42虚拟变量回归分析汇总
虚拟变量回归模型
PART 07
虚拟变量回归模型的发展 趋势和未来展望
发展趋势
模型应用范围不断扩大
随着数据科学和统计学的发展,虚拟变量回归模型的应用范围不断扩大,不仅局限于传统的回归分析,还广泛应用于 分类、聚类、预测等领域。
模型复杂度不断提高
为了更好地处理复杂的数据结构和特征,虚拟变量回归模型的复杂度不断提高,出现了多种新型的模型,如集成学习 模型、深度学习模型等。
医学领域的应用
流行病学研究
在流行病学研究中,利用虚拟变量回归模型分析疾病发病率和死亡 率的影响因素,如年龄、性别、生活习惯等。
临床医学研究
在临床医学研究中,利用虚拟变量回归模型分析治疗效果的影响因 素,如治疗方案、患者特征、疾病严重程度等。
药物研究
在药物研究中,利用虚拟变量回归模型分析药物疗效的影响因素, 如药物剂量、给药方式、患者生理特征等。
模型解释性要求更高
随着人们对数据分析和模型结果的关注度提高,虚拟变量回归模型的解释性要求也更高,需要更加清晰、 直观地解释模型结果和变量之间的关系。
未来展望
模型可解释性研究
未来将更加注重虚拟变量回归模型的可解释性研究,以提高模型结果的透明度和可信度。
新型特征选择和降维技术
随着数据规模的扩大和特征维度的增加,未来将更加关注新型的特征选择和降维技术,以提取关 键特征并降低模型复杂度。
PART 01
引言
目的和背景
探索自变量与因变量之间的关系
虚拟变量回归模型主要用于探索自变量与因变量之间的数量关系,帮助我们理 解不同类别数据对结果的影响。
处理分类变量
当自变量是分类变量时,虚拟变量回归模型能够将这些分类变量转换为一系列 二进制(0和1)的虚拟变量,从而进行回归分析。
虚拟变量回归课件
虚拟变量回归面临的问题
在进行虚拟变量回归时,我们可能会面临多重共线性问题。为了解决这个问 题,我们将介绍哑变量陷阱和特征选 收集数据 2. 对数据进行预处理 3. 分析数据 4. 建立模型 5. 模型的评估与优化
虚拟变量回归
通过介绍虚拟变量回归,我们将探讨其概念、作用以及应用。还将讨论面临 的问题和解决方法,以及如何进行虚拟变量回归并提高模型精度。
什么是虚拟变量回归
虚拟变量回归是一种统计方法,用于处理具有分类特征或非数字特征的数据。 它将非数字变量转换为二元变量,以便在回归模型中使用。
虚拟变量回归的应用
总结
虚拟变量回归具有自身的优点和局限性。我们将总结这些,并探讨未来的发 展方向。最后,我们将分享一些提高模型精度的技巧和建议。
关于虚拟变量的回归
关于虚拟变量(Dummy Variable )的回归1.虚拟变量的性质● 在回归分析中,应变量不仅受量化好了的变量的影响,还受定性性质的变量的影响(如性别,种族,肤色,宗教,国籍,地震等等)● 这类定性变量指某一“性质”或属性出现或不出现。
量化这些变量的方法,是构造一个取值1或0 的人为变量,0代表某一属性不出现,而1代表该属性出现。
● 取这样的0和1 值的变量叫做虚拟变量 (dummy variable)● 在回归分析中,可以清一色的使用虚拟变量,这样的模型叫做方差分析模型(analysis of variance, ANOV A ), 例:i i i u D Y ++=βα其中Y=学院教授的年薪 D i = 1 若是男教授= 0 若是女教授● 学院女教授的平均薪金:α==)0/(i i D Y E 学院男教授的平均薪金:βα+==)1/(i i D Y E● 截距项α给出学院女教授的平均薪金,而斜率系数β告诉我们学院男教授和女教授的平均薪金的差额,α+β反映学院男教授的平均薪金。
● 在大多数经济研究中,一个回归模型既含有一些定量的又含有一些定性的解释变量。
协方差分析(analysis of covariance ANCOV A )2.对一个定量变量和一个两分定性变量的回归● ANCOV 的一个例子:i i i i u X D Y +++=βαα21其中Y i = 学院教授的年薪 X i = 教龄 D i = 1 若是男教授 = 0 若是女教授● 假定和平常一样E (u i )=0,学院女教授的平均薪金:i i i X D Y E βα+==1)0/( 学院男教授的平均薪金:i i i X D Y E βαα++==)()1/(21 ● 图● 以上模型设想学院男教授和女教授的薪金作为教龄的函数,有相同的斜率,但不同的截距● 如果2α统计上显著,则表明有性别歧视● 上述虚拟变量回归模型有以下特点:(1) 为了区分两个类别,男性和女性,我们只引进了一个虚拟变量D i 。
