气相色谱仪(GC)技术的最新进展和发展方向

气相色谱仪(GC)技术的最新进展和发展方向
气相色谱仪(GC)技术的最新进展和发展方向

气相色谱技术的研究进展及其应用

气相色谱技术是现代仪器分析的重要研究领域之一,由于其独特、高效、快速的分离特性,已成为物理、化学分析不可缺少的重要工具。进入2l世纪以来,气相色谱技术的发展已渐趋成熟,基础性的创新成果十分有限,但技术性的进步一直在进行着,尤其是与行业相关的应用性研究仍然十分活跃,以微柱阀切换、专用色谱柱和自控技术为基础发展起来的各类试样预处理系统和专用分析系统的标准化与商品化结果,使得这些新技术和新方法的应用变得越来越便利。目前,气相色谱技术已在石油、化工、环保、药物等方面有广泛应用。

1 气相色谱技术的研究进展

1.1 全二维气相色谱

传统的多维气相色谱发展到今天,无论在理论上还是应用上,均已相当成熟,而全二维气相色谱则是20世纪90年代初出现的新方法。首先,Jorgenson等?于1990年提出全二维液相色谱毛细管电泳联用的方法,强调二维正交分离的童要性。其后,Phillips等[21利用他们以前在快速气相色谱中使用的在线热解析调制器开发出全二维气相色谱法。在该方法中,第1支柱为非极性柱,第2支柱为极性柱,通过极性和温度的改变实现气相色谱分离特性的正交化。从第1支柱中流出的组分按保留大小依次进人调制器进行聚焦,然后通过快速加热的方法把聚焦后的组分快速发送到第2支柱中进行再分离。由于发送频率很高,聚焦后再往第2根柱发送。连接两支柱的桥梁可以是l支厚膜毛细管,也可以是1支冷阱控制的空毛细管。全二维气相色谱技术的关键部件是调制器。

全二维气相色谱分析技术的特点如下:

(1)灵敏度高。组分在流出第一根色谱往后,经过调制器聚焦后,提高了在枪测器上的浓度,因而提高检测器的灵敏度,可比通常一维色谱灵敏度提高20~70倍。

(2)分辨率高、峰容量大。一般的二维气相色谱蜂容量是二柱蜂容萤之和,而全二维气相色谱的峰容量是二柱峰容量之乘积,分辨率为二柱各自分辨率平方和的平方根。

(3)分析时间短、工作效率高。由于该系统能提供高的峰容量和好的分辨率,总分析时间比一维色谱短。

(4)定性分析叮靠性显著增强。主要有3个因素:①大多数目标化合物和化合物组群可达到基线分离减少干扰;②峰被分离成为容易识别的模式;③其中某一个峰相对于同族的其他成员来说,在每次运动巾其位置是稳定的。

(5)由于系统能提供高峰容量和好分辨率,一个方法便可完成原来要几个美国测试和材料协会(ASTM)方法才能完成的任务。

1.2 快速气相色谱技术

最近几年国内不断有文献报道有关快速和便携式气相色谱技术和应用,说明气相色谱的快速化和小型化已经受到人们的十分重视。我国科技部在“九五”期间曾组织分析仪器开发研究课题,北京分析仪器厂等单位已经研制“高压快速气相色谱”,分析时间可缩短到常规毛细管色谱的l/3到1/5。北京石油勘探研究院的武杰曾对高压快速气相色谱的理论与在石油方面的应用有过很深入的研究。要实现快速气相色谱就要使用内径要细、长度要短的色谱柱,目前许多研究者都足使用细内径短毛细管柱进行快速气相色谱分析。因为使用细内径色谱柱町减少分析时问,另外还可提高柱效,但是使用短柱,色谱柱的总柱效就降低,而柱效是样品分离的首要因素,所以必须提高色谱柱单位柱长的柱效,这样既满足快速气相色谱要求的细内径短柱又满足分离所需的高柱效。

1.3 便携式色谱仪

进入2 l世纪,分析仪器正出现一个以微璎化为主要特点的、带有革命特征的转折。美国科学家基于在航天发射工作中气体监测方面的需要,Stanford大学的研究人员用半导体芯片生产工艺研制出两个关键元件一进样器和检测器,率先推出了基于芯片技术的气褶色谱仪。

与常规色谱仪一样,微型便携式色谱仪也宅要由进样口、色谱柱和检测器组成,所不同的是后者采用微加工技术,把进样口和检测器微刻在硅片上,其尺寸与一个集成电路相当,色谱柱可崮定在一个加热板上。这种微型便携式色谱仪体积小、重缝轻,便于携带,分析速度快,保留时间以秒计,适合于有毒有害气体的监测和工艺过程的质量控制,既可以作为实验气相色谱仪,也可以作为在线工业色谱仪,同时有较高的灵敏度,最低检测限为10级。

1.4 气相色谱和质谱联用技术

在色谱联用仪中,气相色谱和质谱联用仪(GC—MS)是开发最早的色谱联用仪器。自1957年霍姆斯(Holmes JC)和莫雷尔(Morrell FA)首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。由于从气相色谱柱分离后的样品呈气态,流动相也是气体,与质谱的进样要求相匹配,最容易将这两种仪器联用,而且气一质联用法综合了气相色谱和质谱的优点,弥补了各自的缺陷,因而具有灵敏度高、分析速度快和鉴别能力强的特点,可同时完成待测组分的分离和鉴定,特别适用于多组分混合物巾未知组分的定性和定量分析,判断化合物的分子结构;准确地测定化合物的分子量;是目前能够为皮克级试样提供结构信息的工具。1.5 仪器方面的最新进展

a.自动化程度进一步提高,特别是EPC(电子程序压力流量控制系统)技术已作为基本配置在许多厂家的气相色谱仪上安装(如Agilent6890,

ShimadzuGC-2014GC-2010,Varian3800,PEAutoXL,CEMega8000等),从而为色谱条件的再现、优化和自动化提供了更可靠更完善的支持。

b.与应用结合更紧密的专用色谱仪,如天然气分析仪等。

c.色谱仪器上的许多功能进一步得到开发和改进,如大体积进样技术,液体样品的进样量可达500微升;检测器也不断改进,灵敏度进一步提高;与功能日益强大的工作站相配合,色谱采样速率显著提高,最高已达到200赫兹,这为快速色谱分析提供了保证。

