蛋白质一级结构决定空间结构和功能

蛋白质一级结构决定空间结构和功能
蛋白质一级结构决定空间结构和功能

如何理解蛋白质一级结构决定空间结构和功能:

蛋白质的一级结构主要描述蛋白质氨基酸的排列顺序以及连接氨基酸残基的所有共价键,而不同的氨基酸排列顺序使得各种氨基酸R基之间以及与多肽主链之间能够形成不同的弱相互作用,也就是说弱相互作用由蛋白质的一级结构决定,这些许许多多的弱相互作用会引起蛋白质的特定的折叠,这种折叠趋向于能量最低原则,而这些折叠会形成特定的空间结构,而这些弱相互作用又有助于稳定蛋白质的这种天然构像。现以一下几点证明:

1.不同的一级结构决定自然界蛋白质的多样性:氨基酸的一级结构由基因决定,氨基

酸按遗传密码的顺序,通过肽键连接起来,自然界中物种基因的多样性导致了自然界中有10^12-10^14种的蛋白质,这种蛋白质的多样性来自于由遗传信息多样性决定的蛋白质一级结构中氨基酸种类和排列顺序的多样性。就大肠杆菌而言,其有3000种不同的蛋白质,而人类有50000-100000种。每种蛋白质都有其独特的三维结构,形成独特的功能。每种蛋白质也各有特殊的氨基酸序列。

2.不同的一级结构导致蛋白质空间结构的改变,从而导致功能的改变:对成千中人类

遗传疾病的跟踪研究表明,发病是由于产生了缺陷型蛋白质而造成的,这些蛋白质中三分之一是由于氨基酸序列的一个残基发生了改变,典型的是镰刀型贫血症的产生,是由于正常的血红蛋白中两条β链的第6位Val取代了Glu,使脱氧血红蛋白S 之间发生不正常的缔合,形成长链。也就是说一级结构中氨基酸的改变导致了空间结构的变化,从而导致蛋白质功能的改变。

3.一级结构一定程度的差异,空间结构相同,蛋白质有相同的功能:对于不同物种间

功能相似的蛋白质,这些蛋白质也有相似的氨基酸序列,一些微小的差异并不导致蛋白质结构的太大改变而失去其功能。比如细胞色素C,它是一个含铁的线粒体蛋白质,在真核生物氧化过程中传递电子。细胞色素C由104个左右的氨基酸组成,其中27个位置的氨基酸在所有物种中保持不变,而另外位置发生的大多是保守替换(如带正电的精氨酸变为同样带正电的赖氨酸),正是这样细胞色素C在不同的真核生物间保持着相近的空间结构,行使着相同的功能。

4.蛋白质可逆性实验:蛋白质的复性是指变性的蛋白质若恢复其天然构想稳定的条件,

那么蛋白质的天然构想和生物活性将再次回复。复性实验可以证明蛋白质的一级结构是决定了蛋白质的空间结构和功能,因为如果不是,那么变形的蛋白质在撤去其不利因素后就无法回复到原先的天然构像,也就无法回复到原先的功能。核糖核酸酶的变性复性实验很好的证明了,纯化的核糖核酸酶在还原剂存在的条件下,可被高浓度的尿素溶液完全变性。当除去尿素和还原剂后,变形的核糖核酸酶自发折叠成它的原先的正确的三级结构,回复其全部功能。

1蛋白质的结构与功能习题

第一章蛋白质的结构与功能 一、名词解释 1. 氨基酸的等电点2、肽键3、肽单位4、蛋白质一级结构5、蛋白质二级结构6、a螺旋7、& 折叠8、超二级结构(模体) 9、结构域10、蛋白质变性11 、蛋白质复性12、蛋白质三级结构13、蛋白质四级结构14、别构 效应 二、填空题 1.组成蛋白质的氨基酸分子结构中含有羟基的有 ___________________ 、 ______________ 、 _____________ 。 2. 氨基酸在等电点(pl)时,以 ___________ 离子形式存在,在pH>pl时以__________________ 离子形式存在,在pH