第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学
• 在回归分析中,被解释变量的影响因素 除了量(或定量)的因素还有质(或定 性)的因素,这些质的因素可能 会使回 归模型中的参数发生变化,为了估计质 的因素产生的影响,在模型中就需要引 入一种特殊的变量—虚拟变量。
2020/6/16
(二)作用
• 1、可以描述和测量定性(或属性)因素 的影响;
2、多个因素各两种属性
• 如果有m个定性因素,且每个因素各有两个不同的 属性类型,则引入m个虚拟变量。
• 例2
• 研究居民住房消费函数时,考虑到城乡差异和不同 收入层次的影响将消费函数设定为:
Yt=b0+b1Xt+a1D1t+ a2D2t+ μt
Yt=居民住房消费支出
Xt=居民可支配收入
1城镇居民
2020/6/16
虚拟变量对截距的影响
y
有适龄子女
b0
o
图1 虚拟变量对截距的影响
x
2020/6/16
2、乘法方式引入虚拟变量
• 基本思想:以乘法方式引入虚拟解释变量
,是在所设定的计量经济模型中,将虚拟 解释变量与其他解释变量相乘作为新 的解释变量,以达到其调整模型斜率的
目的。 • 该方式引入虚拟变量主要作用:
D=
0 无适龄子女
将家庭教育费用支出函数写成:Yt=b0+b1Xt+aDt+μt 即以加法形式引入虚拟变量。
2020/6/16
子女年龄结构不同的家庭教育 费用支出函数为:
• 无适龄子女家庭的教育费用支出函数(D=0 ):Yt=b0+b1Xt+μt
• 有适龄子女家庭的教育费用支出函数(D=1 ):Yt=(b0+a)+b1Xt+μt
第七章多元回归分析虚拟变量
第七章多元回归分析虚拟变量第七章多元回归分析——虚拟变量模型y = β虚拟变量+ β1x1 + β2x2 + . . . βk x k + u表示两个类型的虚拟变量表示多个类型的虚拟变量虚拟变量之间的交叉项虚拟变量和连续变量的交叉项Chow检验线性概率模型项目评估和自选择偏差虚拟变量虚拟变量就是取1 或者0 的变量?例:male (= 1 若为男性, 0 其它情况), south (= 1 若在南方, 0 其它情况), 等. ?虚拟变量也叫二元变量一个独立的虚拟变量考虑一个包括一个连续变量(x)和一个虚拟变量(d)的模型y = β+ δ0d + β1x + u这可以解释成截距项的变化若d = 0, 那么y = β+ β1x + u若d = 1, 那么y = (β+ δ0) + β1x + ud = 0 的样本是参照组δ0 > 0 的例子y y = (β0 + δ0) + β1xd = 1{ δslope = β1d =0 }βy = β0 + β1xx从多个数值的类型变量到虚拟变量?我们可以用虚拟变量来控制有多种类型因素?假设样本中的个人是中学辍学或者仅仅中学毕业或者大学毕业现在要拿仅仅中学毕业和大学毕业的人和中学辍学的人比较定义hsgrad = 1 如果仅仅是中学毕业, 0 其它情况; colgrad = 1 如果大学毕业, 0 其它情况多个数值的类型变量(续)?任何类型变量都可以变成一组虚拟变量?因为参照组由常数项表示了, 那么如果一共有n 个类型,就应该由n –1 虚拟变量如果有太多的类型,通常应该对其进行分组例:前10 , 11 –25, 等虚拟变量之间的交叉项求虚拟变量的交叉项就相当于对样本进行进一步分组例:有男性(male)的虚拟变量和hsgrad(仅仅中学毕业)和colgrad (大学毕业)的虚拟变量加入male*hsgrad 和male*colgrad, 共有五个虚拟变量–> 共有六种类型参照组是女性中学辍学的人此时hsgrad 代表女性仅仅中学毕业者, colgrad 表示女性大学毕业者交叉项表示男性仅仅中学毕业者和男性大学毕业者虚拟变量之间的交叉项(续)?模型可以写成y = β0 + δ1male + δ2hsgrad +δ3colgrad + δ4male*hsgrad + δ5male*colgrad+ β1x + u, 那么:若male = 0 且hsgrad = 0 且colgrad = 0则y = β0 + β1x + u若male = 0 且hsgrad = 1 且colgrad = 0则y = β0 + δ2hsgrad + β1x + u若male = 1且hsgrad = 0且colgrad = 1则y = β0 + δ1male + δ3colgrad + δ5male*colgrad+ βx + u1其它变量与虚拟变量的交叉项?