d.色谱工作站功能不断增大,通讯方式紧跟时代步伐,已实现网络化,从技术上讲,现在实现气相色谱仪的远程操作(样品已置于自动进样器中)是没有问题的。

e.新的选择性检测器得到应用,如AED、O-FID、SCD、PFPD等。

2、色谱柱

a.新的高选择性固定液不断得到应用,如手性固定液等。

b.细内径毛细管色谱柱应用越来越广泛,主要是快速分析,大大提高分析速度。

c.耐高温毛细管色谱柱扩展了气相色谱的应用范围,管材使用合金或镀铝石英毛细管,用于高温模拟蒸馏分析到C120;用于聚合物添加剂的分析,抗氧剂1010在20分钟内流出,得到了较好的峰形。

d.新的PLOT柱出现,得到了一些新的应用。

2 气相色谱技术的应用

2.1 气相色谱技术在石化分析中的应用

徐广通等一1对基于汽油单体烃分析的各类物性数据的计算进行了研究,提出了一套新的辛烷值计算方法,对一些具有加和性的物性参数,如:密度、蒸气压、折光等也进行了预测。且进一步推出了一套可用于SOA和苯含量分析的双柱箱、双气路多维色谱系统,并进行了相关的标准化工作。由于较好地解决了烯烃捕集阱对烯烃的选择性保留和定量解析等困难,所开发的专用分析系统和方法有很好的应用前景。杨水坛等建立了汽油馏分、煤/柴油馏分中各种硫化物类型分布的GC.AED分析方法,采用一非极性色谱柱。町对汽油馏分中的多个硫化物、柴油馏分中的130多个硫化物进行检测,并开发了相应的分析软件。结合国内加工油的特点,研究了不同来源汽油、柴油中的硫化物类型分布,并研究了不同脱硫催化剂和工艺中各种硫化物的变化规律,为脱硫催化剂和相关j:艺的选择提供了必要的基础数据。

2.2 气相色谱技术在环境分析中的应用

环境中多氯联苯(PCIN)、氯化硼烷和氯化莰烯的分析对分析化学家具有很大的挑战性。PCBs共有209个氯代联苯化合物,仅150个在商用产品中出现。De Geus 等?1使用半GCxGC分离了非一邻位氯苯CBs77,126和169及一个工艺PCB混合物Aroclorl254,结果表明,一次分离就可分析出所有感兴趣的组分。大连物化所得许国旺等用GCxGC与TOF。MS飞行时问质谱联用表征卷烟主流烟气巾的酚类化合物11?,采用TOF.MS谱图图库检索以二维“结构谱图”的定性手段,初步鉴定出250个酚类化合物,包括66个烷皋苯酚、47个烯基苯酚、57个萘酚、1 7个苯基苯酚、32个甲氧基苯酚、9个酚酮和15/r酚醛化合物。刘文民等¨到采用In.tube SPME.GC和SBSE—GC对水中的正构烷烃以及农药污染物进行了分析,结果表明所设计的In—tube和SPME—GC接口装置中微三通的引入避免了解吸下来的分析物经过六通阀而造成残留,同时还避免了高温人通阀的使用,从而降低r新装置的成本,适宜水体巾有机污染物的分析;SBSE方法中搅拌棒的制作方法可靠,重复性好,热解吸装置中传输线的加热由气相色谱进样口完成,操作简单。卢凯对天津市东郊污水处理厂沼气成分及含量采用气相色谱技术进行分析利用,气相色谱仅数据处理器的编程功能编制程序,输入甲烷、二氧化碳、污泥浓度、污泥有机分和消化率的数据后,可以直接得到产气率。此程序计算的产气率虽高于实际产气率,但实践证明,这套程序在生产中发挥了积极作用,不仅提高了分析速度,而且给出了量化数据,使污泥处理工艺得以在最佳条件下运行。

2.3 气相色谱技术在在生物药剂学研究分析中的应用

根据国际奥委会医学委员会的要求,体育运动中的兴奋剂检测唯一能用作确认的仪器是GC~MS。段宏瑾等采用气相色谱.质谱联用系统对此药进行了研究。实验发现,PEN原药在尿中的代谢很快,2 h后的尿中已检测不到,因而检测其代谢物十分重要。在实验中共检出了6种代谢产物,其中有5种在72 h的尿中仍能检出。大大增加了检测的叮靠性。与此同时,还建立了血中PEN的检测方法。此方法现已用于对运动员兴奋剂的检查。杨嚼莉等¨叫同以樟脑为内标,建立了GC—MS法测定冰片和川I芎嗪的血药浓度方法,最低检出限为2 ng/mL。动物实验表明,冰片可促进川芎嗪的吸收,通过测定10名健康志愿者含服速效救心丸后冰片的血药浓度,并拟合了药代动力学参数。发现舌下含服速效救心丸后10 min冰片达到了最高血药浓度;同时发现冰片在体内的消除半衰期为58.23 min 士15.90 min.在服药90 min后,冰片浓度降虿20 ng/mL以下,从而了解了药物在体内的吸收代谢情况,为合理用药提供了科学依据。叶云鹏用气相层析一谱研究了人体尿中的川芎嚷代谢产物,采用气相层析-质谱(美国惠普公司的

HP5890GCll一HP597lAMSD)和HP·l石英毛细管柱(12 mE)。柱温70℃,2.5 min 以后以20。C/min程序升温至240℃。进样口温度250℃,GC·MS接口温度280℃,

载气为氦气。化学电离用甲烷气,扫描范围100~350 m/z,证实主要的代谢产物为__3,5,6-三甲基吡嗪甲酸,为进一步阐明人体代谢对川芎嗪药效和毒性的影响和指导对川芎嗪的结构改造等打下基础。

2.4 气相色谱在白酒分析中的应用

白洒的主要成分是乙醇和水(占总量的98%~99%),而溶于其中的醇、醛、酸、酯等众多有机化合物(占总量的1%~2%)作为白酒的景香旱味物质,却决定着白酒的质量和风格。冈此,气相色谱分析在白酒内在质量雌控上起着关键作用。它在白酒分析中的应用主要包括以下几个方面。

2.4.1 对卫生指标甲醇和杂醇油的控制

白酒巾甲醇、杂醇油是洒类卫生监控指标中的两项重要指标,GB2757和GBl0345对甲醇、杂醇油的含量和检验方法作了严格的规定。用气相色谱仪叮直接进样,并町快速、准确地测定出洒样中甲醇和杂醇油的含量。

