北邮通信原理PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《通信原理课件》
9.2 信道编码的基本原理
香农的信道编码定理指出:对于一个给
定的有扰信道,如果信道容量为C,只要发 送端以低于C的信息速率R发送信息,则一
定存在一种编码方法,使译码差错概率随 着码长的增加,按指数规律下降到任意小 的值。这就是说,通过信道编码可以使通 信过程不发生差错,或者使差错控制在允 许的数值之下。
《通信原理课件》
《通信原理课件》
编码中的几个定义
在信道编码中, n 长码字中非零码元的数目定义为码字的汉明
(Hamming)重量,简称码重。例如“10101”码字的码重为 3,“01111” 码字的码重为 4。
两个 n 长码字 x,y 对应码元取值不同的个数定义为码字的汉明距离,
简称码距,用 d(x,y)表示。在一种编码中,码字集合中任意两码字
监督子 S1S2 的可能值就有 4 种组合,故能表示 4 种不同的信息,如果用其中
一种表示无错,则其余 3 种就可以用来指示一位错码的 3 种不同位置。同理,
监督子 S1S2 Sr 的可能值就有 2r 种组合,可以用其中一种表示无错,其余
2r 1 种用来指示一个错码的 2r 1 个可能的位置。
《通信原理课件》
线性分组码的编码原理
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
一般地,在 n, k 线性分组码中,设 M 是编码器的输入信息码元序列,
《通信原理课件》
一、最大后验概率(MAP)译码
《通信原理课件》
二、最大似然(ML)译码
《通信原理课件》
三、最小汉明距离译码
《通信原理课件》
9.3 线性分组码
线性分组码既是分组码,又是线性码。分组码的编码包括两个
基本步骤:首先将信源输出的信息序列以 k 个信息码元划分为一 组;然后根据一定的编码规则由这 k 个信息码元产生 r 个监督码
《通信原理课件》
《通信原理课件》
如果 S 0 ,则认为无错,反之有错。式(9.3-2)称为监督关系式或校
验关系式,S 称为监督子或校验子。由于只有一个监督码元,则只有一个监督 关系式,S 的取值只有两种,只能代表有错和无错这两种信息,不能进一步指 Baidu Nhomakorabea错码的位置。可以推测,如果将监督码元增加一位,则有两个监督关系式,
第九章 信道编码
9.1 引言 9.2 信道编码的基本原理 9.3 线性分组码 9.4 循环码 9. 5 卷积码
《通信原理课件》
9.1 引言
《通信原理课件》
在无记忆信道中,噪声独立随机地影响着 每个传输码元,因此接收的码元序列中的错 误是独立随机出现的,以高斯白噪声为主体 的信道属于这类信道。在有记忆信道中,噪 声和干扰的影响往往前后相关,错误成串出 现。还有些信道既有独立随机差错也有突发 性成串差错,称为混合信道。对不同类型的 信道,需要设计不同类型的信道编码,才能 收到良好效果。按照信道特性和设计的码字 类型进行划分,信道编码可以分为纠独立随 机差错码、纠突发差错码和纠混合差错码。 本章将只讨论纠独立随机差错码。
《通信原理课件》
如果用两个二进制码元来表示一个消息,有4 种可能的码字,即“00”、 “01”、“10”和
“11”。比如规定“00”表示消息A, “11”表 示消息B。码字“01”或“10”不允许使用,称
为禁用码字,对应地,用来表示消息的码字称为 许用码字。如果在传输消息的过程中发生一位错 码,则变成禁用码字“01”或“10”,译码器就 可判决为有错。这表明在信息码元后面附加一位 监督码元以后,当只发生一位错码时,码字具有 检错能力。但由于不能判决是哪一位发生了错码, 所以没有纠错能力。
《通信原理课件》
《通信原理课件》
本章我们将讨论常见的信道编码和译码的方法。信道编码的数字 通信模型如图 9-1 所示。进入信道编码器的是二进制信息码元序列
M 。信道编码根据一定的规律在信息码元中加入监督码元,输出码 字序列 C 。由于信道中存在噪声和干扰,接收码字序列 R 与发送码 字序列 C 之间存在差错。信道译码根据某种译码规则,从接收到的码 字 R 给出与发送的信息序列 M 最接近的估值序列 Mˆ 。
《通信原理课件》
9.2.1 信道编码的检错和纠错能力
信道编码的检错和纠错能力是通过信息 量的冗余度来换取的。为了便于理解,先 通过一个简单的例子来说明。例如,要传
送A和B两个消息,可以用一个二进制码元 来表示一个消息,比如“0” 码代表A, “1”码表示B。在这种情况下,若传输中