蛋白质结构与功能的关系94592

蛋白质结构与功能的关系 (The relationship between protein structure and function) 摘要蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。 关键词:蛋白质结构;折叠/功能关系;蛋白质构象紊乱症;分子伴侣 Keywords:protein structure;fold/function relationship;protein conformational disorder;molecular chaperons 虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥匙”模型(“lock—key”model)和50多年前Koshand提出的诱导契合模型(induce fitmodel)作为蛋白质实现功能的理论基础。这2个略显粗糙的模型只是认为蛋白质执行功能的部位局限在结构中的一个或几个小区域内,此类区域通常是蛋白质表面上的凹洞或裂隙。这种凹洞或裂隙被称为“活性部位(active site)”或“别构部位(fallosteric site)”,凹陷部位与配体分子在空间形状和静电上互补。此外,在酶的活性部位中还存在着几个作为催化基团(catalyticgroup)的氨基酸残基。对蛋白质未来的研究应从实验基本数据的归纳和统计入手,从原始的水平上发现蛋白质的潜藏机制【1】。 蛋白质结构与功能关系的研究主要是以力求刻画蛋白质的3D结构的几何学为基础的。蛋白质结构既非规则的几何形,又非完全的无规线团(randomcoil),而是有序(α一螺旋和β一折叠)与无序(线团或环域loop)的混合体。理解蛋白质3D结构的技巧是将结构简化,只保留某种几何特征或拓扑模式,并将其数字化。探求数字中所蕴含的规律,且根据这一规律将蛋白质进行分类,再将分类的结构与蛋白质的功能进行比较,以检验蛋白质抽象结构的合理性。如果一种对蛋白质结构的简化、比较和分类能与蛋自质的功能有较好地对应关系,那么这就是一种对蛋白质结构的有价值的理解。蛋白质结构中,多种弱力(氢键、范德华力、静电相互作用、疏水相互作用、堆积力等)和可逆的二硫键使多肽链折叠成特定的构象。从某种意义上说,共价键维系了蛋白质的一级结构;主链上的氢键维系了蛋白质的二级结构;而氨基酸侧链的相互作用和二硫桥维系着蛋白质的三级结构。亚基(subunit)内部的侧链相互作用是构象稳定的基础,蛋白质链之间的侧链的相互作用是亚基组装(四级结构)的基础,而蛋白质中侧链与配体基团问的相互作用是蛋白质行使功能的基础。 牛胰核糖核酸酶(RNase)变性和复性的实验是蛋白质结构与功能关系的很好例证。蛋白质空间结构遭到破坏;,可导致蛋白质的理比性质和生物学性质的变化,这就是蛋白质变性。变性的蛋白质,只要其一级结构仍然完好,可在一定条件下恢复其空间结构,随之理化性质和生物学性质也可重现,这被称为复性。RNase是由124个氨基酸残基组成的一条肽链,分子中8个半胱氨酸的巯基构成4对二硫键,进而形成具有一定空间构象的活性蛋白质。天然RNase遇尿素和β巯基乙醇时发生变性,其分子中的氢键和4个二硫键解开,严密的空间结构遭破坏,丧失了生物学活性,但一级结构完整无损。若去除尿素和β巯基乙醇,RNase又可恢复其原有构象和生物学活性。RNase分子中的8个巯基若随机排列成二硫键可有105种方式。有活性的RNase只是其中的一种,复性时之所以选择了自

1 蛋白质结构和功能 作业

第一章蛋白质的结构与功能 内容提要 蛋白质是重要的生物大分子物质,体内分布广,含量丰富,种类繁多。每种蛋白质都有特定的空间构象及生物学功能。 组成蛋白质的基本单位为氨基酸,共20种,除甘氨酸外均为L–α–氨基酸。氨基酸为两性电解质,在溶液的pH等于其pI时氨基酸呈兼性离子。含有共轭双键的色氨酸、酪氨酸在280nm波长附近有最大吸收峰。氨基酸之间通过肽键相连而成肽。肽键是蛋白质分子中的主要共价键也称为主键。小于10个氨基酸组成的肽为寡肽,大于10个氨基酸为多肽,其为链状称为多肽链。多肽链是蛋白质的基本结构,两端分别称为氨基末端(N-末端),羧基末端(C-末端)。 蛋白质的结构分为一级、二级、三级和四级结构。多肽链从氨基末端至羧基末端的氨基酸排列顺序为蛋白质的一级结构,其连接键为肽键,还有二硫键。 二级、三级及四级结构为空间结构(高级结构)。肽键中的六个原子基本上位于同一平面,称为肽单元。蛋白质的主链局部空间构象(而不涉及氨基酸侧链)称为蛋白质的二级结构,主要形式有α-螺旋、β-折叠、β-转角及无规卷曲,以氢键维持其稳定性。两个或三个具有二级结构的肽段,在空间上相互邻近形成的特殊空间构象,称为模体。蛋白质的三级结构是指多肽链主链和侧链的全部原子的空间排布位置。其稳定性维持主要靠次级键。分子量大的蛋白质三级结构常可分割成一个或数个球状或纤维状的区域,折叠的较为紧密,各执行其功能,称为结构域。亚基与亚基间通过非共价键结合所形成的空间结构为四级结构。 蛋白质也具有两性解离性质,体内大多数蛋白质的等电点接近pH5.0。所以在人体体液pH7.4的环境下,大多数蛋白质解离成阴离子。蛋白质是生物大分子之一,其颗粒表面的电荷和水化膜是维持蛋白质胶体稳定的重要因素。若除去蛋白质胶体表面电荷和水化膜,蛋白质极易从溶液中下沉析出。一般认为,蛋白质变性主要发生二硫键和非共价键的破坏,不涉及一级结构中氨基酸序列的改变。蛋白质在280nm波长处有特征性吸收峰。 蛋白质的结构与其功能密切相关,一级结构是空间结构的基础,也是功能的基础。一级结构相似的蛋白质,其空间结构及功能也相近。若蛋白质的一级结构发生改变则影响其正常功能,由此引起的疾病称为分子病。 多肽链正确折叠对其形成正确构象和功能的发挥具有重要意义。除一级结构是决定蛋白质折叠成正确空间构象的因素外,还需分子伴侣的参与。若蛋白质的折叠发生错误,尽管其一级结构不变,但蛋白质的构象发生改变,仍可影响其功能,严重时可导致疾病发生,有人将此类疾病称为蛋白构象疾病。 分离、纯化蛋白质是研究单个蛋白质结构与功能的先决条件。通常利用蛋白质的理化性质,采取不损伤蛋白质结构和功能的物理方法来纯化蛋白质。常用的技术有电泳法、层析法、超速离心法等。