2.4.2 对主体香含量的测定

白酒是多种香味成分的集合体,独特香型既取决于主体香味成分在酒中的含量,也取决于某些特征性香味成分的种类和含量。浓香型白酒的丰体香是己酸乙酯,清香型白酒的主体香是乙酸乙酯,在GBl0781.1-2006和GBl0781.2-2006中严格规定了优级高度酒的己酸乙酯和乙酸乙酯最高不能超过2.80g/L和2.60 g/L。米香型高度优级酒的乳酸乙酯不能低于0.50 g/L。用气相色谱可快速、准确地测定主体香含量,以判断其是否合格。

2.4.3 白酒骨架成分的测定

白酒巾用常规色谱定最分析得到的二十种左右的成分称为色谱骨架成分。这二十种左右的色谱骨架成分是中国白酒中占优势的成分(乙醇和水除外),是中国白酒的t十成分,是组合生产技术环节必须倚重和十分注意的核心要素之一,它们在构成巾国自酒时起主干作用,它们构成了中国自洒的骨架。白酒香型不同,风格不同,其色谱骨架成分的构成情况亦不同。利用气相色谱分析白酒的骨架成分对基础酒的组合将起到事半功倍的效果。

2.4.4 白酒复杂成分的测定

白酒香味成分中含量小于20 mg/L的所有成分称为复杂成分。复杂成分决定着白洒的质量和档次。利用气相色谱仪与其他仪器相配合使用,如气质联用等开展多种复杂成分的分析研究,町以为稳定和4;断提高白酒特别是名优白酒产品质量提供更广泛、准确的科学依据。

2.4.5 酒用香料的测试

随着国家白酒产业政策的调整和人们消费观念的改变,白酒低度化已成为一种发展趋势,因此,食用香料的使用越来越广泛,对其质量要求也越来越高,

用气相色谱町快速准确地测定出得种香料成分的含量。

3 前景与展望

随着社会不断进步,人们对环境的要求越来越高,环保标准日益严格,这就要求气相色谱与其它分析方法一样朝更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决遇到的新的分析问题。网络经济飞速发展也为气相色谱的发展提供了更加广阔的发展空间。

其发展主要体现在以下几个方面:

(1)满足各种应用需求的专用色谱柱的开发。高选择性和寿命、低应用成本及齐全规格尺寸是对这类色谱柱的基奉要求。

(2)针对各类具体需求开发的与标准分析方法相配套的专用分析系统的普遍应用。小型(芯片化、模块化)、快速、可靠__和自动化、网络化将是这类专用系统的主要技术特征。

(3)基于各类应用系统或分析方法开发的专用分析软件也是一个值得关注的方向。专业化、网络化和远程技术支持性能将是对这类应用软件的基本要求。

(4)基于网络的广义并行多维色谱分析系统有望进入实用阶段。广义并行多维色谱分析系统是指以普通单一气相色谱作为一个基本分析单元,通过网络将多台具有这类单一分析功能的气相色谱组合成一个分析系统,共同完成特定分析任务的组合系统。 新型检测器

室内空气质量(IAQ) 检测仪(IAQRAE)

复合气体检测仪

(MultiRAE Plus)

手持式VOC 检测仪

(MiniRAE 2000)

便携式气相色谱分析

仪(GC-PID)

便携式气相色谱仪

气相色谱仪操作步骤(精)

气相色谱仪操作步骤 1 打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2. 打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3. 设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。苯分析时的色谱条件:(a)柱箱:柱箱初始温度100℃、初始时间0min、升温速率0℃/min、终止温度0℃、终止时间0min; (b)进样器和检测器:都是150℃。 4. 点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到100℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5. 打开电脑及工作站A,打开一个方法文件:TVOC分析方法或苯分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度

气相色谱仪使用方法及实验操作步骤

液相色谱仪、气相色谱仪、原子吸收分光光度计、红外光谱仪、核磁共振、原子发射光谱等分析仪器 气相色谱仪使用方法及实验操作步骤: A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 C、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 D、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa 和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 F、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。 高效液相色谱 我国药典收载高效液相色谱法项目和数量比较表: 鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。 三、色谱法分类 (3) 四、色谱分离原理 (3) II.基本概念和理论 (5) 一、基本概念和术语 (5) 二、塔板理论 (8)

7890B气相色谱仪的操作规程

1、目的:建立安捷伦7890B GC气相色谱仪的操作规程,使检验人员能够正确的使用安捷伦7890B GC气相色谱仪。 2、适用范围:气态有机化合物或较易挥发的液体、固体有机化合物样品。 3、责任人:检测员 4、正文: 4.1 操作步骤 4.1.1 操作前准备 4.1.1.1 色谱柱的检查与安装首先打开柱温箱门看是否是所需用的色谱柱,若不是则旋下毛细管柱按进样口和检测器的螺母,卸下毛细管柱。取出所需毛细管柱,放上螺母,并在毛细管柱两端各放一个石墨环,然后将两侧柱端截去1~2mm,进样口一端石墨环和柱末端之间长度为4~6mm,检测器一端将柱插到底,轻轻回拉1mm左右,然后用手将螺母旋紧,不需用板手,新柱老化时,将进样口一端接入进样器接口,另一端放空在柱温箱内,检测器一端封住,新柱在低于最高使用温度20~30℃以下,通过较高流速载气连续老化24小时以上。 4.1.1.2 气体流量的调节 4.1.1.2.1 载气(氮气)开启氮气钢瓶高压阀前,首先检查低压阀的调节杆应处于释 (400-690kPa)放状态,打开高压阀,缓缓旋动低压阀的调节杆,调节至约0.55MPa。 4.1.1.2.2 氢气打开氢气钢瓶,调节输出压至0.41MPa。(400-690kPa) 4.1.1.2.3 空气打开空气钢瓶,调节输出压至0.55MPa。(550-690kPa) 4.1.1.3 检漏用检漏液检查柱及管路是否漏气。 4.1.2 主机操作 4.1.2.1 接通电源,打开电脑,进入windows 主菜单界面。然后开启主机,主机进行自检,自检通过主机屏幕显示power on successul,进入Windows系统后,双击电脑桌面的(Instrument Online)图标,使仪器和工作联接。 4.1.2.2 编辑新方法 4.1.2.2.1 从“Method”菜单中选择“Edit Entire Method”,根据需要钩选项目,“Method Information”(方法信息),“Instrument/Acquisition”(仪器参数/数据采集条件),“Data Analysis”(数据分析条件),“Run Time Checklist”(运行时间顺

