射级跟随器的设计

射级跟随器的设计
射级跟随器的设计

射级跟随器的设计

射极跟随器也叫共集电极放大电路,具有输入阻抗高和输出阻抗低的优点,但不具备电压放大功能,可以放大电流。下图是典型的射极跟随器电路。

一静态工作点设定

设计三极管放大电路,首先要确定好静态工作点。静态工作点就是在没有交流信号输入时,电路的工作状态。静态工作点的确定要围绕输入信号和输出的规格来确定,为了降低电路分析的难度,这里我们假设负载为纯阻性负载,最大±5mA 的带载能力,最大输出电压5Vpp。

1.1确定直流偏置电压V B

为了使得输入信号中心对称,从而不会削顶或者截底,一般设置为Vcc/2,计算公式如下:

公式(1)

要求最大输出为5Vpp,那么电源电压必须大于5V,为了方便计算,本设计电源

=5.7V。

电压采用的11.4V,故V

B

1.2确定射极电流及电阻

三极管在导通状态下,射级电压比基级电压低0.6-0.7V,这里取0.7V,已知最

大输出能力为5mA,增加余量,I

e 设定为10mA,计算得R

E

=500Ω,计算如下:

1.3确定偏置电阻

设计中选用的是低噪声NPN三极管,查阅其资料,其β取值150~300之间,这里

取300,由I

b =I

c

/β得最小I

b

=33.3uA,偏置电流与基级电流的关系必须满足I

B

>>I

b

这里取10倍(一般10~100倍),即I

B

=333uA,R1=R2=R,根据公式(1)得R=34.23K,这里取30K。

到这里静态工作点已经确定完成。

二动态分析

动态分析是基于静态工作点来分析的,根据输出规格5Vpp可知,输入信号不应超过±2.5V,上面算得静态偏置电压为5.7V,那么基级电压在3.2V~8.2V之间,没有超过电源电压,不会产生削顶失真。下面进行详细分析。

2.1确定输入电容

输入电容Ci和后级电路的输入阻抗Ri组成了高通滤波电路,其等效电路如下:

该电路的截止频率fi为:

只要知道截止频率和输入阻抗就能求出电容的值,截止频率设多少都没关系(注意三极管的频率特性,只不过一般这样的电路频率不会太高),取决于信号的频率范围,这里设截止频率为100Hz(衰减3db)。输入阻抗Ri就复杂了点,可以这么去分析:输入阻抗可以看成三个电阻并联,Ri=R1||R2||Rj,R1和R2是偏置电阻,很好理解,Rj就是三极管的输入阻抗。Rj的值是很大的,远大于R1和R2,所以Ri就约等于R1||R2。其实也可以简单分析一下Rj的数量级,已知射级电阻

Re上流过的电流Ie是基级电流Ib的1+β倍,那么在射级电阻上的压降Ve=I b(1+

β)Re,对于输入端而言,Ib所产生的电压为I

b *r

be

+Ve=I

b

(r

be

+(1+β)Re),所以,

Ri的等效阻抗就为r be+(1+β)Re。在本设计中,β=300,Re=500,Ri=r be+150.5K,很大的电阻了,故本设计Ri=R1||R2=15K。所以,就可以根据公式(3)求出电容,如下:

2.2确定输出电容

输出电容与负载组成高通滤波电路,负载电阻不确定,故要把输出电容比输入电容取大一些,这里取100倍,Co=10uF。为了提高电源的频率响应,在三极管的集电极并联了去耦电容。

2.3 最终电路

输出波形:

不想篇幅太长,下篇《射级跟随器—分析篇》来仿真分析这个电路,验证这个电路的正确性以及缺点。特别值得注意的是,虽然射级跟随器的输出阻抗可以近似为0,无论负载大小都不会影响输出,但实际,当负载过重,输出信号会被截底,下次详细分析原因与条件。如下图:

射极跟随器实验报告

肇庆学院 实验二射极跟随器实验报告 班别:学号:姓名:指导老师: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B和负载R L的影响,则

R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图2所示。 图2 射极跟随器实验电路 (其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK ) R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图1电路 β r R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 O L O L L U R R R U += 即可求出 R O