蛋白质结构与功能的关系

蛋白质结构与功能的关系 蛋白质的结构包括一级结构、二级结构、三级结构、四级结构。 一级结构是蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。 蛋白质的二级结构是指多肽链的主链骨架本身在空间上有规律的折叠和盘绕,它是由氨基酸残基非侧链基团之间的氢键决定的。常见的二级结构有α螺旋、三股螺旋、β折叠、β转角、β凸起和无规卷曲。α螺旋中肽链骨架围绕一个轴以螺旋的方式伸展,它可能是极性的、疏水的或两亲的。β折叠是肽链的一种相当伸展的结构,有平行和反平行两种。如果β股交替出现极性残基和非极性残基,那么就可以形成两亲的β折叠。β转角指伸展的肽链形成180°的U形回折结构而改变了肽链的方向。β凸起是由于β折叠股中额外插入一个氨基酸残基而形成的,它也能改变多肽链的走向。无规卷曲是在蛋白质分子中的一些极不规则的二级结构的总称。无规卷曲无固定走向,有时以环的形式存在,但不是任意变动的。从结构的稳定性上看,右手α螺旋>β折叠> U型回折>无规卷曲,但在功能上,酶与蛋白质的活性中心通常由无规卷曲充当,α右手螺旋和β折叠一般只起支持作用。 蛋白质的三级结构是指多肽链在二级结构的基础上,进一步盘绕、卷曲和折叠,形成主要通过氨基酸侧链以次级键以及二硫键维系的完整的三维结构。三级结构通常由模体和结构域组成。稳定三级结构的化学键包括氢键、疏水键、离子键、范德华力、金属配位键和二硫键。模体可用在一级结构上,特指具有特殊生化功能的序列模体,也可被用于功能模体或结构模体,相当于超二级结构。结构模体是结构域的组分,基本形式有αα、βαβ和βββ等。常见的模体包括:左手超螺旋、右手超螺旋、卷曲螺旋、螺旋束、α螺旋-环-α螺旋、Rossmann卷曲和希腊钥匙模体。结构域是在一个蛋白质分子内的相对独立的球状结构和/或功能模块,由若干个结构模体组成的相对独立的球形结构单位,它们通常是独自折叠形成的,与蛋白质的功能直接相关。一个结构域通常由一段连续的氨基酸序列组成。根据其占优势的二级结构元件的类型,结构域可分为五大类:α结构域、β结构域、α/β结构域、α+β 结构域、交联结构域。以上每一类结构域的二级结构元件可能有不同的组织方式,每一种组织就是一种结构模体。这些结构域都有疏水的核心,疏水核心是结构域稳定所必需的。 具有两条和两条以上多肽链的寡聚蛋白质或多聚蛋白质才会有四级结构。组成寡聚蛋白质或多聚蛋白质的每一个亚基都有自己的三级结构。蛋白质的四级结构内容包括亚基的种类、数目、空间排布以及亚基之间的相互作用。驱动四级结构形成或稳定四级结构的作用力包括

