9-1 应变式加速度传感器结构示意图
9.1.2 应变式加速度传感器的测量原理
测量时,将传感器壳体与被测对象刚性连接,当被测物 体以加速度a运动时,质量块就受到一个与加速度方向相反 的惯性力作用,使悬臂梁变形。该变形被粘贴在悬臂梁上的 电阻应变片感受到,并随之产生应变,从而使应变片的阻值 发生变化。这个变化经过全桥差动测量电路转变成电桥不平 衡电压输出。并且这个不平衡电压Uo的大小与被测物体的运 动加速度a成正比。
ቤተ መጻሕፍቲ ባይዱ
图9-2 压电式加速度传感器结构示意图
9.2.2压电式加速度传感器的测量原理
测量时,把压电加速度传感器与被测物体刚性连接,当加 速度传感器和被测物体一起受到冲击振动时,由于弹簧的刚 度很大,而质量块的质量相对较小,可以认为质量块的惯性 很小。因此,质量块感受与传感器基座相同的振动。这样, 质量块m就有一惯性力F作用到压电元件上。由于压电效应, 便在压电元件上产生电荷q,其电荷量大小为
第9章 加速度传感器及其应用案例
9.1 应变式加速度传感器 9.2 压电式加速度传感器 9.3 电容式加速度传感器 9.4 差动变压器式加速度传感器 9.5 加速度测量显示系统案例
返回主目录
9.1 应变式加速度传感器
9.1.1 应变式加速度传感器的结构

第4章 电感式传感器

第4章 电感式传感器
(c) 四节式
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。

光纤传感器ppt课件

光纤传感器ppt课件
第9章 光纤传感器
光纤传感器的原理结构及种类
光的传输原理
光导纤维传感器的类型
功能型光纤传感器
非功能型光纤传感器
光纤传感器的应用
光纤即光导纤维是20世纪70年代的重要发明之一,它与激光器、半导体探测器一起构成新的光学技术,创造了光电子学新领域。光纤的出现产生了光纤通讯技术,特别是光纤在有线通讯网的优势越来越突出,它为人类21世纪的通讯基础------信息高速公路奠定了基础,为多媒体(符号、数字、语言、图形和动态图象)通信提供了实现的必须条件。
光导纤维传感器的类型
光纤传感器的分类
按测量对象分类 :分为光纤温度传感器、光纤浓度传感器、光纤电流传感器、光纤流速传感器。
按光纤中光波调制的原理分类 :分为强度调制型光纤传感器、相位调制型光纤传感器、偏振调制型光纤传感器、频率调制型光纤传感器、波长调制型光纤传感器。
按光纤在传感器中的作用分类 :分为功能型光纤传感器(FF型,function fiber)和非功能型光纤传感器(NFF型,non function fiber)
高纯度石英(sio2)玻璃纤维,这种材料的光损耗比较小。
多组分玻璃纤维,用常规玻璃制成,损耗较小。
塑料光纤,用人工合成导光塑料制成,其损耗较大,但质量轻,成本低,柔软性好,适用于短距离导光。
2、按折射率分布分类,有阶跃折射率型和梯度折射率型 1)阶跃型光纤(折射率固定不变):指纤芯和包层折射率不连续的光纤。 2)梯度型光纤(纤芯折射率近似呈平方分布):在中心轴上折射率最大,沿径向逐渐变小,界面处 n1=n2,n1的分布大多按抛物线规律,其关系式为: n1=n.(1-A.r2/2) n为纤芯中心折射率,如1.525 A为常数,如A=0.5mm-2 r为径向坐标 采用梯度折射率光纤时,光射入光纤后会自动从界面向轴心会聚,故也称为自聚焦光纤。

霍尔传感器的结构、工作原理与应用(ppt 51页)

霍尔传感器的结构、工作原理与应用(ppt 51页)

线性型三端 霍尔集成电路
01.05.2020
9
线性型霍尔特性
右图示出了具 有双端差动输出特 性的线性霍尔器件 的输出特性曲线。 当磁场为零时,它 的输出电压等于零; 当感受的磁场为正 向(磁钢的S极对准 霍尔器件的正面) 时, 01.05.2020 输出为正;磁
请画出线性范围
10
开关型霍尔集成电路
14
开关型霍尔集成电路的史密特输出特性
回差越 大,抗振动 干扰能力就 越强。
当磁铁从远到近地接近霍尔IC,到多少
特斯拉时输出翻转?当磁铁从近到远地远离
霍尔IC,到多少特斯拉时输出再次翻转?回
差为多少特斯拉?相当于多少高斯(Gs)?
01.05.2020
15
第三节 霍尔传感器的应用
霍尔电势是关于I、B、 三个变量的函 数,即 EH=KHIBcos 。
第八章 霍尔传感器
在这一章里,卡卡要给大家介绍霍尔传
感器的原理、特性、霍尔集成电路(霍尔 IC)及其应用。霍尔IC可以用于测量地球 磁场,制成电罗盘;将霍尔IC夹在环形铁 心的缺口中,可以制成大电流变送器。霍 尔传感器还广泛用于高斯计、无刷电动机、 接近开关等。霍尔传感器的最大特点是非 接触测量。
最基本的霍 尔元件是一 种四端元件
以下哪一个激励电流的数值较为妥当?
8μA 0.8mA 8mA 80mA
01.05.2020
8
第二节 霍尔集成电路
霍尔集成电路可分为线性型和开关型两大 类线。性型集成电路是将霍尔元件和恒流源、线性差
动放大器等做在一个芯片上,输出电压为伏级,比直 接使用霍尔元件方便得多。较典型的线性型霍尔器件 如UGN3501等。
铁心
I
线性霍尔IC