射极跟随器实验报告

实验二射极跟随器实验报告 姓名:班级:学号: 指导老师:实验日期:实验成绩: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验原理 射极跟随器的原理图如图5-1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图5-1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图5-1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i=R B∥[r be+(1+β)(R E∥R L)] 由上式可知射极跟随器的输入电阻R i比共射极单管放大器的输入电阻R B∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图5-2所示。Ri= 图5-2 射极跟随器实验电路

即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图5-1电路 如考虑信号源内阻R S ,则 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O 3、电压放大倍数 图5-1电路 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。 这是深度电压负反馈的结果。但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。 4、电压跟随范围 电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。当u i 超过一定范围时,u O 便不能跟随u i 作线性变化,即u O 波形产生了失真。为了使输出电压u O 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取u O 的峰峰值,即电压跟随范围;或用交流毫伏表读取u O 的有效值,则电压跟随范围 U 0P -P =2 U O 三、实验设备与器件 1、+12V 直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、频率计 1 ) //)(1() //)(1(≤+++= L E be L E V R R r R R A β β

气体引射器课程设计

机械设计课程设计(论文)设计书题目:气体引射器结构设计 系别 专业 班级 学号 学生姓名 起讫日期2012.10.29―2012.11.09 指导教师职称助教 教研室主任 日期2012.11.09 江西科技学院教务处印制

目录 一、引射器的介绍 (1) 二、工作条件: (2) 三、系统简图 (3) 四、喷射系数的确定 (3) 五、主要几何参数的确定 (7) 六、蒸汽引射制冷装置的系统图 (11) 七、带扩散器引射器装配图 (12) 八、小结 (13) 参考文献 (14)

气体引射器结构设计 一、引射器的介绍 气体(蒸汽)喷射压缩器、引射器和喷射泵属于第一类。 气力输送喷射器、水—空气引射器和水力输送喷射器属于第二类。 汽—水引射器和喷射加热器属于第三类。 喷射器的工作情况还取决于相互作用介质的弹性特性。 介质的比容的工作随着压力的改变而大大改变的这种特性叫做介质的弹性特性或压缩性。 在实际中所用到的喷射器有:1)两种介质(工作介质和引射介质)都是弹性的;2)其中一种介质是弹性的;3)两种介质都是非弹性的。 弹性介质的同相喷射器的工作,很大程度上取决于引射介质的压缩比,还取决于工作介质的膨胀比。 为了简明起见,在这里及往后把压力比P E/P H叫做压缩比,即最终的压缩压力与开始的压力之比。 根据压缩比和膨胀比的大小,弹性介质的同相喷射器可分为如下类型: 1)大膨胀比和中等压缩比的喷射器,今后,把这类喷射器叫做气体喷射压缩器或蒸汽喷射压缩器,在这类喷射器中,蒸汽或气体作为工作介质或引射介质。

在压缩器中,工作流体的膨胀比是很大的,在压缩器之前工作和引射流体的压力比比临界压力要大好多倍。 这类喷射器所能建立的压缩比通常是在2.5≥P E/P H≥1.2的范围内,用来提高废汽压力;用来提高官网中的气体压力等就属于这类喷射器。 2)大膨胀比和大压缩比喷射器,这类喷射器通常用在要求保持很高真空的装置上,今后把这类喷射器叫做气体引射器或蒸汽引射器。 在引射器中,工作流体的膨胀比也是很大的;在引射器前工作流体和引射流体的压力比P P/P H也是比临界压力比大很多倍,这类喷射器所能建立的压缩比: Pc/P H≥2.5 3)大膨胀比和小压缩比喷射器。 今后把这类喷射器叫做气体喷射器或蒸汽喷射器。 在这类喷射器中,蒸汽或气体作为工作介质和引射介质。 二、工作条件: 工作流体和引射流体都为饱和水蒸汽。工作流体在拉伐尔喷管中加速形成高速喷射流,在吸收室里形成低压。引射流体进入引射器的吸收室后在工作流体的作用下加速,两股流体在混合室里逐渐形成单一均匀的混合流体,经过扩压管减速压缩达到一定的背压。

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

引射器 含分类及描述方程(谷风资料)