蛋白质的结构与功能习题

第一章蛋白质的结构与 一、名词解释 1.氨基酸的等电点2、肽键3、肽单位4、蛋白质一级结构5、蛋白质二级结构6、a螺旋7、性折叠8、超二级结构 (模体)9、结构域10、蛋白质变性11、蛋白质复性12、蛋白质三级结构13、蛋白质四级结构14、别构效应 二、填空题 1.组成蛋白质的氨基酸分子结构中含有羟基的有___________________ 、______________ 、______________ 。 2.____________________________________ 氨基酸在等电点(pl)时,以_________________ 离子形式存在,在pH>pl时以____________________________________________ 离子形式存在,在pHvpl 时,以_______________ 离子形式存在。 3.组成蛋白质的氨基酸中,含有咪唑环的氨基酸是___________________ ,含硫的氨基酸有 _______________ 和 4.蛋白质具有两性电离性质,大多数蛋白质在酸性溶液中带____________________ 电荷,在碱性溶液中带_______________ 电荷。当蛋白质处在某一pH 溶液中时,它所带正负电荷数相等,此时的蛋白质成为 _________________ ,该溶液的pH 称为 蛋白质的______________ 。 5.蛋白质二级结构的形式主要有_________________ 、______________ 、 ____________ 和_______________ 。 6.蛋白质中的________________ 、____________ 和______________ 3种氨基酸具有______________ 特性,因而使蛋白 质在280nm 处有最大吸收值。 7.a螺旋结构是由同一肽链的________________ 和_______________ 间的_______________ 键维持的,螺距为 ,每圈螺旋含个氨基酸残基,每个氨基酸残基沿轴上升高度为。天然蛋白质分子中的a螺旋大都属于手螺旋。 8.球状蛋白质中有_______________ 侧链的氨基酸残基常位于分子表面而与水结合,而有 _________________ 侧链的氨基酸残基位于分子的内部。 9.维持蛋白质的一级结构的化学键有_________________ 和_______________ ;维持二级结构靠________________ ;维持三级 结构和四级结构靠_______________ 键,其中包括______________ 、______________ 、_____________ 和 ________________________________ 。 10. ________________________________________________________________________________________ 谷氨 酸的pK i(a COOH)= 2.19,pK2 (^NH a+)= 9.67,pg (R)= 4.25,谷氨酸的等电点为 _________________________ 。11. ________________________________________________________ 一个a螺旋片段含有180个氨基酸残基,该片段中有__________________________________________________________________ 圈螺旋,该a螺旋片段的轴长为 12.可以按蛋白质的相对分子质量、电荷及构象分离蛋白质的方法是____________________ 。 13. ___________________________________________ 血红蛋白(Hb)与氧结合的过程呈现效应,是通过Hb的实现的。 14.组成蛋白质的氨基酸中侧链pK 接近中性的氨基酸是 __________________ 。无游离(自由)氨基的氨基酸是 15. _______________________________________________ 在蛋白质分子中,一个氨基酸的a碳原子上的与另一个氨基酸a碳原子上的____________________________________________ 脱去一分子水 形成的键叫___________ ,它是蛋白质分子中的基本结构键。 16.丝氨酸侧链特征基团是______________ ;半胱氨酸的侧链基团是 ______________ ;组氨酸的侧链基团是 。 17.蛋白质颗粒表面的_____________ 和_____________ 是蛋白质亲水胶体稳定的两个因素。 18.氨基酸的结构通式为______________________ 。 19.在生理pH 条件下,蛋白质分子中, ______________ 和____________ 氨基酸残基的侧链几乎完全带负电,而 __________ 和___________ 氨基酸残基侧链完全荷正电,而______________ 的侧链则部分带正电荷(假设该蛋白质含有这些氨基酸组分) 20.两条相当伸展的肽链(或同一条肽链的两个伸展的片段)之间形成氢键的结构单元称为____________ 。 21.用电泳方法分离蛋白质的原理是在一定的pH 条件下,不同蛋白质的 _________________ 、____________ 和____________

蛋白质的一级结构(共价结构)

1.蛋白质的一级结构(共价结构) 蛋白质的一级结构也称共价结构、主链结构。 1.蛋白质结构层次 一级结构(氨基酸顺序、共价结构、主链结构) ↓是指蛋白质分子中氨基酸残基的排列顺序 二级结构 ↓ 超二级结构 ↓ 构象(高级结构)结构域 ↓ 三级结构(球状结构) ↓ 四级结构(多亚基聚集体) 1.一级结构的要点 . 1.蛋白质测序的一般步骤 祥见 P116 (1)测定蛋白质分子中多肽链的数目。 (2)拆分蛋白质分子中的多肽链。 (3)测定多肽链的氨基酸组成。 (4)断裂链内二硫键。 (5)分析多肽链的N末端和C末端。 (6)多肽链部分裂解成肽段。 (7)测定各个肽段的氨基酸顺序 (8)确定肽段在多肽链中的顺序。 (9)确定多肽链中二硫键的位置。 1.蛋白质测序的基本策略 对于一个纯蛋白质,理想方法是从N端直接测至C端,但目前只能测60个N端氨基酸。 1.直接法(测蛋白质的序列) 两种以上特异性裂解法 N C A 法裂解 A1 A2 A3 A4 B 法裂解 B1 B2 B3 B4 用两种不同的裂解方法,产生两组切点不同的肽段,分离纯化每一个肽段,分离测定两个肽段的氨基酸序列,拼接成一条完整的肽链。