也可以考虑虚拟变量d 和连续变量x 之间的交叉项y = β+ δ1d + β1x + δ2d*x + u若d = 0, 那么y = β+ β1x + u若d = 1, 那么y = (β+ δ1) + (β1+ δ2) x + u这里的两种情况可以看成是斜率的变化δ0 > 0 且δ 1 < 0的例子yy = β+ β1xd = 0d = 1y = (β0 + δ0) + (β 1 + δ1) x。
虚拟变量回归
数据收集
收集不同市场细分群体的基本信息和 产品需求数据,如年龄、性别、收入、 消费习惯等。
变量设置
将市场细分变量转换为虚拟变量,并 引入到回归模型中。
结果分析
分析虚拟变量的系数和显著性,解释 其对产品需求的影响,为市场定位提 供依据。
案例三:教育程度与收入水平的关系研究
目的
研究教育程度对收入水平的影响,以及 不同教育程度对收入水平的差异。
虚拟变量可能依赖于某些自变量,需 要谨慎处理以避免多重共线性问题。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
虚拟变量回归的模型构 建
线性回归模型
线性回归模型是最常用的回归分析方法之一,用 于探索自变量与因变量之间的线性关系。
在线性回归模型中,虚拟变量可以作为自变量引 入,以解释和预测因变量的变化。
变量设置
将教育程度转换为虚拟变量,并引入 到回归模型中。
数据收集
收集受访者的教育程度和收入水平数 据。
结果分析
分析虚拟变量的系数和显著性,解释 其对收入水平的影响,为职业规划和 教育投资提供参考。
案例四:健康状况与生活习惯的关系研究
目的
数据收集
研究生活习惯对健康状况的影响,以及不 同生活习惯对健康状况的差异。
虚拟变量回归的应用场景
1 2
社会科学研究
在社会科学研究中,经常需要研究分类变量对连 续变量的影响。例如,研究不同教育程度或不同 职业对收入的影响。
生物统计学
在生物统计学中,虚拟变量回归可用于研究基因 型、物种或地理区域等因素对连续变量的影响。
3
市场分析
在市场分析中,虚拟变量回归可用于研究不同产 品类别、品牌或市场细分对销售或其他连续变量 的影响。
虚拟变量回归实验报告总结
虚拟变量回归实验报告总结实验目的:了解虚拟变量回归模型,提高回归模型的预测精度。
实验内容:将本课题组开发的一个虚拟变量回归模型与常用的三个回归模型进行比较,并根据实际情况对模型进行修正和完善。
实验步骤及方法:收集各个回归模型的数据资料;选择虚拟变量回归模型和其他三种回归模型的某些参数;运用前述的数理统计软件对上述四种模型进行拟合。
根据运算结果对四种回归模型的优劣作出判断。
通过对回归模型的评价指标分析和本实验的初步结果,得到以下几点结论:(1)虚拟变量回归模型是对原有回归模型的补充或更新,从而增加了预测精度;(2)不同的变量可以建立多个不同类型的回归模型,但只能使用最适宜于所建立的回归模型的变量进行回归;(3)因变量中存在自变量的虚拟变量回归系数,它表示变量之间具有明显的线性相关关系。
但该种回归系数往往不足以代替变量之间的实际线性相关关系,需要依赖其他信息。
实验结果分析1.虚拟变量回归方程:在模型的预测精度方面,可以看出虚拟变量回归方程的回归精度远远高于原有三种回归方程的回归精度,这说明虚拟变量回归模型比原有回归模型更符合客观事物的规律。
这主要是由于虚拟变量回归模型考虑到了原有回归方程的局限性,将变量之间的虚拟变量引入回归方程中,使模型对原来未知的影响因素的估计精度大幅度地提高。
虽然回归方程很难达到最佳估计水平,但却避免了模型的严重偏差,有助于求出满意的统计量。
2.虚拟变量回归的相关性检验:虚拟变量回归的相关系数检验结果见表5-2。
相关系数的检验结果表明,四种回归方程的拟合效果没有明显差异,且大部分都非常接近,反映出四种回归方程拟合结果良好。
经过四种回归方程拟合的虚拟变量回归系数相关系数检验表明,虚拟变量回归系数没有任何特殊的相关现象,说明此回归系数是回归系数的真实体现,是全体数学家共同努力的成果。
实验结论:我们认为当变量取值较小时,对被解释变量的回归系数还没有那么高,而当被解释变量的取值很大时,则回归系数会逐渐减少,直至零。
4-2虚拟变量回归分析汇总