气相色谱仪操作规程及注意事项

气相色谱仪操作规程及注意事项 1、检漏先将载气出口处用螺母及橡胶堵住,再将钢瓶输出压力调到0.4~0.6MPa(4-6kgf/cm2)左右,继而再打开载气稳压阀,使柱前压力约0.3~0.4MPa (3-4kgf/cm2),并察看载气的流量计,如流量计无读数则表示气密性良好,这部分可投入使用;倘发现流量计有读数,则表示有漏气现象,可用十二烷基硫酸钠水溶液探漏,切忌用强碱性皂水,以免管道受损,找出漏气处,并加以处理。 2、载气流量的调节气路检查完毕后在密封性能良好的条件下,将钢瓶输出气压调到0.2~0.4MPa(2-4kgf/cm2),调节载气稳压阀,使载气流量达到合适的数值。注意,钢瓶气压应比柱前压(由柱前压力表读得)高0.05MPa(0.5kgf/cm2)以上。 3、恒温在通载气之前,将所有电子设备开关都置于“关”的位置,通入载气后,按一下仪器总电源开关,主机指示灯亮,层析室鼓风马达开始运转。 打开温度控制器电源开关,调节层析室温控调节器向顺时针方向转动,层析室的温度升高,主机上加热指示灯亮表示层析室在加温,升温情况可以由测温毫伏表(根据测温毫伏表转换开关的位置)读得,还可以由插入的玻璃温度计读得。当加热指示灯呈暗红或闪动则表示层析室处于恒温状态。调节层析室温控调节器,使层析室的温度恒定于所要求的温度上。层析室的温度可根据需要在室温至250℃之间自由调节。 开汽化器(样品进入处)加热电源开关,汽化加热指示灯亮,调节汽化加热调节器,分数次调到所要求的温度上。升温情况可由测温毫伏表读得。 汽化器(样品进入处)及氢焰离子室加热温度的调节由温度控制器内汽化加热电路直接控制,其调节范围为0-200V。汽化器及氢焰离子室所需温度应逐步升高,以防止温度升得过高而损坏。氢焰离子室温度由钮子开关控制,可高于、低于汽化器温度或不加热。测温的显示仪表为一测温毫伏计。层析室、汽化器、氢焰离子室合用同一测温仪表,其显示方法是用一单刀三掷的波段开关予以切换完成的。 层析室、汽化器及氢焰离子室的温度、气体流量和进样量等,应根据被测物质的性质、所用色谱柱的性能、分离条件和分析要求而定。 4、热导检测器的使用层析室温度恒定一段时间后,将热导,氢焰转换开关置

气相色谱仪操作规程完全版

气相色谱仪操作规程 GC9790气相色谱仪操作规程(一) (1) SP1000气相色谱仪操作规程 (1) Agilent4890D气相色谱仪操作规程 (2) HP-5890A气相色谱仪操作规程 (3) GC-9790气相色谱仪操作规程(二) (4) SP2100气相色谱仪操作规程 (5) GC-920色谱操作规程 (5) Agilent6890气相色谱仪操作规程 (6) GC9800TT型气相色谱仪操作步骤 (7) GC9800FF型气相色谱仪操作步骤 (8) 9001型气相色谱仪操作规程 (10) SP6800A气相色谱仪的操作说明 (12) GC-930色谱操作规程 (13) GC112A气相色谱操作规程 (14) GC122气相色谱操作规程 (14) GC1690气相色谱仪说明书 (15) 惠普4890D型气相色谱仪标准操作程序 (16) HP6890气相色谱仪操作规程 (19) SP-6890气相色谱仪操作规程 (20) HP-5890A气相色谱仪操作规程 (21) GC-14A气相色谱仪操作规程 (23) HP4890D气相色谱仪操作说明(二) (24) GC9890气相色谱仪操作步骤 (25) 岛津气相色谱GC-2010操作规程 (26) 岛津GC-14CPFID气相色操作规程 (27) GC-14C气相色谱简易操作规程 (27) Agilent6820-GC(ForCerityNDS) (29) 瓦里安CP3800气相色谱操作规程 (33) 安捷伦GC-6820使用规程 (35)

GC9790气相色谱仪操作规程(一) 1.检查仪器电源线连接是否正常、气路管线连接是否正常。 2.打开载气(N2)钢瓶总阀,并调节减压阀开关,使得输出的载气压力在0.3~0.5Mpa之间。 3.调节仪器上的载气调压阀,使得柱前压处在分析工作所需要的压力(一般来说,柱前压在0.05~0.1Mpa之间)。 4.打开电源开关,根据分析要求设置柱温、汽化温度、检测温度等参数,按确定键后仪器升温。同时打开色谱工作站电源。 5.仪器升温到设置温度后,打开空气发生器电源;同时扭开氢气钢瓶阀门,调节氢气减压阀压力在0.3Mpa左右。 6.调节仪器正面右下侧的针形阀,使空气压力在0.05MPa左右,氢气压力在0.15~0.2MPa之间,用点火枪点着FID的火焰,用玻璃片或铁片等冷的物体靠近检测器的盖帽,有水珠凝结表明点火成功(也可以通过观察工作站所显示的基线是否在点火瞬间开始上升来确定是否点火成功)。 7.将仪器右下侧空气、氢气的针形阀压力都缓慢调节到0.1MPa。 8.待基线稳定后开始分析测试工作。 9.分析工作结束后,可以立即关闭氢气钢瓶总阀以及空气发生器电源。 10.调低各路设定温度,使柱温箱、汽化室、检测器温度下降,待柱箱温度低于70℃即可关闭仪器电源。 11.关闭载气钢瓶上的总阀。清理仪器室的进样针、样品等物品,结束GC9790的操作。 SP1000气相色谱仪操作规程 1仪器组成 1.1气源部分,包括氮气钢瓶,氢气源发生器,空气源发生器。 1.2气相主机,包括氢火焰离子化检测器(FID)。 1.3计算机及C-21色谱数据采集单位组成。 2采样操作步骤 2.1选择合适的色谱柱安装于进样器一端,另一端安装于所用的检测器口。 2.2打开载气钢瓶的总阀及减压阀至0.4-0.5Mpa,确定有载气流量后,打开气相主机电源开关。在面板上按“设定”键进入设定参数界面,设定柱温(恒温、程序升温)、设定进样器温度,设定检测器温度。程序升温包括起始温度、起始时间、升温速率、结束温度、结束时间等。仪器在升温状态中,等待指示灯亮,到达所设状态,就绪指示灯亮,即可进样。2.3打开氢气发生器和空气发生器开关,平衡10分钟。按住气相主机上“点火”钮数秒钟即可。按“状态”键切换到状态界面可观察到信号显示及仪器各部件状态。 2.4打开电脑,双击BF-2002色谱工作站图标进入色谱工作站。