1 概述 引射器主要由喷嘴、接受室、混合室及扩压室组成,其工作原理见图1。 图1 引射器结构简图 压力较高的流体为工作流体(又称为一次流体),以很高的速度从喷嘴流出,进入接受室,在射流的紊动扩散作用下,卷吸周围压力较低的流体。被吸入的压力较低的流体为引射流体(又称为二次流体)。工作流体与引射流体在混合室内混合,进行动量交换,在流动过程中速度插分布渐渐均匀,在此期间常常伴随压力的升高。随后,混合流体进入扩压室,压力因流速的降低而升高。在扩压室出口处,混合流体的压力高于进入接受室的引射流体的压力。 升高引射流体的压力而不直接消耗机械能是引射器最主要的特点。而引射器的主要缺点是传能效率较低,这是由于两股流体混合时产生较大的能量损失。另外,在运行中由于缺少运动部件也不易调节。 2 引射器的研究进展

2.1 引射器的分类及描述方程 目前,还投有—个通用的引射器分类方法,但人们常按引射器中相互作用的流体的状态将其分为3类: ①工作流体和引射流体的状态相同,如气体(蒸汽)引射器。 ②工作流体和引射流体处于不同的状态,而且在混合过程中状态也不发生改变,如水—空气引射器。 ③流体的状态发生改变的引射器。工作流体和引射流体在混合前处于不同的相态,在混合后变成同一相态,即在混合过程中其中一种流体的相态发生改变,如汽-水混合式加热器。 虽然引射器种类繁多,但都可用如下3个基本定律来描述[1]: ①能量守恒定律 hP+μhs=(1+μ)hm (1) μ=qm,s/qm,p (2) 式中hP—工作流体的比焓,J/kg μ—引射系数 hs—引射流体的比焓,J/kg hm—混合流体的比焓,J/kg qm,s—引射流体的质量流量,kg/s qm,p—工作流体的质量流量,kg/s 由能量守恒方程可知,工作流体和引射流体以及混合流体的动能

射极跟随器实验报告

射极跟随器实验报告 班级: 姓名: 学号: 一、实验目的 (1)掌握射极跟随器的特性及测试方法。 (2)进一步学习放大器各项参数的测试方法。 二、实验原理 射极跟随器的原理图如图(1)所示。它是一个电压串联负反馈放大电路,具有输入电阻高、输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 由于射极跟随器的输出取自发射极,故也称其为射极输出器。 1、输入电阻i R 根据图(1)电路所示,有 R r R E be i )1(β++= 如考虑偏置电阻B R 和负载L R 的影响,则 ]//)(1(//[R R r R R L E be B i β++= 图 (1) 射极跟随器 由上式可知,射极跟随器的输入电阻 i R 比共射极单管放大器的输入电阻 be B i r R R //=的阻值要高的多。但由于偏置电阻B R 的分流作用,输入电阻的阻值难以 进一步提高。

输入电阻的测试方法与单管放大器的相同,试验线路如图(2)所示。 R U U U I U R i s i i i i -= = 即只要测得A 、B 两点的对地电位即可计算出i R 。 2、输出电阻O R 根据图(1)电路所示,有 β β r R r R be E be O ≈ = // 如考虑信号源内阻S R ,则 β β ) //(//) //(R R r R R R r R B S be E B S be O +≈ += 由上式可知,射极跟随器的输出电阻O R 比共射极单管放大器的输出电阻C O R R ≈低得多。三极管的β值愈高。

灶具引射器设计

燃气炉具引射器的设计 燃气炉具的燃烧方式分为:扩散燃烧、大气式燃烧、部分预混式燃烧、鼓风式燃烧。在我们现在的灶具产品上通常采用的燃烧方式为大气式燃烧,其工作过程是燃气从喷嘴高速喷出后。引射四周的静止空气(一次空气)一起进入引射器,在引射器内燃气与引射进入的空气实现完全混合,并经减速扩压后进入燃烧器头部,可燃混气从头部火孔流出被点燃生成本生火焰。 大气式燃烧器的主要特点是燃气在着火前已与一次空气混合,而一次空气的供给是靠燃气引射四周空气实现的。所以,大气式燃烧器又称大气引射式燃烧器,这种燃烧过程的组织方式称大气燃烧或局部预混燃烧。大气式燃烧器的主要优点是燃烧工况易于调节,燃烧充分、温度较高,一次空气供给靠燃气射流卷吸四周空气,不需要外部动力,因而结构简单,制作方便,在燃气灶具上应用广泛。结构如图一所示。 从图中可看出大气式燃烧器由三部分组成:燃气喷嘴,引射器与头部。 下面我们通过一个实例来讨论燃烧器的计算: 已知:一台炉具其热负荷Q=4Kw,使用燃气为液化气,燃气低热值Hi=109.4MJ/Nm3,相对密度S=1.686,燃气理论空气量V0=35.71Nm3/Nm3,一次空气系数a0=0.6 一、头部计算: 1、计算火孔面积F p: 假设火孔直径是Φ1.5mm,火孔热强度q p6.5W/mm2则F p/q p=4000/6.5=615mm2 2、火孔个数: 单个火孔面积S=1.77mm2 则火孔总个数N=F p/1.77=349 3、设定火孔的总排数为4排 4、燃烧器的管径