1. 间接法(测核酸序列推断氨基酸序列) 核酸测序,一次可测600-800bp 1. 测序前的准备工作 1. 蛋白质的纯度鉴定 纯度要求,97%以上,且均一,纯度鉴定方法。(两种以上才可靠) ⑴聚丙烯酰胺凝胶电泳(PAGE)要求一条带 ⑵DNS —cl (二甲氨基萘磺酰氯)法测N 端氨基酸 1. 测定分子量 用于估算氨基酸残基n= 方法:凝胶过滤法、沉降系数法 1. 确定亚基种类及数目 多亚基蛋白的亚基间有两种结合方式: ⑴非共价键结合 8mol/L 尿素,SDS SDS-PAGE 测分子量 ⑵二硫键结合 过甲酸氧化: —S —S —+HCOOOH → SO 3H β巯基乙醇还原: 举例:: 血红蛋白 (α2β2) (注意,人的血红蛋白α和β的N 端相同。) 分子量: M 拆亚基: M 1 、M 2 两条带 拆二硫键: M 1 、M 2 两条带 分子量关系: M = 2M 1 + 2M 2 1. 测定氨基酸组成 主要是酸水解,同时辅以碱水解。氨基酸分析仪自动进行。 确定肽链中各种a.a 出现的频率,便于选择裂解方法及试剂。 ①Trp 测定 对二甲基氨基苯甲醛 590nm 。 ②Cys 测定 5、5/一二硫代双(—2—硝基苯甲酸)DTNB ,412nm 1. 端基分析 ①N 端分析 DNS-cl 法:最常用,黄色荧光,灵敏度极高,DNS-多肽水解后的DNS-氨基酸不需要提取。 DNFB 法:Sanger 试剂,DNP-多肽,酸水解,黄色DNP-氨基酸,有机溶剂(乙酸乙酯) 抽提分离,纸层析、薄层层析、液相等 PITC 法:Edman 法,逐步切下。无色PTH-氨基酸,有机溶剂抽提,层析。 ②C 端分析 110mw

名词解释 第一章 蛋白质的结构与功能

生物化学名词解释 第一章蛋白质 1.amino acid:An organic acid with an α-carbon atom linked to a carboxylic acid, an amino group, a hydrogen atom, and a side chain (the R group). Twenty different amino acids are the building blocks of proteins. 2.peptide bond: A covalent linkage formed between the α-carboxyl group of one amino acid and the α- amino group of another. Also known as an amide bond. 3.peptide: Two or more amino acids covalently joined by peptide bonds. 4.polypeptide: A long chain of amino acids linked by peptide bonds; the molecular weight is generally less than 10,000. 5.Configuration. The spatial arrangement in which atoms are covalently linked in a molecule. 6.Conformation. The spatial arrangement of atoms in a protein is called its conformation. 7.primary structure :In a polymer, the sequence of amino acids and any interchain and intrachain disulfide bonds of a protein. This sequence is specified by genetic information. 8.secondary structure:The localized conformation of a protein. As the polypeptide chain folds, it forms certain localized arrangements of adjacent amino acids . 9.peptide unit: The six atoms of the peptide group (Cα1、C、O、N、H、Cα2) lie in a single plane, with the oxygen atom of the carbonyl group and the hydrogen atom of the amide nitrogen trans to each other. 10.T ertiary structure :The overall three-dimensional conformation of a protein in its native folded state. 11.The molecular chaperones are large, multisubunit proteins that accelerate the folding process by providing a protected environment where polypeptides fold into native conformations and form quaternary structures. 12.quaternary structure:In proteins containing more than one polypeptide chain, the spatial arrangements of those chains (subunits) and the nature of contacts among them. 13.subunit: The independently three-dimensional structure in a protein with quaternary structure. 14.allosteric effect:an effect that a small molecule, called an effector, noncovalently binds to a protein and alters its activity. 15.Bohr effect : increase in the concentration of H+ and Pco2 reduces oxygen affinity to hemoglobin 16.isoelectric point of protein: The pH at which a protein solute has no net electric charge and thus does not move in an electric field. 17.denaturation of protein : Many physical and chemical reagents (urea or SDS, etc.) that break noncovalent bonds disrupt secondary, tertiary, and quaternary structure of protein with attendant loss of biologic activity.