气相色谱仪原理、结构及操作

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 2.1 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就

气相色谱仪操作步骤

气相色谱仪操作步骤 1、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 4、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。

气相色谱仪的操作步骤

气相色谱仪的操作步骤 气相色谱仪操作步骤: 1、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 4、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。

在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:**分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。(1)外标法或内标法测,首先进标准品或对照品,然后再进待测品;(2)面积归一法测,首先进溶剂进行空白分析,然后再进待测品。如有异常可用溶剂高温吹柱子,直到基线平稳。分析结束时,点击“停止”按钮,数据即自动保存。 6、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。

气相色谱仪的正确操作步骤

气相色谱仪的正确操作步骤 在日常生活中,我们为了一些工作或者是别的事情,经常会用到一种检测仪,即气象色谱仪。在这里,我们详细的介绍下其的操作步骤。 气相色谱仪工作原理是利用水质样品被汽化后的其各个组分的在色谱柱中气象和固定时间的分配系数的不同,通过不断的吸附-脱附-放出的反复提取,使得各组分在色谱柱中运行的速度不同,最后彼此分离,进入检测器通过放大依次流出的离子流信号,记录得到色谱图,依照色谱图进行定性、定量分析。 那么,气相色谱仪使用方法及实验操作步骤是什么呢?以下内容就为大家揭晓这个问题。 1、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min;(b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min;(b)进样器温度是260℃,检测器温度是280℃。 4、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。 同时,用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。 在气相色谱仪点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。在现实生活中,气相色谱仪的应用具有很大的意义,它不仅能检测出水质中的有机污染物,部分无机物它也能检测出来,并且它的实用性在不断地扩大。这样说来,它是很适合检测水体中的污染物的。

气相色谱仪操作规程及注意事项

气相色谱仪操作规程及注意事项 气相色谱仪操作规程及注意事项 气相色谱仪操作时有哪些流程?使用气相色谱仪应该注意哪些情况呢? 气相色谱仪操作规程: 1、检漏 先将载气出口处用螺母及橡胶堵住,再将钢瓶输出压力调到 3.9×105~5.9×105Pa(4-6kgf/cm2)左右,继而再打开载气稳压阀,使柱前压力约2.9×105~3.9×105Pa(3-4kgf/cm2),并察看载气的流量计,如流量计无读数则表示气密性良好,这部分可投入使用;倘发现流量计有读数,则表示有漏气现象,可用十二烷基硫酸钠水溶液探漏,切忌用强碱性皂水,以免管道受损,找出漏气处,并加以处理。 2、载气流量的调节 气路检查完毕后在密封性能良好的条件下,将钢瓶输出气压调到2×105~3.9×105Pa(2-4kgf/cm2),调节载气稳压阀,使载气流量达到合适的数值。注意,钢瓶气压应比柱前压(由柱前压力表读得)高4.9×104Pa(0.5kgf/cm2)以上。 3、恒温 在通载气之前,将所有电子设备开关都置于“关”的位置,通入载气后,按一下仪器总电源开关,主机指示灯亮,层析室鼓风马达开始运转。 打开温度控制器电源开关,调节层析室温控调节器向顺时针方向转动,层析室的温度升高,主机上加热指示灯亮表示层析室在加温,升温情况可以由测温毫伏表(根据测温毫伏表转换开关的位置)读得,还可以由插入的玻璃温度计读得。当加热指示灯呈暗红或闪动则表示层析室处于恒温状态。调节层析室温控调节器,使层析室的温度恒定于所要求的温度上。层析室的温度可根据需要在室温至250℃之间自由调节。 开汽化加热电源开关,汽化加热指示灯亮,调节汽化加热调节器,分数次调到所要求的温度上。升温情况可由测温毫伏表读得。 汽化器(样品进入处)及氢焰离子室加热温度的调节由温度控制器内汽化加热电路直接控制,其调节范围为0—200V。汽化器及氢焰离子室所需温度应逐步升高,以防止温度升得过高而损坏。氢焰离子室温度由钮子开关控制,可高于、低于汽化器温度或不加热。测温的显示仪表为一测温毫伏计。层析室、汽化器、氢焰离子室合用同一测温仪表,其显示方法是用一单刀三掷的波段开关予以切换完成的。 层析室的温度、汽化器及氢焰离子室的温度、气体流量和进样量等,应根据被测物质的性质、所用色谱柱的性能、分离条件和分析要求而定。

气相色谱仪使用常识注意事项样本

气相色谱仪使用常识-注意事项 安装色谱柱 1.安装拆卸色谱柱必须在常温下。 2.填充柱有卡套密封和垫片密封, 卡套分三种, 金属卡套, 塑料卡套, 石墨卡套, 安装时不易拧的太紧。垫片式密封每次按装色谱柱都要换新的垫片( 岛津色谱是垫片密封) 。 3.色谱柱两头是否用玻璃棉塞好。防止玻璃棉和填料被载气吹到检测器中。 4.毛细管色谱柱安装插入的长度要根据仪器的说明书而定, 不同的色谱汽化室结构不同, 因此插进的长度也不同。需要说明的如果你用毛细管色谱柱采用不分流, 汽化室采用填充柱接口这时与汽化室连接毛细管柱不能探进太多, 略超出卡套即可。 氢气和空气的比例对FID检测器的影响 氢气和空气的比例应1: 10, 当氢气比例过大时FID检测器的灵敏度急剧下降, 在使用色谱时别的条件不变的情况下, 灵敏度下降要检查一下氢气和空气流速。氢气和空气有一种气体不足点火时发出”砰”的一声, 随后就灭火, 一般当你点火电着就灭, 再点还着随后又灭是氢气量不足。 使用TCD检测器 1.氢气做载气时尾气一定要排到室外。 2.氮气做载气桥流不能设大, 比用氢气时要小的多。 3.没通载气不能给桥流, 桥流要在仪器温度稳定后开始做样前在