5、头部能量损失k1: 火孔流量系数μp=0.68 阻力系数§p=(1-μp2)/μ=0.79 k1=§p+2((273+t)/273)-1=3.26 二、引射管的计算: 1、引射系数μ:μ=α0V0/S=0.6x35.71/1.686=12.7 其中α0是一次空气系数 2、选取的引射器形式如图二所示: 此款炉头的k取为1.5 3、计算喷嘴直径d: 其中喷嘴的流量系数μ取为0.83 4、计算最佳燃烧器参数F oP

实验三:电子实做实验(射极跟随器)

实验三 射极跟随器实验 1. 实验目的 (1)熟悉射极跟随器的工程估算,掌握射极跟随器静态工作点的调整与测试方法。 (2)熟悉电路参数变化对静态工作点的影响;熟悉静态工作点对放大器性能的影响。 (3)掌握放大器电压放大倍数、输入电阻、输出电阻及频率特性的测试方法。 (4)了解自举电路在提高射极跟随器的输入电阻中的作用。 2. 实验仪表及器材 (1)双踪示波器 (2)双路直流稳压电源 (3)函数信号发生器 (4)数字万用表 (5)双路晶体管毫伏表 3. 实验电路图 4. 知识准备 (1)复习共集电极放大器的相关理论知识。 (2)根据理论知识对实验电路的静态工作点、电压增益、输入电阻、输出电阻进行工程估算。 5. 实验原理 (1)基本原理 共集放大器又称射极输出器,它的输出信号取自于发射极,其电压放大倍数小于且接近于1 , 图1-1 射极跟随器

输入信号与输出信号是同相的,即输出信号基本上是随输入信号变化而变化,因此它又称为射极跟随器。由于射极跟随器的输入电阻高,向信号源索取的电流小;输出电阻小,有较强的带负载能力;因此它可以作为信号源或低阻负载的缓冲级,也可以在多级放大电路中作为输入级,以提高输入电阻,向信号源索取较小的电流,保证放大精度;同时也可以作为多级放大电路的输出级,用以增大带负载的能力。但由于基极偏置电阻的存在使输入电阻降低,从而发挥不出输入电阻高的优点;通常采用自举电路来起到大大提高输入电阻的作用;在使用射极跟随器的时候,要注意最大不失真输出电压的幅度,即跟踪范围。为了尽可能增大跟踪范围,应当把静态工作点安排在交流负载线的中点。 (2)静态工作点的调整 实验电路通过调节电位器R p 来调节静态工作点。 (3)静态工作点的测量 放大器的静态工作点是指当放大器的输入端短路时,流过三极管的直流电流I CQ 、I EQ 及三极管极间直流电压V CEQ 、V BEQ 。 静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。而测量直流电流时,通常采用间接测量法测量,即通过直流电压来换算得到直流电流;这样即可以避免更动电路,同时操作也简单。 EQ CQ CEQ V V V -= EQ BQ BEQ V V V -= e EQ EQ R V I = C CQ CC CQ )(R V V I -= (4)电压放大倍数的测量 电压放大倍数A u 是指输出电压U o 与输入电压U i 之比,即A u =U o /U i 。 测量电压放大倍数时需用示波器观察输出波形;在输出波形不失真的条件下,给定输入信号值(有效值U i 或峰值U ip 或峰峰值U ipp ),测量相应的输出信号值(有效值U o 或峰值U op 或峰峰值U opp ),则: ipp opp ip op i o u U U U U U U A === (5)输入电阻的测量 输入电阻是指输入信号的电压与电流之比,即R i =U i /I i 。 由于实验电路的输入电阻较大,测量仪表的内阻引入则产生的分流作用不能忽略;所以采用图1-2所示的测试方法。 当开关K 合上时(即R 不接入),测量输出电压为U 01,并且U 01 = A u ×U s 当开关K 打开时(即R 接入时),测量输出电压为U 02,并且U 02 = A u ×U i 所以有: R U U U R U U U I U R 02 0102i S i i i i )(-=-== 可以证明,只有在0102012 1U U U =-时测量误差最小;同电阻R 的准确度直接影响测量的准确度,电阻R 不宜取得过大,否则易引入干扰;也不宜取得过小,否则易引起较大的测量误差。