生物化学蛋白质的结构与功能试题及答案

第一章蛋白质的结构与功能 [测试题] 一、名词解释:1.氨基酸 2.肽 3.肽键 4.肽键平面 5.蛋白质一级结构 6.α-螺旋 7.模序 8.次级键 9.结构域 10.亚基 11.协同效应 12.蛋白质等电点 13.蛋白质的变性 14.蛋白质的沉淀 15.电泳 16.透析 17.层析 18.沉降系数 19.双缩脲反应 20.谷胱甘肽 二、填空题 21.在各种蛋白质分子中,含量比较相近的元素是____,测得某蛋白质样品含氮量为15.2克,该样品白质含量应为____克。 22.组成蛋白质的基本单位是____,它们的结构均为____,它们之间靠____键彼此连接而形成的物质称为____。 23.由于氨基酸既含有碱性的氨基和酸性的羧基,可以在酸性溶液中带____电荷,在碱性溶液中带____电荷,因此,氨基酸是____电解质。当所带的正、负电荷相等时,氨基酸成为____离子,此时溶液的pH值称为该氨基酸的____。 24.决定蛋白质的空间构象和生物学功能的是蛋白质的____级结构,该结构是指多肽链中____的排列顺序。25.蛋白质的二级结构是蛋白质分子中某一段肽链的____构象,多肽链的折叠盘绕是以____为基础的,常见的二级结构形式包括____,____,____和____。 26.维持蛋白质二级结构的化学键是____,它们是在肽键平面上的____和____之间形成。 27.稳定蛋白质三级结构的次级键包括____,____,____和____等。 28.构成蛋白质的氨基酸有____种,除____外都有旋光性。其中碱性氨基酸有____,____,____。酸性氨基酸有____,____。 29.电泳法分离蛋白质主要根据在某一pH值条件下,蛋白质所带的净电荷____而达到分离的目的,还和蛋白质的____及____有一定关系。 30.蛋白质在pI时以____离子的形式存在,在pH>pI的溶液中,大部分以____离子形式存在,在pH

以多种蛋白为例阐述蛋白质结构与功能的关系

举例说明蛋白质结构和功能的关系 答: 1.蛋白质的一级结构与功能的关系 蛋白质的一级机构指:肽链中氨基酸残基(包括二硫键的位置)的排列顺序。一级结构是蛋白质空间机构的基础,包含分子所有的信息,且决定蛋白质高级结构与功能。 ①一级结构的变异与分子病 蛋白质一级结构是空间结构的基础,与蛋白质的功能密切相关,一级机构的改变,往往引起蛋白质功能的改变。 例如:镰刀形细胞贫血病 镰刀形细胞贫血病的血红蛋白(HbS)与正常人的血红蛋白(HbA)相比,发现,两种血红蛋白的差异仅仅来源于一个肽段的位置发生了变化,这个差异肽段是位于β链N端的一个八肽。在这个八肽中,β链N端第6位氨基酸发生了置换,HbA中的带电荷的谷氨酸残基在HbS中被置换成了非极性缬氨酸残基,即蛋白质的一级机构发生了变化。 ②序列的同源性 不同生物中执行相同或相似功能的蛋白质称为同源蛋白质,同源蛋白质的一级机构具有相似性,称为序列的同源性。最为典型的例子, 例如:细胞色素C(Cyt c) Cyt c是古老的蛋白质,是线粒体电子传递链中的组分,存在于从细菌到人的所有需氧生物中。通过比较Cyt c的序列可以反映不同种属生物的进化关系。亲缘越近的物种,Cyt c中氨基酸残基的差异越小。如人与黑猩猩的Cyt c完全一致,人与绵羊的Cyt c有10个残基不同,与植物之间相差更多。蛋白质的进化反映了生物的进化。 2.蛋白质空间结构与功能的关系 天然状态下,蛋白质的多肽链紧密折叠形成蛋白质特定的空间结构,称为蛋白质的天然构象或三维构象。三维构象与蛋白质的功能密切相关。 ①一级结构与高级结构的关系: 一级结构决定高级机构,当特定构象存在时,蛋白质表现出生物功能;当特定构象被破坏时,即使一级构象没有发生改变,蛋白质的生物学活性丧失。例如:牛胰核糖核苷酸酶A(RNase A)的变性与复性 当RNase A处于天然构象是,具有催化活性; 当RNase A处于去折叠状态时,二硫键被还原不具有催化活性;当RNase A恢复天然构象时,二硫键重新形成,活性恢复。 ②变构效应 变构效应:是寡聚蛋白质分子中亚基之间存在相互作用,这种相互作用通过亚基构象的改变来实现。蛋白质在执行功能是时,构象发生一定变化。 例如:肌红蛋白、血红蛋白与氧的结合 两种蛋白质有很多相同之处,结构相似表现出相似功能。这两钟蛋白质都含有血红素 辅基,都能与氧进行可逆结合,因此存在着氧合与脱氧的两种结构形式。但是肌红蛋白几乎在任何氧分压情况下都保持对氧分子的高亲和性。血红蛋白则不同,在氧分压较高时,血红蛋白几乎被氧完全饱和;而在氧分压较低时,血红蛋白与氧的亲和力降低,释放出携带的氧并转移给肌红蛋白。