平行回归模型的假定是斜率保持不变(加法类型, 包括方差分析);
共点回归模型的假定是截距保持不变(乘法类型, 又被称为协方差分析);
不同的回归的模型的假定是截距、斜率均为变动 的(加法、乘法类型的组合)。
当回归模型无截距项时,则可引入k个虚拟变量; 否则,就会陷入“虚拟变量陷阱
例: 分析某地区妇女的年龄、文化程度、及居住 地状况对其曾生子女数的影响。
定量变量: 年龄 定性变量:文化程度、地区
哑变量的建立
原变量编码值
文化程度=1(文盲) 文化程度=2(小学) 文化程度=3(初中) 文化程度=4(高中) 文化程度=5(大学) 地区=1(城市) 地区=2(农村)
D2 1,若X2 b D2 0,若X2 b
D1 0且D2 0, 若X2 c
有两个以上水平的虚拟自变量
Y 1 D 1 D 1 D 2 D 2 k X k
X2从c变为a的边际贡献
即从所有虚拟变量为0的状态, 变为该虚拟变量为1时的边际贡献
哑变量的建立
对于具有k类的定性变量来说,当回归模型有截 距项时,设哑变量时,我们只设k-1个哑变量。
6
3.098 32.759
Sig. .000a
Residual .851
9
.095
Total 19.438
15
a.Predictors: (Constant) , AREA, ED 3, 年 龄 , ED2, ED 4, E
b.Dependent Var iable: 生 子 女 数
SPSS输出结果
-. 39 9
第八章虚拟变量回归-资料
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量 ●虚拟解释变量的回归 ●虚拟被解释变量的回归(选讲,不包括)
4
第一节 虚拟变量
本节基本内容:
●基本概念 ●虚拟变量设置规则
5
一、基本概念
定量因素:可直接测度、数值性的因素。 定性因素:属性因素,表征某种属性存在与否的
非数值性的因素。
基Hale Waihona Puke 思想:直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
Y i= ( 0+1 ) +X i+ μ i 城市
Y i=0+X i+ μ i
农村
23
Y
α1
X
共同的特征:由收入引起的平均消费变化 是相同的,但截距发生改变。
24
(3)一个定性解释变量(两种以上 属性)和一个定量解释变量的情形
模型形式 Yi = f ( X i,D1,D2,...) + μi
计量经济学
第八章 虚拟变量回归
1
引子:男女大学生消费真有差异吗?
在对在校学生的消费行为进行的调查中,发现在校 生的消费行为呈现多元化的结构。人际交往消费、 手机类消费、衣着类消费、化妆品类消费、电脑类 消费、旅游类消费占有较大的比例;而食品类消费、 学习用品类消费不突显。 显然,男女生在消费上存在差异。为了了解男、女 生的消费支出结构差异,应当如何建立模型?
(如:民族有56种特性;季度有4种特性)
例如: 啤酒售量Y、人均收入X、季度D;
Yi 0 1D1 2D2 3D3 X i i
虚拟变量回归模型:计量经济学
对未来研究的展望
拓展模型应用领域
未来研究可以进一步拓展虚拟变 量回归模型的应用领域,如环境 经济学、劳动经济学、金融经济 学等,以更深入地揭示经济现象 背后的规律。
宏观经济学领域应用
经济增长研究
引入虚拟变量以刻画不同国家或地区的经济增 长模式,并分析各种因素对经济增长的贡献。
通货膨胀与货币政策研究
利用虚拟变量回归模型,探讨通货膨胀的成因、 传导机制及货币政策的效应。
国际贸易研究
通过构建虚拟变量,分析贸易自由化、关税壁垒等因素对国际贸易流量的影响。
金融学领域应用
线性问题,影响模型的稳定性和解释性。
预测能力有限
03
对于具有复杂关系的数据,虚拟变量回归模型可能无法提供准
确的预测。
与其他模型的比较
01
与线性回归模型的比较
虚拟变量回归模型是线性回归模型的一种扩展,通过引入 虚拟变量来处理分类变量。线性回归模型则主要关注连续 变量的影响。
02 03
与逻辑回归模型的比引言 • 虚拟变量回归模型基本原理 • 虚拟变量回归模型应用举例 • 虚拟变量回归模型优缺点分析 • 虚拟变量回归模型在实证研究中的应用 • 虚拟变量回归模型的发展趋势和前景
01 引言
计量经济学简介
1 2
计量经济学定义
计量经济学是应用数学、统计学和经济学方法, 对经济现象进行定量分析的学科。
完善模型理论和方法