给。 如何判断FID检测器是否点着火 不同的仪器判断方法不同, 有基流显示的看基流大小, 没有基流显示的用带抛光面的扳手凑近检测器出口, 观察其表面有无水汽凝结。 气相色谱常见故障诊断 气相色谱种类很多, 性能也各有差别。主要包括两个系统。即气路系统和电路系统。气路系统主要有压力表、净化器、稳压阀、稳流阀、转子流量计、六通进样阀、进样器、色谱柱、检测器等; 电子系统包括各用电部件的稳压电源、温控装置、放大线路、自动进样和收集装置、数据处理机和记录仪等电子器件。 要分析和判断色谱仪的故障所在, 就必须要熟悉气相色谱的流程和气、电路这两大系统, 特别是构成这两个系统部件的结构、功能。色谱仪的故障是多种多样的, 而且某一故障产生的原因也是多方面的, 必须采用部分检查的方法, 即排除法, 才可能缩小故障的范围。对于气路系统出的故障, 不外乎是各种气体( 特别是载气) 有漏气的现象、气体不好、气体稳压稳流不好等等。例如: 基线若始终向下漂移, 即”电平”值逐渐变小至负数, 这极有可能是载气泄漏, 那么就要查找各个接头部件是否有漏的现象, 若不漏而基线仍漂移, 则可能是电路系统的故障。色谱气路上的故障, 分析工作者能够找出并排除, 但要排除电路上的故障

气相色谱仪使用常识

气相色谱仪使用常识 气相色谱使用注意事项 安装色谱柱 1.安装拆卸色谱柱必须在常温下。 2.填充柱有卡套密封和垫片密封,卡套分三种,金属卡套,塑料卡套,石墨卡套,安装时不易拧的太紧。垫片式密封每次按装色谱柱都要换新的垫片(岛津色谱是垫片密封)。 3.色谱柱两头是否用玻璃棉塞好。防止玻璃棉和填料被载气吹到检测器中。 4.毛细管色谱柱安装插入的长度要根据仪器的说明书而定,不同的色谱汽化室结构不同,所以插进的长度也不同。需要说明的如果你用毛细管色谱柱采用不分流,汽化室采用填充柱接口这时与汽化室连接毛细管柱不能探进太多,略超出卡套即可。 氢气和空气的比例对FID检测器的影响 氢气和空气的比例应1:10,当氢气比例过大时FID检测器的灵敏度急剧下降,在使用色谱时别的条件不变的情况下,灵敏度下降要检查一下氢气和空气流速。氢气和空气有一种气体不足点火时发出“砰”的一声,随后就灭火,一般当你点火电着就灭,再点还着随后又灭是氢气量不足。 使用TCD检测器

1.氢气做载气时尾气一定要排到室外。 2.氮气做载气桥流不能设大,比用氢气时要小的多。 3.没通载气不能给桥流,桥流要在仪器温度稳定后开始做样前在给。 如何判断FID检测器是否点着火 不同的仪器判断方法不同,有基流显示的看基流大小,没有基流显示的用带抛光面的扳手凑近检测器出口,观察其表面有无水汽凝结。 气相色谱常见故障诊断 气相色谱种类很多,性能也各有差别。主要包括两个系统。即气路系统和电路系统。气路系统主要有压力表、净化器、稳压阀、稳流阀、转子流量计、六通进样阀、进样器、色谱柱、检测器等;电子系统包括各用电部件的稳压电源、温控装置、放大线路、自动进样和收集装置、数据处理机和记录仪等电子器件。 要分析和判断色谱仪的故障所在,就必须要熟悉气相色谱的流程和气、电路这两大系统,特别是构成这两个系统部件的结构、功能。色谱仪的故障是多种多样的,而且某一故障产生的原因也是多方面的,必须采用部分检查的方法,即排除法,才可能缩小故障的范围。对于气路系统出的故障,不外乎是各种气体(特别是载气)有漏气的现象、气体不好、气体稳压稳流不好等等。 例如:基线若始终向下漂移,即“电平”值逐渐变小至负数,这极有可能是载气泄漏,那么就要查找各个接头部件是否有漏的现象,若不漏而基线仍漂移,则可能是电路系统的故障。色谱气路上的故障,分析工作者可以找出并排除,但要排除电路上的故障则并非易事,就需要分析工作者有一定的电子线路方面的知识,并且要弄清楚主机接线图和各系统的电原理图

气相色谱仪Trace1300操作规程

气相色谱仪Trace-1300操作规程

————————————————————————————————作者:————————————————————————————————日期:

Thermo FisherTrace 1300气相色谱仪 操作规程 一、开机前的准备工作 1.开机前,先检查氮气压力是否满足分析要求,氢气发生器的水位是否正常。2. 根据被分析样品的性质确定毛细管色谱柱的类型(极性、弱极性或非极性)、进样方式(液体自动进样器或是顶空进样)、进样口是否采用分流模式(分流衬管或不分流衬管)以及检测器的类型(FID检测器或ECD检测器)。分流进样模式适用于高浓度样品分析、顶空分析和等温分析,不分流进样模式适用于低浓度样品化合物的分析。 3. 在进样口安装好所选用的衬管。打开主机箱,安装毛细管柱。先安装进口端,色谱柱超出石墨垫圈顶部的长度由进样器是否分流决定。分流模式下为10 mm,不分流模式下为5 mm。装好进口端后,先不装出口端(即进入检测器的一端),进行泄露检查。此时,切记用死堵将检测器的端口堵住。打开氮气瓶总阀,调节分压表至0.5MPa,打开Trace1300主机开关及计算机,进行“LeakCheck” 操作。当Leak Check通过后,将色谱柱的出口端接入检测器。若选用FID检测器,毛细管色谱柱超出石墨垫圈顶部的长度为顶至检测器再回拉5mm。若选用ECD检测器,毛细管色谱柱超出石墨垫圈顶部的长度为23 mm。毛细管安装完毕。 二、开机 1. 在仪器的硬件配置没有改动的情况下,可以直接开机。先打开氮气表,氢气发生器 和空气发生器,再依次打开气相色谱仪主机开关、自动进样器开关及计算机,选择Lenovo用户。 2.首先在计算机内对气相色谱仪进行配置。选择所有程序/Chromeleon7/ Instrument configuration manager,点击菜单栏中带+号的钟表按钮,添加