蛋白质一级结构与高级结构关系

蛋白质一级结构与高级结构关系 蛋白质分子是由氨基酸首尾相连而成的共价多肽链,天然蛋白质分子有自己特有的空间结构,称为蛋白质构象。 蛋白质结构的不同组织层次:一级结构指多肽链的氨基酸序列。二级结构是指多肽链借助氢键排列成特有的α螺旋和β折叠片段。三级结构是指多肽链借助各种非共价键弯曲、折叠成具有特定走向的紧密球状构象。球状构象给出最低的表面积和体积之比,因而使蛋白质与周围环境的相互作用降到最小。四级结构是指寡居蛋白质中各亚基之间在空间上的相互关系和结合方式。二、三、四级结构为蛋白质的高级结构。蛋白质的天然折叠结构决定于3个因素:1。与溶剂分子(一般是水)的相互作用。2。溶剂的PH值和离子组成。3。蛋白质的氨基酸序列。后一个是最重要的因素。 (一)蛋白质折叠的热力学假说 蛋白质的高级结构由其一级结构决定的学说最初由Christian B. Anfinsen于1954年提出。在1950年之前,Anfinsen一直从事蛋白质结构方面的研究。在进入美国国立卫生研究所(NIH)以后,继续从事这方面的研究。Anfinsen和两个博士后Michael Sela、 Fred White在研究中发现,使用高浓度的巯基试剂——β- 巯基乙醇(β- mercaptoethanol)可将二硫键还原成自由的巯基,如果再加入尿素,进一步破坏已被还原的核糖核酸酶分子内部的次级键,则该酶将去折叠转变成无任何活性的无规卷曲。对还原的核糖核酸酶的物理性质进行分析的结果清楚地表明了它的确采取的是无规卷曲的形状。 在成功得到一种去折叠的核糖核酸酶以后,Anfinsen 着手开始研究它的重折叠过程。考虑到被还原的核糖核酸酶要在已被还原的8个Cys残基上重建4对二硫键共有105 种不同的组合,但只有一种是正确的形式,如果决定蛋白质构象的信息一直存在于氨基酸序列之中,那么,最后重折叠得到的总是那种正确的形式。否则,重折叠将是随机的,最后只能得到少量的正确形式。Anfinsen 的重折叠实验还是比较顺利的,他通过透析的方法除去了导致酶去折叠的尿素和巯基乙醇,再将没有活性的酶转移到其生理缓冲溶液之中,在有氧气的情况下于室温放置,以使巯基能重新氧化成二硫键。经过一段时间以后,发现核糖核酸酶活性得以恢复,这意味着它原来的构象恢复了。由于上述过程没有细胞内任何其他成分的参与,完全是一种自发的过程,因此,有理由相信此蛋白质正确折叠所需要的所有信息全部存在于它的一级结构之中。在此基础上,Anfinsen提出了蛋白质折叠的热力学假说(thermodynamic hypothesis)。根据此假说,一个蛋白质的天然三维构象对应于在生理条件下其所处的热力学最稳定的状态。热力学稳定性由组成的氨基酸残基之间的相互作用决定,于是蛋白质的三维构象直接由它的一级结构决定。 (二)蛋白质高级结构对高级结构形成的影响