在模型理论和方法方面,未来研 究可以进一步完善虚拟变量回归 模型的理论基础和方法体系,提 高模型的解释力和预测能力。
含虚拟自变量的回归分析
研究成果对实践的指导意义
01
提供了一种新的回归 分析思路
本研究为回归分析提供了一种新的思 路和方法,有助于解决传统回归分析 中难以处理的问题,提高分析结果的 准确性和可靠性。
模型构建
根据行业特点和历史销 售数据,构建一个含虚 拟自变量的回归模型。 其中,虚拟自变量可以 表示季节性、促销活动
等因素。
实证分析
利用历史销售数据对模 型进行实证分析,估计 模型参数并检验虚拟自 变量的显著性。通过模 型评价和诊断确保模型
的有效性。
预测与应用
利用估计得到的回归模 型对未来销售进行预测 ,并根据预测结果制定 相应的市场策略和销售
某个虚拟自变量的系数不显著,则说明该自变量对因变量的影响不显著。
03
模型的诊断
通过残差分析、异方差性检验、多重共线性检验等方法,对模型进行诊
断。如果发现模型存在问题,则需要对模型进行改进。
模型优化与改进
变量的筛选
通过逐步回归、向前选择、向后剔除等方法,对自变量进行筛选。保留对因变量有显著影响的自变量,剔除对因变量 影响不显著的自变量。
结果展示
将实证分析的结果以表格、图形等形式进行展示,以便更 直观地了解虚拟自变量对因变量的影响程度和方向。
应用举例:某行业销售预测模型
第一季度
第二季度
第三季度
第四季度
背景介绍
以某行业的销售数据为 例,探讨含虚拟自变量 的回归分析在销售预测 中的应用。该行业销售 受到多种因素的影响, 包括季节性、促销活动 、竞争对手行为等。
参数估计方法
虚拟变量回归
这里的 D1i 和 D2i代表的是两个不同的定性变量,各分为两种类
型基础类型: E(Yi Xi , D1 0, D2 0) 0 1Xi
对比类型: E(Yi Xi , D1 1, D2 0) (0 1) 1Xi
E(Yi Xi , D1 0, D2 1) (0 2 ) 1Xi
E(Yi Xi , D1 1, D2 1) (0 1 2 ) 1 Xi
差异
●一个定性变量有多种类型时,虚拟变量可同时取值为0,
但不能同时取值为1,因同一定性变量的各类型间“非此
即彼”
17
4、解释变量包含一个定量变量和两个定性变量
例如模型: Yi 0 1D1i 2D2i X i ui
Y为文化支出,X为收入
D1i 0 农村居民 D1i 1 城镇居民
D2i 0 高中以下文化程度 D2i 1 高中及以上文化程度
如 伊拉克战争、“911事件”、四川汶川大地震
● 时间序列分析中——作为季节(月份)的代表
● 分段回归——研究斜率、截距的变动
● 比较两个回归模型的差异
● 虚拟被解释变量模型:被解释变量本身是定性变量
● 面板数据回归中的应用
6
二、虚拟变量模型
虚拟变量模型:包含有虚拟变量的模型称虚拟变量模型 三种类型: 1. 解释变量中只包含虚拟变量
D1 1, D2 0, D3 0时
Yi 1 X i ui
D2 1, D1 0, D3 0时
Yi 2 X i ui
D3 1, D1 0, D2 0时
Yi 3 X i ui
11
第二节 虚拟解释变量回归
定性变量作为解释变量,既可以影响模型的截距,也可以 影响模型的斜率,还可以同时影响截距和斜率
虚拟变量回归课件
例1
(1)
D
=
1 0
男 女
( 2)D=1 0
改 革 开 放 以 后 改 革 开 放 以 前
(3)D1 =0 1
天气阴 其 他(4)D2
=1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
虚拟变量回归
14
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
虚拟变量回归
11
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量
数量的关系 3.虚拟变量在回归分析中的角色以及作用等
方面的问题
虚拟变量回归
12
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问题的 目的出发予以界定。
虚拟变量回归
16
一个例子(虚拟变量陷阱)
研究居民住房消费支出 Yi 和居民可支配收入 Xi 之间的
数量关系。回归模型的设定为:Y i= 0 + 1 X i+ u i( 1 )
现在要考虑城镇居民和农村居民之间的差异,如何办?