气体引射器课程设计

气体引射器课程设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

机械设计课程设计(论文)设计书题目:气体引射器结构设计 系别 专业 班级 学号 学生姓名 起讫日期― 指导教师职称助教 教研室主任 日期 江西科技学院教务处印制

目录 1 2 3

气体引射器结构设计 一、引射器的介绍 气体(蒸汽)喷射压缩器、引射器和喷射泵属于第一类。 气力输送喷射器、水—空气引射器和水力输送喷射器属于第二类。 汽—水引射器和喷射加热器属于第三类。 喷射器的工作情况还取决于相互作用介质的弹性特性。 介质的比容的工作随着压力的改变而大大改变的这种特性叫做介质的弹性特性或压缩性。 在实际中所用到的喷射器有:1)两种介质(工作介质和引射介质)都是弹性的;2)其中一种介质是弹性的;3)两种介质都是非弹性的。 弹性介质的同相喷射器的工作,很大程度上取决于引射介质的压缩比,还取决于工作介质的膨胀比。 为了简明起见,在这里及往后把压力比P E/P H叫做压缩比,即最终的压缩压力与开始的压力之比。 根据压缩比和膨胀比的大小,弹性介质的同相喷射器可分为如下类型: 1)大膨胀比和中等压缩比的喷射器,今后,把这类喷射器叫做气体喷射压缩器或蒸汽喷射压缩器,在这类喷射器中,蒸汽或气体

作为工作介质或引射介质。 在压缩器中,工作流体的膨胀比是很大的,在压缩器之前工作和引射流体的压力比比临界压力要大好多倍。 这类喷射器所能建立的压缩比通常是在≥P E/P H≥的范围内,用来提高废汽压力;用来提高官网中的气体压力等就属于这类喷射器。 2)大膨胀比和大压缩比喷射器,这类喷射器通常用在要求保持很高真空的装置上,今后把这类喷射器叫做气体引射器或蒸汽引射器。 在引射器中,工作流体的膨胀比也是很大的;在引射器前工作流体和引射流体的压力比P P/P H也是比临界压力比大很多倍,这类喷射器所能建立的压缩比: Pc/P H≥ 3)大膨胀比和小压缩比喷射器。 今后把这类喷射器叫做气体喷射器或蒸汽喷射器。 在这类喷射器中,蒸汽或气体作为工作介质和引射介质。 二、工作条件: 工作流体和引射流体都为饱和水蒸汽。工作流体在拉伐尔喷管中加速形成高速喷射流,在吸收室里形成低压。引射流体进入引射器的吸收室后在工作流体的作用下加速,两股流体在混合室里逐渐形成单一均匀的混合流体,经过扩压管减速压缩达到一定的背压。

模电实验(附答案)

实验一 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 3、 交流毫伏表 4、 模拟电路实验箱 5、 万用表 四、实验内容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? 图1 共射极单管放大器实验电路图

I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表1中。 表1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.6 2 7.2 60 0.6 5.2 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E =E E R U 或I C =C C CC R U U - U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 2.测量电压放大倍数 各仪器与放大器之间的连接图 关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。 1)检查线路无误后,接通电源。从信号发生器输出一个频率为1KHz 、幅值为10mv (用毫伏表测量u i )的正弦信号加入到放大器输入端。 2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫

实验二 射极跟随器

实验二 射极跟随器 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 +12V 直流电源、函数信号发生器、双踪示波器、直流电压表、实验电路板。 三、实验原理 1、射极跟随器的原理图如图5-1所示。它是一个电压负反馈型放大电路,它 具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相位等特点。 2、射极跟随器的动态参数计算 输入电阻: e R be r i R )1(β++=(不考虑偏置电阻和负载的影响) )]//)(1(//[L R e R be r B R i R β++=(考虑偏置电阻和负载的影响) 测试方法,按照实验电路图,分别测出A 、B 两点的对地电位Us 和Ui ,即可通 过公式R i U s U i U i R -= 算出输入电阻(其中R 为电路图中10k 的电阻) 。 输出电阻: β β be E be o r R r R ≈ = //(不考虑信号源内阻)

β ) //(B S be o R R r R +≈ (考虑信号源内阻) 测试方法:先测出空载输出电压Uo ,再测出接入负载R L 后的输出电压U L ,根 据公式O U L R O R L R L U += 即可计算出R O 电压放大倍数:1) //)(1()//)(1(≤+++= L R E R be r L R E R v A ββ 3、电压跟随范围 电压跟随范围是指射极跟随器输出电压u o 跟随输入电压u i 作线性变化的区域。当u i 超过一定范围时,u o 便不能跟随u i 作线性变化,即输出电压波形产生了失真。 四、实验内容及数据记录表格 1、静态工作点的调整与测试 接通+12V 电源,在B 点加入f=1KH Z 正弦信号u i ,在输出端用示波器观察输出波形,反复调整R W 及信号源的输出幅度,以便在示波器上得到一个最大不失真的输出波形,然后置信号源为0,用直流电压表测量晶体管各电极对地电位, 2、测量电压放大倍数A V 接入负载Ω=K L R 1,在 B 点加入f=1KH Z 正弦信号u i ,调节输入信号幅 度,用示波器观察输出波形uo ,在输出不失真的情况下,用示波器测出u i 和u o 3、测量输入电阻Ri 在A 点加入f=1KH Z 正弦信号u i ,用示波器观察输出波形,分别测出A 、B 两点的对地电位Us 4、测量输出电阻Ro

射极跟随器实验报告

实验六 射极跟随器 一、实验目的 l 、掌握射极跟随器的特性及测量方法。 2、进一步学习放大器各项参数的测量方法。 二、实验原理 下图为射极跟随器实验电路。跟随器输出电压能够在较大的范围内跟随输入电压作线性变化,而具有优良的跟随特性。 1、输入电阻R i 实际测量时,在输入端串接一个已知电阻R 1,在A 端输入的信号是V i ,在B 端的输入信号是i V ',显然射极输出器的输入电流为:1 R V V I i i i '-= ' i I '是流过R 的电流,于是射极输出器之输入电阻为: 1 1-'='-'=''=i i i i i i i i V V R R V V V I V R 所以只要测得图中A 、B 两点信号电压的大小就可按上式计算出输入电阻R i 。 2、输出电阻R 0 在放大器的输出端的D 、F 两点,带上负载R L ,则放大器的输出信号电压V L 将比不带负载时的V 0有所下降,因此放大器的输出端D 、F 看进去整个放大器相当于一个等效电源,该等到效电源的电动势为V S ,内阻即为放大器的输出电阻R 0,按图中等效电路先使放大器开路,测出其输出电压为V 0,显然V 0=V S ,再使放大器带上负载R L ,由于R 0的影响,输出电压将降为: L S L R R V R V +'= S V V =0Θ 则L S R V V R ?? ? ??-=100 所以在已知负载R L 的条件下,只要测出V 0和V L ,就可按上式算出射极输出器的输出电阻R 0。 3、电压跟随范围 电压跟随范围,是指跟随器输出电压随输入电压作线性变化的区域,但在输入电压超过一定范围时,输出电压便不能跟随输入电压作线性变化,失真急剧增加。因为射极跟随器的

射极跟随器实验报告完整版

射极跟随器实验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

肇庆学院 实验二射极跟随器实验报告 班别:学号:姓名:指导老师: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图1电路 R i =r be +(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图2所示。 图2 射极跟随器实验电路 (其中,R L 的测量值为Ω K,取Ω K;R的测量值为Ω K) 即只要测得A、B两点的对地电位即可计算出R i 。 2、输出电阻R O 图1电路