蛋白质的结构和功能的关系

蛋白质结构与功能的关系 摘要:蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。 关键词:蛋白质分子一级结构、空间结构、折叠/功能关系、蛋白质构象紊乱症;分子伴侣正文: 1、蛋白质分子一级结构和功能的关系 蛋白质分子中关键活性部位氨基酸残基的改变,会影响其生理功能,甚至造成分子病(molecular disease)。例如镰状细胞贫血,就是由于血红蛋白分子中两个β亚基第6位正常的谷氨酸变异成了缬氨酸,从酸性氨基酸换成了中性支链氨基酸,降低了血红蛋白在红细胞中的溶解度,使它在红细胞中随血流至氧分压低的外周毛细血管时,容易凝聚并沉淀析出,从而造成红细胞破裂溶血和运氧功能的低下。 另一方面,在蛋白质结构和功能关系中,一些非关键部位氨基酸残基的改变或缺失,则不会影响蛋白质的生物活性。例如人、猪、牛、羊等哺乳动物胰岛素分子A链中8、9、10位和B链30位的氨基酸残基各不相同,有种族差异,但这并不影响它们都具有降低生物体血糖浓度的共同生理功能。 蛋白质一级结构与功能间的关系十分复杂。不同生物中具有相似生理功能的蛋白质或同一种生物体内具有相似功能的蛋白质,其一级结构往往相似,但也有时可相差很大。如催化DNA 复制的DNA聚合酶,细菌的和小鼠的就相差很大,具有明显的种族差异,可见生命现象十分复杂多样。 2、蛋白质分子空间结构和功能的关系 蛋白质分子空间结构和其性质及生理功能的关系也十分密切。不同的蛋白质,正因为具有不同的空间结构,因此具有不同的理化性质和生理功能。如指甲和毛发中的角蛋白,分子中含有大量的α-螺旋二级结构,因此性质稳定坚韧又富有弹性,这是和角蛋白的保护功能分不开的;而胶原蛋白的三股π螺旋平行再几股拧成缆绳样胶原微纤维结构,使其性质稳定而具有强大的抗张力作用 又如细胞质膜上一些蛋白质是离子通道,就是因为在其多肽链中的一些α-螺旋或β-折叠二级结构中,一侧多由亲水性氨基酸组成,而另一侧却多由疏水性氨基酸组成,因此是具有“两亲性”(amphipathic)的特点,几段α-螺旋或β-折叠的亲水侧之间就构成了离子通道,而其疏水侧,即通过疏水键将离子通道蛋白质固定在细胞质膜上。载脂蛋白也具有两亲性,既能与血浆中脂类结合,又使之溶解在血液中进行脂类的运输。 3、折叠/功能关系 体内各种蛋白质都有特殊的生理功能,这与空间构象有着密切的关系。肌红蛋门和血红蛋白是阐述空间结构与功能关系的典型例子。肌红蛋门(Mb))和血红蛋白(Hb)都是含血红素辅基的结合蛋白质。Mb有一条肽链,经盘曲折折叠形成三级结构,整条肽链由A~H8段α螺旋盘曲折叠成为球状,疏水氨基酸侧链在分子内部,亲水氨基酸侧链在分子外部,形成亲水的球状蛋白,血红素辅基位于Mb分子内部的袋状空穴中。Hb有四条肽链,两条β链也有与Mb 相似的A~H8段α螺旋,有两条α链只有7段α螺旋。Hb与Mb的折叠方式相似,也都能与氧进行可逆的结合。Hb的一个亚基与氧结合后可引起构象变化,是另一个亚基更易于与氧结合,这种带氧的亚基协助不带氧的亚基去结合氧的现象称为协同效应。氧与Hb结合后可

蛋白质的空间结构和功能

蛋白质的空间结构和功能 1.构象(conformation)指的是,一个由多个碳原子组成的分子,因单键的旋转而形成的不同碳原子上各取代基或原子的空间排列,只需单键的旋转即可造成新的构象。多肽链主链在形式上都是单键。因此,可以设想一条多肽主链可能有无限多种构象。然而,一种蛋白质的多肽链在生物体正常的温度和pH下只有一种或很少几种构象,并为生物功能所必需。这种天然的构象是什么样的因素促成的? 答:①由于肽键因共振结构而使C—N键具有部分双键的性质,不能自由旋转,因而使得一条多肽主链构象的数目受到了极大限制。②与位于相邻刚性平面交线上的Cα相连接的侧链基团的结构、大小和性质对于主链构象的形成及稳定有很大的影响,使多肽链主链构象数目又受到很大的限制。因为Cα与两个刚性平面连接的单键的旋转度不同程度受到侧链的限制。③各种侧链基团相互作用所形成的各种力使蛋白质在热力学上达到了一种最稳定的构象 2.假若一条多肽链完全由丙氨酸构成,什么样的环境促使它很可能形成α–螺旋,是疏水环境还是亲水环境? 答;一条多肽链呈α-螺旋构象的推动力是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成不能提供任何竞争,因此,更可能促进α-螺旋结构的形成。 3.以nm为单位计算α-角蛋白卷曲螺旋(coiled coil)的长度。假定肽链是由100个残基构成。 答:α-角蛋白的每条肽链呈α-螺旋构象,而每个α-螺旋含 3.6个残基。在α-角蛋白中,每轮螺旋的长度为0.51nm。因此, α-角蛋白卷曲螺旋(coiled coil)的长度是: (100残基÷3.6个残基/轮)×0.51/轮=14.2nm 4.一种叫做Schistosoma mansoni 寄生虫的幼虫能感染侵入人的皮肤。这种幼虫分泌出能裂解的-Gly-Pro-X-Y-(X和Y可能是几种氨基酸中的任何一种)顺序中的X和Y之间肽键的酶。为什么该酶活性对这种寄生虫侵入是重要的。 答:-Gly-Pro-X-Y-顺序频繁出现在胶原蛋白分子中,在身体的各部位都存在,包括皮肤。由于该幼虫酶能催化胶原蛋白多肽链裂解,故该寄生虫能进入宿主皮肤而生存。 5.①是T rp还是Gln更有可能出现在蛋白质分子表面?②是Ser还是Val更有可能出现在蛋白质分子的内部?③是Leu还是Ile更少可能出现在α-螺旋的中间?④是Cys还是Ser更有可能出现在β-折叠中? 答:蛋白质氨基酸残基在蛋白质结构中出现的位置与这些氨基酸残基的亲水性或疏水性

相关文档
最新文档