最新气相色谱仪使用方法

最新气相色谱仪使用方法 1.对色谱仪分析室的要求 (1)分析室周围不得有强磁场,易燃及强腐蚀性气体。 (2)室内环境温度应在5~35度范围内,湿度小于等于85%(相对湿度),且室内应保持空气流通。有条件的厂最好安装空调。 (3)准备好能承受整套仪器,宽高适中,便于操作的工作平台。一般工厂以水泥平台较佳(高0.6~0.8米),平台不能紧靠墙,应离墙0.5~1.0米,便于接线及检修用。 (4)供仪器使用的动力线路容量应在10KVA左右,而且仪器使用电源应尽可能不与大功率耗电量设备或经常大幅度变化的用电设备公用一条线。电源必须接地良好,一般在潮湿地面(或食盐溶液灌注)钉入长约0.5~1.0米的铁棒(丝),然后将电源接地点与之相连,总之要求接地电阻小于1欧姆即可。(注:建议电源和外壳都接地,这样效果更好)。 2.气源准备及净化 (1)气源准备事先准备好需用气体的高压钢瓶(一般大中城市均可购到),庄某一种气体的钢瓶只能装这种气体,每个钢瓶的颜色代表一种气体,不能互换。一般用氮气,氢气,空气这三种气体,每种气体最好准备两个钢瓶,以备用。有的厂使用氢气发生器和空气压缩机也可,但空压机必须无油。凡钢瓶气压下降到1~2Mpa时,应更换气瓶。一般厂家使用使用以上气体99.99%即可,电子捕获检测器必须使用高纯气源99.999%以上。 (2)气源净化为了出去各种气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。若全部使用钢瓶气体,有的色谱仪附有净化器,且内已填有5A分子筛,活性炭,硅胶,基本可满足要求。若使用一般氢气发生器,则必须加强对水分的净化处理,故应增大干燥管面积(体积在450立方厘米以上为好,填料用5A分子筛为佳),并在发生器后接容积较大的储器桶,以减少或克服气源压力波动时对仪器基线的影响。若使用空压机作空气来源,空压机进气口应加强空气过滤,加大净化管体积,在干燥管内应填充一半5A分子筛,一半活性炭。一般国产无油气体压缩机可满足需要。 3.色谱仪成套性检查及安放 仪器开箱后,按资料袋内附件清单,进行逐项清点,并将易损零件的备件予以妥善保存。然后按照仪器的使用说明书上要求,将其放置于工作平台上,并对着接线图和各插头,插座将仪器各部分连接起来,最后连接记录仪和数据处理机。注意各接头不要接错。 4.外气路的连接 (1)减压阀的安装

气相色谱仪使用方法

气相色谱仪使用方法 气相色谱仪在石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。下面我们一起来看看气相色谱仪是怎么使用的? 气相色谱仪使用方法: 11.对色谱仪分析室的要求 分析室周围不得有强磁场,易燃及强腐蚀性气体。室内环境温度应在5~35度范围内,湿度小于等于85%(相对湿度),且室内应保持空气流通。有条件的厂最好安装空调。准备好能承受整套仪器,宽高适中,便于操作的工作平台。一般工厂以水泥平台较佳(高0.6~0.8米),平台不能紧靠墙,应离墙0.5~1.0米,便于接线及检修用。供仪器使用的动力线路容量应在10kva左右,而且仪器使用电源应尽可能不与大功率耗电量设备或经常大幅度变化的用电设备公用一条线。电源必须接地良好,一般在潮湿地面(或食盐溶液灌注)钉入长约0.5~1.0米的铁棒(丝),然后将电源接地点与之相连,总之要求接地电阻小于1欧姆即可。(注:建议电源和外壳都接地,这样效果更好)。 22.气源准备及净化 气源准备事先准备好需用气体的高压钢瓶(一般大中城市均可购到),庄某一种气体的钢瓶只能装这种气体,每个钢瓶的颜色代表一种气体,不能互换。一般用氮气,氢气,空气这三种气体,

每种气体最好准备两个钢瓶,以备用。有的厂使用氢气发生器和空气压缩机也可,但空压机必须无油。凡钢瓶气压下降到1~2mpa 时,应更换气瓶。一般厂家使用使用以上气体99.99%即可,电子捕获检测器必须使用高纯气源99.999%以上。气源净化为了出去各种气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。若全部使用钢瓶气体,有的色谱仪附有净化器,且内已填有5a分子筛,活性炭,硅胶,基本可满足要求。若使用一般氢气发生器,则必须加强对水分的净化处理,故应增大干燥管面积(体积在450立方厘米以上为好,填料用5a 分子筛为佳),并在发生器后接容积较大的储器桶,以减少或克服气源压力波动时对仪器基线的影响。若使用空压机作空气来源,空压机进气口应加强空气过滤,加大净化管体积,在干燥管内应填充一半5a分子筛,一半活性炭。一般国产无油气体压缩机可满足需要。 3色谱仪成套性检查及安放 仪器开箱后,按资料袋内附件清单,进行逐项清点,并将易损零件的备件予以妥善保存。然后按照仪器的使用说明书上要求,将其放置于工作平台上,并对着接线图和各插头,插座将仪器各部分连接起来,最后连接记录仪和数据处理机。注意各接头不要接错。 4外气路的连接 (1)减压阀的安装 有的仪器随机带有减压阀,若没有的则要购买。所用的是2只氧气,1只氢气减压阀。将2只氧气减压阀,1只氢气减压阀分