为了对 “城镇居民”、“农村居民”进行区分,分析
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇;
非数值性的因素。 基本思想: 直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
虚拟变量回归
10
专题四 虚拟变量回归模型
22
模型含义: 通过2 ,3 的显著性检验判断教育水平是否 对工资差异有显著的影响。
23
虚拟变量操作练习4
旅游支出与收入、教育的关系 Yˆ t -1.286 0.1722X t - 0.068 D1, t 0.4472D 2, t 其中,Y为旅游支出,X为收入
D1,t
D 2,t
1,中学教育 0,其他 1,大学教育 0,其他
24
(3)对一个普通变量与两个两分虚拟变量的回归
25
例:种族及性别差异对薪金的影响。 假定薪金除了受工作年限、性别的影响之外,还受种 族的影响。
yi 1 2 D2i 3D3i xi ui
yi 为某人的工资水平, xi 为工作年限。
解释各系数的含义,并预期符号。
26
虚拟变量模型:
yi 1 2 D2i 3D3i xi ui
D2 1, 如果为男性 D2 0, 不然的话
虚拟变量:
D3 1, 如果为白人 D3 0, 不然的话
27
虚拟变量模型:
AnnualSala ry 37.07 0.40DGender 10.95DRacial 2.26SchoolAge
其中,Annual Salary为年薪,School Age为工龄。
D Gender
1,男教师 0,女教师 1,白种人 0,其他
D Racial
yi Di ui
Di 1, 如果某人为男性 Di 0, 如果某人为女性
4
虚拟变量模型:
如果影响工资的其他因素保持不变,由上述模型很容 易得到: yi Di ui 女性的平均工资水平: E( yi Di 0) 男性的平均工资水平: E( yi Di 1) 斜率反映了男性与女性的平均工资差别。
虚拟变量回归结果解读
虚拟变量回归结果解读虚拟变量回归是一种经济统计学中常用的回归分析方法。
它用于处理定性变量,将其转换成虚拟变量,进而分析它们对因变量的影响。
本文将对虚拟变量回归的结果进行解读,帮助读者更好地理解和应用这一方法。
1. 背景介绍虚拟变量回归是一种基于二进制编码的方法,将定性变量转化为数值变量,以便进行回归分析。
它常用于控制混杂因素、检验效应等统计分析中。
在解读虚拟变量回归结果之前,我们首先需要了解回归模型的设定和数据样本。
2. 回归模型设定虚拟变量回归分析的基本模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为虚拟变量,β0、β1、β2、...、βn为回归系数,ε为误差项。
3. 解读回归系数在虚拟变量回归中,回归系数的解读依赖于虚拟变量的编码方式。
这里以一个二分类虚拟变量为例进行解释。
3.1 虚拟变量为二分类假设我们的虚拟变量为性别,编码方式为男性为1,女性为0。
回归结果显示该虚拟变量的回归系数为β1 = 0.2。
这一结果的解读如下:- 对于男性(虚拟变量为1),与女性相比,因变量的平均值(或均值的对数值)比女性多0.2个单位。
这说明男性相对于女性,对因变量有着0.2个单位的正向影响。
- 对于女性(虚拟变量为0),回归系数不产生作用。
因此,回归结果可以说是基于男性进行解读。
3.2 虚拟变量为多分类如果虚拟变量有多个分类,例如教育程度分为初中、高中和大学三类。
回归结果显示分别为β1 = 0.3,β2 = 0.5。
解读如下:- 对于初中教育程度(虚拟变量为1,其它分类为0),与高中相比,因变量的平均值比高中多0.3个单位。
- 对于高中教育程度(虚拟变量为1,其它分类为0),与大学相比,因变量的平均值比大学多0.5个单位。
- 对于大学教育程度(虚拟变量为1,其它分类为0),回归系数不产生作用。
4. 虚拟变量回归的显著性检验回归结果中还会提供每个虚拟变量的显著性检验结果,常见的检验方法包括t检验和F检验。
计量经济学-虚拟变量回归
虚拟变量模型有三种类型
1. 解释变量中只包含虚拟变量 2. 解释变量中既包含定量变量也包含虚拟
变量。 3. 被解释变量本身为虚拟变量。
20
第二节 虚拟解释变量的回归
本节基本内容:
●加法类型 ●乘法类型 ●虚拟解释变量综合应用
21
在计量经济学中,通常引入虚拟变量的方式分为 加法方式和乘法方式两种:即
分为四种情形讨论: (1)解释变量只有一个定性变量而无定量变量,而且定性
变量为两种相互排斥的属性; (2)解释变量分别为一个定性变量(两种属性)和一个定
量解释变量;
23
(3)解释变量分别为一个定性变量(两种以上属 性)和一个定量解释变量;
(4)解释变量分别为两个定性变量(各自分别是 两种属性)和一个定量解释变量;
计量经济学
第八章 虚拟变量回归
1
引子:男女大学生消费真有差异吗?