如考虑信号源内阻R S ,则 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O 3、电压放大倍数 图1电路 ) R ∥β)(R (1r ) R ∥β)(R (1A L E be L E u +++= ≤ 1 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。 这是深度电压负反馈的结果。但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。 4、电压跟随范围 电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。当u i 超过一定范围时,u O 便不能跟随u i 作线性变化,即u O 波形产生了失真。为了使输出电压u O 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取u O 的峰峰值,即电压跟随范围;或用交流毫伏表读取u O 的有效值,则电压跟随范围 U 0P-P =22U O 四、实验内容 1、听课。动手做实验前,听指导老师讲课,知道实验过程的注意事项,掌握各测量器材的使用方法。 2、按图2组接电路;静态工作点的调整 接通+12V 直流电源,在B 点加入f =1KHz 正弦信号u i ,输出端用示波器监视输出波形,反复调整R W 及信号源的输出幅度,使在示波器的屏幕上得到一个最大不失真输出波形,然后置u i =0,用万用表直流电压档测量晶体管各电极对地电位,将测得的原始数据记入表1。 表1 晶体管各电极对地电位U E 、U E 和U C 以及流过R E 电流I E

实验报告纸格式

实验报告纸格式

肇庆学院 肇庆学院学院电子电工课实验报告 12 年级机械4 班组实验日期 姓名老师评定 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 实验题目实验二射极跟随器 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验原理 射极跟随器的原理图如图5-1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随 输入电压作线性变化以及输入、输出信号同相等特点。 图5-1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图5-1电路 R i =r be +(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。

输入电阻的测试方法同单管放大器,实验线路如图5-2所示。 图5-2 射极跟随器实验电路 R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图5-1电路 β r R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 O L O L L U R R R U += 即可求出 R O L L O O 1)R U U ( R -= 3、电压放大倍数 图5-1电路

射极跟随器实验报告

学院 实验二射极跟随器实验报告 班别:学号::指导老师: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大围跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B和负载R L的影响,则

R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图2所示。 图2 射极跟随器实验电路 (其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK ) R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图1电路 β r R ∥βr R be E be O ≈= 如考虑信号源阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 O L O L L U R R R U += 即可求出 R O

共集电极放大电路射极跟随器

实验三 共集电极放大电路——射极跟随器 一、实验目的 1.研究射极跟随器的性能。 2.进一步掌握放大器性能指标的测量方法。 3.了解“自举”电路在提高射极输出器输入电阻中的作用。 二、实验电路及使用仪表 1.实验电路 2.实验仪表 (1)直流稳压电源 (2)函数信号发生器 (3)双路示波器 (4)双路毫伏表 (5)万用表 三、实验内容及步骤 1.按图w R ,使EQ I =2mA ),并将测量结果填入表4-10。 表 4-10 2.测量放大倍数u A ,观察输入电压和输出电压的相位关系。 条件:CC U =9V ,EQ I =2mA ,输入正弦频率调在中频段,i u =30mV 。 (1)输入电阻(i R )的测量 由于射极跟随器输入阻抗高,在电压表的内阻不是很高时,电压表的分流作用不可忽

视,它将使实际测量结果减小。为了减小测量误差,提高测量精度,测量方法如图 在信号源和被测放大器之间串入一个已知电阻S R =24 k Ω。 A .先把开关K 合上(即S R 不接入时),调节信号源频率f 为中频段,输入信号幅度s u 为300mV ,测量此时的输出电压o1u 。 B .保持s u 不变,打开K (即接入S R ),测量此时的输出电压o2u ,然后根据公式求出输入电阻。 S R u u u R o2 o1o1 i -= (2)输出电阻(o R )的测量 测量方法同一般放大器,如图s u ,输入正弦频率调在中频段。 在放大器无外接负载时输出电压o u ,然后接上负载时测出输出电压为o u ',根据下式求出输出电阻:

L o o o )1( R u u R -'= 3.验证自举电路对提高射极跟随器输入电阻的作用,按图 (1)有自举时的射极跟随器的输入电阻i R =? (附:接入2C 是有自举的射随器,测量方法与测量输入电阻i R 相同。) (2)无自举时的射极跟随器的输入电阻i R =? (附:取下2C 是无自举的射极跟随器,测量方法仍与测量i R 相同。) 四、试验报告及要求 1.画出表明元件的实验线路图。 2.整理数据并列表进行比较。 3.从实验现象和数据分析中,简述射极输出器有哪些主要优点? 五、思考题 1.测量放大器的输入电阻时,如果改变基极偏置电阻w R 的值,使放大器的工作状态改变,问对所测量的输入电阻值有何影响?如果改变外接负载L R ,问对所测量的放大器的输出电阻有无影响? 2.在图,能否用晶体管毫伏表直接测量S R 两端的电压S R u ,为什么?