关于气相色谱仪使用的注意事项

关于气相色谱仪使用的注意事项 1.气相色谱柱第一次买回来需要活化。(怎样活化?),不接柱子前先测定斜率。 2.(1)老化时设为分流比为10:1,平时应该为不分流。 (2)【AOC-20i+s:自动进样器】:进样体积,溶剂冲洗次数(进样前,进样后),样品清洗次数,柱塞速度(空吸),粘度补偿时间,进样方式(进什么成分)【普通(只进样品)和其他(样品溶剂标品空气等等组合)】;【SPL1:进样口】:温度,压力,总流量,吹扫流量,进样方式(怎么进)(分流和不分流)【柱箱】:温度【ECD】: 温度,尾吹流量 (3)HP-1 长度:30.0m 膜厚:0.25um 内径:0.25mmID (4)当斜率测定为“0”时候,表示ECD饱和,需要进行柱子检测器的老化。柱子和检测器分别老化,老化程序如下: a. 断开柱子和检测器借口(右边),一定要把ECD用死堵堵上,即用扳手把螺母取下来,换一个新的石墨压环,子弹头朝上(压环上的细管不要拿掉),把螺母拧上去,螺母也是有顺序的; b.打开重要方法文件,找到ECD方法文件; c.打开方法文件,ECD-柱子老化程序;[进样口程序速率(如果为10,表示上升10度/分钟),电流为0.00na,老化时候改为分流,此时和自动进样器无关,ECD的温度按照程序上升到设定的温度,ECD的温度是直接上升到设定的温度。] d.等到温度上升到由黄色变黑色时,即准备就绪状态;

e.点单次分析,点样品记录,把瓶号改为“0”或者直接按面板上的“START”.. f.点“开始”; 注意:柱箱温度是程序升温,可设置到柱子最高使用温度的10度以下,保持一个小时,然后自动降温;老化时电流为“0”,因为只有关心结果时,即需要有谱图出现时,才给电流;当老化完后,把检测器打开,电流加载到1.00NA,点零点调节,点斜率测定。 检测器的老化:可接柱子,也可断开,运行2小时,查一下检测器的最高使用温度。【实际上检测器和ECD的老化是同时进行的】 g.当程序走完后,会自动降到设定的起始温度,此时老化过程结束。 h.点系统关闭 (5)截掉柱子的方法(适合检测器的进样口): a 取一个新的石墨环,去掉压环上的那根小管; b 把石墨压环座在螺母上,让柱子穿过石墨压环,并且尽可能多留出一段柱子; c把相应的卡尺(上面需要一个扳手固定)和螺母(需要一个扳手来拧紧)相连,用来固定好压环在柱子上的位置; d把卡尺后面的多余的柱子用专用刀切断,切的时候最好是一刀为准;e用扳手拧下卡尺(这时压环的柱子上的位置是固定的,不会再移动了) f把螺母和压环连接到检测器上。 (5)如果机器的气路不通了,可能是假死机,可以在面板上操作。

气相色谱仪操作规程完全版

. . 气相色谱仪操作规程 GC9790气相色谱仪操作规程(一) (1) SP1000气相色谱仪操作规程 (1) Agilent4890D气相色谱仪操作规程 (2) HP-5890A气相色谱仪操作规程 (3) GC-9790气相色谱仪操作规程(二) (4) SP2100气相色谱仪操作规程 (5) GC-920色谱操作规程 (5) Agilent6890气相色谱仪操作规程 (6) GC9800TT型气相色谱仪操作步骤 (7) GC9800FF型气相色谱仪操作步骤 (8) 9001型气相色谱仪操作规程 (10) SP6800A气相色谱仪的操作说明 (12) GC-930色谱操作规程 (13) GC112A气相色谱操作规程 (14) GC122气相色谱操作规程 (14) GC1690气相色谱仪说明书 (15) 惠普4890D型气相色谱仪标准操作程序 (16) HP6890气相色谱仪操作规程 (19) SP-6890气相色谱仪操作规程 (20) HP-5890A气相色谱仪操作规程 (22) GC-14A气相色谱仪操作规程 (23) HP4890D气相色谱仪操作说明(二) (24) GC9890气相色谱仪操作步骤 (26) 岛津气相色谱GC-2010操作规程 (26) 岛津GC-14CPFID气相色操作规程 (27) GC-14C气相色谱简易操作规程 (28) Agilent6820-GC(ForCerityNDS) (29) 瓦里安CP3800气相色谱操作规程 (33) 安捷伦GC-6820使用规程 (35)

. . GC9790气相色谱仪操作规程(一) 1.检查仪器电源线连接是否正常、气路管线连接是否正常。 2.打开载气(N2)钢瓶总阀,并调节减压阀开关,使得输出的载气压力在0.3~0.5Mpa之间。 3.调节仪器上的载气调压阀,使得柱前压处在分析工作所需要的压力(一般来说,柱前压在0.05~0.1Mpa之间)。 4.打开电源开关,根据分析要求设置柱温、汽化温度、检测温度等参数,按确定键后仪器升温。同时打开色谱工作站电源。 5.仪器升温到设置温度后,打开空气发生器电源;同时扭开氢气钢瓶阀门,调节氢气减压阀压力在0.3Mpa左右。 6.调节仪器正面右下侧的针形阀,使空气压力在0.05MPa左右,氢气压力在0.15~0.2MPa之间,用点火枪点着FID的火焰,用玻璃片或铁片等冷的物体靠近检测器的盖帽,有水珠凝结表明点火成功(也可以通过观察工作站所显示的基线是否在点火瞬间开始上升来确定是否点火成功)。 7.将仪器右下侧空气、氢气的针形阀压力都缓慢调节到0.1MPa。 8.待基线稳定后开始分析测试工作。 9.分析工作结束后,可以立即关闭氢气钢瓶总阀以及空气发生器电源。 10.调低各路设定温度,使柱温箱、汽化室、检测器温度下降,待柱箱温度低于70℃即可关闭仪器电源。 11.关闭载气钢瓶上的总阀。清理仪器室的进样针、样品等物品,结束GC9790的操作。 SP1000气相色谱仪操作规程 1仪器组成 1.1气源部分,包括氮气钢瓶,氢气源发生器,空气源发生器。 1.2气相主机,包括氢火焰离子化检测器(FID)。 1.3计算机及C-21色谱数据采集单位组成。 2采样操作步骤 2.1选择合适的色谱柱安装于进样器一端,另一端安装于所用的检测器口。 2.2打开载气钢瓶的总阀及减压阀至0.4-0.5Mpa,确定有载气流量后,打开气相主机电源开关。在面板上按“设定”键进入设定参数界面,设定柱温(恒温、程序升温)、设定进样器温度,设定检测器温度。程序升温包括起始温度、起始时间、升温速率、结束温度、结束时间等。仪器在升温状态中,等待指示灯亮,到达所设状态,就绪指示灯亮,即可进样。 2.3打开氢气发生器和空气发生器开关,平衡10分钟。按住气相主机上“点火”钮数秒钟即可。按“状态”键切换到状态界面可观察到信号显示及仪器各部件状态。 2.4打开电脑,双击BF-2002色谱工作站图标进入色谱工作站。

相关文档
最新文档