由共青团中央,全国学联共同发布的 《 2004中国大学生消费与生活型态研究报 告》显示,当代大学生的消费行为呈现多元 化的结构。除日常生活开支外还有人际交往 消费、手机类消费、衣着类消费、化妆品类 消费、电脑类消费、旅游类消费等等。
2
4
第一节 虚拟变量
本节基本内容:
●基本概念 ●虚拟变量设置规则
5
一、基本概念
定量因素:可直接测度的数值型因素。 如收入、产出、价格、人数等。
定性因素:属性因素,不能直接测度、 表征某种属性或状态存在与否的非数值型 因素。如性别、婚否、政府经济政策不变 与改革、城市居民或非城市居民等。
6
在以前的学习中,解释变量主要是定 量变量,但现实经济生活中影响被解释 变量的还包括定性变量,比如:研究某 个企业的销售水平,所有制(私营、非 私营)、地理位置(东、中、西部)等 是必须考虑的因素。
虚拟变量回归模型
6.3 包含一个定量变量、一个多分定 性变量的 回归
如果根据地区不同将学校分为三类:南部;东北和中 北部;西部。
根据虚拟变量的引入原则,变量有三个分类,需要引 入?个虚拟变量。
1 东北和中北
部地区
D2
第6章 虚拟变量回归模 型
单击此处添加副标题
汇 报 人 姓汇名报 日 期
目录
CONTENTS Yi432.41380.0013Xi
1
X代表家庭年收入
2
Y代表数学分数
○ 数值变量
○ 定量变量
6.1 虚拟变量的性质
调查研究显示,在其它条件相同的情况下,
大学女教师的收入低于男教师。这意味着在影 响教师收入的因素中,需要考虑到性别这个变 量。
女
1
0
男
0
1
01
包 含 一Y 个i= 定 量B 变1量+ ,B 一2D 个 两i+ 分 定B 3 性X 变i量+ 的u 回i归
ቤተ መጻሕፍቲ ባይዱ02
注意区分当虚拟变量取不同值时,Y的条件均值的
含义,以及虚拟变量的回归系数的含义。
E (Y |X i,D 0 ) B 1 B 3X i
E ( Y |X 0i3,D Y代1 代表) 表男 食( 品B 支1 出 ,XB 代2 表) 税 后B 收3 入X ,Di取值1代表女,0
1
西部地区
D3
0 其他地区
0 其他地区
A c c e p ti 4 4 .5 4 1 1 0 .6 8 D 2 1 2 .5 0 1 D 3
t ( 1 4 .3 8 )( 2 .6 7 )( 2 .2 6 )
第七章虚拟变量回归
第七章虚拟变量回归第七章虚拟变量回归第⼀节虚拟变量的性质在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。
例如需要考虑性别、民族、不同历史时期、季节差异、政府的更迭(⼯党-保守党)、经济体制的改⾰、固定汇率变为浮动汇率、从战时经济转为和平时期经济等。
这些因素也应该包括在模型中。
⼀、基本概念由于定性变量通常表⽰的是某种特征的有和⽆,所以量化⽅法可采⽤取值为1或0。
这种变量称作虚拟变量(dummy variable )。
虚拟变量也称:哑元变量、定性变量等等。
通常⽤字母D 或DUM 加以表⽰(英⽂中虚拟或者哑元Dummy 的缩写)。
⽤1表⽰具有某⼀“品质”或属性,⽤0表⽰不具有该“品质”或属性。
虚拟变量使得我们可以将那些⽆法定量化的变量引⼊回归模型中。
虚拟变量应⽤于模型中,对其回归系数的估计与检验⽅法和定量变量相同。
虚拟变量表⽰两分性质,即“是”或“否”,“男”或“⼥”等。
下⾯给出⼏个可以引⼊虚拟变量的例⼦。
例1:你在研究学历和收⼊之间的关系,在你的样本中,既有⼥性⼜有男性,你打算研究在此关系中,性别是否会导致差别。
例2:你在研究某省家庭收⼊和⽀出的关系,采集的样本中既包括农村家庭,⼜包括城镇家庭,你打算研究⼆者的差别。
例3:你在研究通货膨胀的决定因素,在你的观测期中,有些年份政府实⾏了⼀项收⼊政策。
你想检验该政策是否对通货膨胀产⽣影响。
上述各例都可以⽤两种⽅法来解决,⼀种解决⽅法是分别进⾏两类情况的回归,然后看参数是否不同。
另⼀种⽅法是⽤全部观测值作单⼀回归,将定性因素的影响⽤虚拟变量引⼊模型。
⼆、虚拟变量设置规则虚拟变量的设置规则涉及三个⽅⾯: 1.“0”和“1”选取原则虚拟变量取“1”或“0”的原则,应从分析问题的⽬的出发予以界定。
从理论上讲,虚拟变量取“0”值通常代表⽐较的基础类型;⽽虚拟变量取“1”值通常代表被⽐较的类型。
“0”代表基期(⽐较的基础,参照物);“1”代表报告期(被⽐较的效应)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量解释变量; (4)解释变量分别为两个定性变量(各自分别是两种属性)和
一个定量解释变量;
只有两个水平的虚拟自变量
虚拟变量的取值为0,1
1 男 x 0 女
Y 1 2 X 2 k X k
是二值 名义变量
哑变量的建立
原变量编码值
文化程度=1(文盲) 文化程度=2(小学) 文化程度=3(初中) 文化程度=4(高中) 文化程度=5(大学) 地区=1(城市) 地区=2(农村)
哑变量赋值的操作