变隙电感式压力传感器结构图

变隙电感式压力传感器结构图

2020/11/4
8
三、 电涡流式传感器的应用
可用于测量压力、力、压差、加速度、振动、应变、流 量、厚度、液位等物理量。
1、位移测量
2020/11/4
9
5.3.4
• 1、位移测量 • 2、振幅测量 • 3、转速测量 • 4、无损探伤
被测体
电涡流式传感器 (a)振幅测量
2020/11/4
被测体
电涡流式传感器
变隙电感式压力传感器结构图
1、测量振动和加速度 差动变压器式加速度传感器:由悬臂梁和差动变压器构成。测量时,将 悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动 体相连, 此时传感器作为加速度测量中的惯性元件,它的位移与被测加 速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以 Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。
• 差动式的灵敏度与线性度比单线圈的高。
2020/11/4
11
• 2、差动变压器式传感器 • 差动变压器式传感器分变隙式、变面积和螺线管式三种,
螺线管式应用较广。
• 其原理为:当被测物体没有位移时,活动衔铁处于初始平 衡位置,变压器输出电压为零;当被测物体有位移时,变 压器输出电压不为零。
• 3、电涡流式传感器 • 电涡流式传感器是根据电涡流效应制成的。当板块金属导
位移方向
(b)转速测量 图5.28 电涡流式传感器的应用
裂纹 (c)无损探伤
被测体
10
本章小结
• 1、电感式传感器
• 它分变气隙厚度和变气隙面积两种,变气 隙厚度式使用广泛。
• 差动变隙式是由两个相同的线圈与磁路组 成。其原理为当被测体带动衔铁移动时, 使两个磁路的磁阻发生大小相等符号相反 的变化,引起两线圈产生大小相等、极性 相反的电感增量。

位移传感器及工程应用PPT98页

位移传感器及工程应用PPT98页

第一种方法骨架结构示意图如图7-2(b)所示。该方法采用 的是曲线骨架结构,通过精心设计骨架形状来逼近函数较精 确,但曲线骨架制造困难。
R
R f (x)
0
x
图7-2(a) 非线性电位器的特性曲线
图7-2(b) 采用曲线骨架结构示意图
第二种方法是在允许误差的范围内进行折线逼近,即用 四条线段 O1A A 1A 2A 2A 3A 3A 4组成的折线代替原来的曲线 来近似逼近曲线R=f(x),采用阶梯骨架结构示意图如图7-2(c) 所示。
(7-10)
由式(7-10)可知,当螺线管的结构参数确定后,自感L与位
移x呈线性关系。但由于实际螺线管内磁场不完全均匀及存在
边沿效应等因素,所以实际的自感L与位移x呈近似线性关系。
为了减少非线性误差,实际制作时通常取l0=ls/2。 这种传感器的优点是量程大、结构简单、便于制作;缺点 是灵敏度比较低,且有一定的非线性。一般用于测量精度要 求不是很高,且检测量程比较大的线位移情况。
7.1 电位器式位移传感器
把位移变化转换成电阻值变化的敏感元件称作电位器式位 移传感器,简称为电位器。
电位器种类繁多,若按其结构形式分类,可分为绕线式、 薄膜式、分段式和液体触点式等多种。
若按其输入/输出特性分类,可分为线性电位器和非线性 电位器两种。
7.1.1 线性电位器
1.线性电位器的结构 如果电位器的输出电阻与被测位移量呈线性关系,则称该 电位器为线性电位器。常见线性电位器的结构如图7-1所示。
图7-5 变气隙型差动自感传感器结构
变气隙型自感式传感器的最大优点是:灵敏度高;其主要
缺点是:线性范围小、自由行程小、制造装配困难、互换性
差,因而限制了它的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液态电极差动电容倾角传感器件结构
如图2-1传感器由两片圆形敷铜板和一
个圆形密封圈组成。

一片敷铜板作为静极板,
引出线接地,另一片敷铜板左右对称地刻蚀
出2个可变静极板。

这样的结构可获得2倍
的电容变化效果。

羁绊表面用聚四氟乙烯薄
膜覆盖,作为电介质使液体与电容极板的电
隔离。

旋转时,一边的静电极板浸在液体的面积减小,另一边的静电极板浸在液体的面积增大。

由于封入的介电常数比气体的高,因此,液面的流动造成电容发生变化,据此可测出倾斜角。

工作原理: 如图2-1所示,设半圆形面积为S ,水平状态时有:
当有倾角时: d
S
d S ry rk C ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=πθ
πθεεεε2121001 (2-2) d S
d S ry rk C ⎪⎭⎫

⎛-+⎪
⎭⎫ ⎝⎛+=πθ
πθ
εεεε2121002 (2-3)
()d S C rk ry C C πθεεε0212-=-=∆ (2-4)
()S
d
C rk ry 20εεεπθ-∆= (2-5)
式中 ε0——真空的介电常数;εrk ——空气的相对介电常数;
εry ——电介液的相对介电常数。

由式(2-5)可以看出,倾斜角θ与两极板间电容的变化量C ∆成正比,即测出电容的变化量就可的出倾斜角度的变化量。


()C C ry ek ry rk d S d S
d S 2
0001221
21
=+=⨯+⨯=εεεεεεε(2-1)
附录C 、传感器结构图。

相关文档
最新文档