射极跟随器实验报告

创作编号:BG7531400019813488897SX 创作者:别如克* 肇庆学院 实验二射极跟随器实验报告 班别:学号:姓名:指导老师: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器

射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图1电路 R i =r be +(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图2所示。 图2 射极跟随器实验电路 (其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK ) R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图1电路 β r R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得

射极跟随器实验报告

实验二射极跟随器实验报告 班别:________ 学号:—姓名: _________ 指导老师:________ 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS1002示波器一个、数字万用 表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在 较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R 图1电路 R i = r be + (1 + B )R E 如考虑偏置电阻R B和负载R-的影响,则 R i = R B// [r be+ (1 + B )(R E// R)] 由上式可知射极跟随器的输入电阻R比共射极单管放大器的输入电阻 R = R/ r be要高得多,但由于偏置电阻民的分流作用,输入电阻难以进一步

提咼。 输入电阻的测试方法同单管放大器,实验线路如图2所示 图2射极跟随器实验电路 (其中,R_的测量值为K,取K ;R的测量值为K ) 即只要测得A B两点的对地电位即可计算出R。 2、输出电阻R D 图1电路 如考虑信号源内阻F S,则 由上式可知射极跟随器的输出电阻R o比共射极单管放大器的输出电阻 F C低得多。三极管的B愈高,输出电阻愈小。 输出电阻的测试方法亦同单管放大器,即先测出空载输出电压U L,再测接入负载R-后的输出电压U,根据 即可求出R o 3 、电压放大倍数 图1电路 (1 卩)(R E // R L) V 1 A u 「be (1 卩)(R E // R L)V 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。这是深度电压负反馈的结果。但它的射极电流仍比基流大(1 + B )倍,所以它具有一定的电流和功率放大作用。 4、电压跟随范围 电压跟随范围是指射极跟随器输出电压U O跟随输入电压U i作线性变化的

基于LTspice的射极跟随器仿真实验

基于LTspice的射极跟随器仿真实验 1.实验要求与目的 (1) 进一步掌握静态工作点的调试方法,深入理解静态工作点的作用。 (2) 调节电路的跟随范围,使输出信号的跟随范围最大。 (3) 测量电路的电压放大倍数、输入电阻和输出电阻。 (4) 测量电路的频率特性。 2.实验原理 在射极跟随器电路中,信号由基极和地之间输入,由发射极和地之间输出,集电极交流等效接地,所以,集电极是输入/输出信号的公共端,故称为共集电极电路。又由于该电路的输出电压是跟随输入电压变化的,所以又称为射极跟随器。 3.实验电路 射极跟随器电路如图1所示。 图1 射极跟随器 4.实验步骤 (1) 静态工作点的调整。按图1连接电路,输入信号由信号发生器产生一个幅度为1V、频率为1 kHz 的正弦信号。要注意使信号不失真输出。 (2) 跟随范围调节。增大输入信号直到输出出现失真,观察出现了饱和失真还是截止失真,再增大或减小信号,使失真消除。再次增大输入信号,若出现失真,再调节信号使输出波形达到最大不失真输出,此时电路的静态工作点是最佳工作点,输入信号是最大的跟随范围。最后输入信号增加到2.8 V,电路达到最大不失真输出如图2所示。最大输入、输出信号波形如图3所示。 图2 输出波形达到最大不失真输出是2.8V

图3 最大输入、输出信号波形 (3) 测量电压放大倍数。观察图3所示输入、输出波形,射极跟随器的输出信号与输入信号同相,幅度基本相等,所以,放大倍数A V ≈1。 (4) 测量输入电阻。测量输入电阻电路如图4所示,在输入端接入电阻R 1 = 2 k ,输入端输入频率为1000 Hz ,电压为1 V 的输入信号,进行AC 扫描结果如图4所示。电路的输入电阻为: 图4_1输入电阻测量电路 Ω≈= k 6.29i i i I U r

相关文档
最新文档