所有EDU=0 EDU2=1,其他EDU=0 EDU3=1,其他EDU=0 EDU4=1,其他EDU=0 EDU5=1,其他EDU=0 AREA=1
4.33560
回归系数的显著性检验
Coefficientsa
Un sta n d a rd i ze d Co e ffi ci en ts
Model 1
(Constant) 年龄 获 MBA
B 2.165
.427 4.911
Std. Error 4.791 .103 2.188
a. Dependent Variable: 万 元
ANOVAb
M od e l
1
Re gre ssi o n
Sum of Squares
18.586
df
Mean Square
6
3.098
Re si du a l
.851
9
.095
T o ta l
19.438
15
a. Pred ict ors: (Con stant), AREA, ED3, 年 龄 , ED2, ED4, ED5
回归分析
虚拟解释变量的回归
回归分析的类型
因变量与自变量都是定量变量的回归分 析——即我们常做的回归分析
因变量是定量变量,自变量中有定性变 量的回归分析—即含有虚拟变量的回归 分析
因变量是定性变量的回归分析— Logistic回归分析
自变量中有定性变量的回归
在社会经济研究中,有许多定性变量,比 如地区、民族、性别、文化程度、职业和 居住地等。
AREA=0
建立回归方程
SPSS回归结果:
SPSS输出结果
M odel Summary
M odel 1
R
R Square
.9 78 a
.956
Adj usted R Square
.927
Std. Error of the Esti mate
.30751
a. Predi ct ors: (Con stant), AREA, ED3, 年 龄 , ED2, ED4, ED5
D1 1,若X2 a D1 0,若X2 a
D2 1,若X2 b D2 0,若X2 b
D1 0且D2 0, 若X2 c
有两个以上水平的虚拟自变量
Y 1 D1D1 D2D2 k X k
X2从c变为a的边际贡献
即从所有虚拟变量为0的状态, 变为该虚拟变量为1时的边际贡献
比如,性别(男,女)
有两个以上水平的虚拟自变量
文化程度(小学及以下,中学,大学等)
回归分析中引入虚拟变量的方式
加法方式和乘法方式两种:即
Yt 0 Xt ut 1D Yt 1Xt ut 2 Xt D
原模型: Yi = + βX i + ui 加法方式引入 = 0 +1D 乘法方式引入 = 1 + 2D
操作过程与不含有虚拟变量 的线性回归完全相同
回归方程的拟合优度检验
Model Summary
M od e l 1
R
R Square
.789a
.622
Ad j uste d R Square
.564
a. Predict ors: (Con stant), 获 MBA, 年 龄
Std. Error of the Estimate
可以应用它们的信息进行线性回归。 但是,必须先将定性变量转换为哑变量
(也称虚拟变量),然后再将它们引入方 程,所得的回归结果才有明确的iable)
也叫“哑变量”,是指测度级别为名义 和序次层级的自变量。
虚拟自变量可有不同的水平
只有两个水平的虚拟自变量
1 x2 0
2
虚拟变量X2从0变为1时,在其他自变量不变的情况下 X2对Y的边际贡献。
线性回归中的虚拟变量的处理
只有两个水平的虚拟自变量
数据文件:
CH9公司CEO年收入年龄MBA虚拟.sav
获MBA是个虚拟变量
Y 0 D获MBA 2年龄
获MBA
1,获得 0,没获得
•实质:加法方式引入虚拟变量改变的是截距; 乘法方式引入虚拟变量改变的是斜率。
一、加法类型
以加法方式引入虚拟变量时,主要考虑的问题是定性因 素的属性和引入虚拟变量的个数。通长可以分为:
(1)解释变量只有一个定性变量(两种属性)而无定量变量; (2)解释变量分别为一个定性变量(两种属性)和一个定量解
哑变量的建立
对于具有k类的定性变量来说,当回归模型有截 距项时,设哑变量时,我们只设k-1个哑变量。
当回归模型无截距项时,则可引入k个虚拟变量; 否则,就会陷入“虚拟变量陷阱
例: 分析某地区妇女的年龄、文化程度、及居住 地状况对其曾生子女数的影响。
定量变量: 年龄 定性变量:文化程度、地区
Sta n d a rd i ze d Co e ffi ci en ts
Beta
.710 .383
t .452 4.158 2.244
Sig. .659 .001 .043
有两个以上水平的虚拟自变量
若虚拟变量具有k个水平,则需要设置k-1 个二值虚拟变量;
例如,如果X2取值是a,b,c三种激励方案, 则虚拟变量设置为:
b. Dep enden t Vari able: 生 子 女 数
F 32.759
Si g. .000a
SPSS输出结果
Coefficientsa
Un stan d ard i ze d Co effi ci e nts
M od e l
1
(Constant)
年龄
B 1.409