产生错码,即“0”错成“1”,或“1”错 成“0”,接收端将无法检测到差错,因此, 这种编码没有检错和纠错能力。
间的最小距离,称为该编码的最小汉明距离,简称为最小码距,用 d min 表示。例如码长 n =3 的重复码,只有 2 个许用码字,即 000 和 111, 显然 d min =3。
《通信原理课件》
《通信原理课件》
信道编码的效用
《通信原理课件》
[例9.2.1]
《通信原理课件》
《通信原理课件》
9.2.2 信道编码的译码方法
元,构成 n k r 个码元组成的码字。线性码是指监督码元与信
息码元之间的关系是线性关系,它们的关系可用一组线性代数方程 联系起来。
线性分组码一般用符号 n, k 表示,其中 k 是每个码字中二进制信
息码元的数目; n 是码字的长度。
《通信原理课件》
一个 n 长的码字 C 可以用矢量 C cn1,cn2 ,,c1,c0 表示。线性分组码 n, k 为系统码的结构如图 9-3 所示,码字的前 k 位为信息码元,与编码前原
样不变,后 r 位为监督码元。
图9-3 (n,k)线性分组码为系统码的结构
《通信原理课件》
9.3.1线性分组码的编码
在介绍线性分组码的原理之前,首先我 们来看一种简单而又常用的线性分组码— —奇偶监督码(也称为奇偶校验码),分 为奇数监督码和偶数监督码。无论信息码 元有多少,监督码元只有一位。在偶数监 督码中,监督码元的加入使得每个码字中 “1”的数目为偶数;在奇数监督码中,监 督码元的加入使得每个码字中“1”的数目 为奇数。
9.2 信道编码的基本原理
香农的信道编码定理指出:对于一个给
定的有扰信道,如果信道容量为C,只要发 送端以低于C的信息速率R发送信息,则一
定存在一种编码方法,使译码差错概率随 着码长的增加,按指数规律下降到任意小 的值。这就是说,通过信道编码可以使通 信过程不发生差错,或者使差错控制在允 许的数值之下。
《通信原理课件》
《通信原理课件》
编码中的几个定义
在信道编码中, n 长码字中非零码元的数目定义为码字的汉明
(Hamming)重量,简称码重。例如“10101”码字的码重为 3,“01111” 码字的码重为 4。
两个 n 长码字 x,y 对应码元取值不同的个数定义为码字的汉明距离,
简称码距,用 d(x,y)表示。在一种编码中,码字集合中任意两码字
监督子 S1S2 的可能值就有 4 种组合,故能表示 4 种不同的信息,如果用其中
一种表示无错,则其余 3 种就可以用来指示一位错码的 3 种不同位置。同理,
监督子 S1S2 Sr 的可能值就有 2r 种组合,可以用其中一种表示无错,其余
2r 1 种用来指示一个错码的 2r 1 个可能的位置。
《通信原理课件》
线性分组码的编码原理
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
一般地,在 n, k 线性分组码中,设 M 是编码器的输入信息码元序列,
《通信原理课件》
一、最大后验概率(MAP)译码
《通信原理课件》
二、最大似然(ML)译码
《通信原理课件》
三、最小汉明距离译码
《通信原理课件》
9.3 线性分组码
线性分组码既是分组码,又是线性码。分组码的编码包括两个
基本步骤:首先将信源输出的信息序列以 k 个信息码元划分为一 组;然后根据一定的编码规则由这 k 个信息码元产生 r 个监督码
《通信原理课件》
《通信原理课件》
如果 S 0 ,则认为无错,反之有错。式(9.3-2)称为监督关系式或校
验关系式,S 称为监督子或校验子。由于只有一个监督码元,则只有一个监督 关系式,S 的取值只有两种,只能代表有错和无错这两种信息,不能进一步指 Baidu Nhomakorabea错码的位置。可以推测,如果将监督码元增加一位,则有两个监督关系式,
第九章 信道编码
9.1 引言 9.2 信道编码的基本原理 9.3 线性分组码 9.4 循环码 9. 5 卷积码
《通信原理课件》
9.1 引言
《通信原理课件》
在无记忆信道中,噪声独立随机地影响着 每个传输码元,因此接收的码元序列中的错 误是独立随机出现的,以高斯白噪声为主体 的信道属于这类信道。在有记忆信道中,噪 声和干扰的影响往往前后相关,错误成串出 现。还有些信道既有独立随机差错也有突发 性成串差错,称为混合信道。对不同类型的 信道,需要设计不同类型的信道编码,才能 收到良好效果。按照信道特性和设计的码字 类型进行划分,信道编码可以分为纠独立随 机差错码、纠突发差错码和纠混合差错码。 本章将只讨论纠独立随机差错码。
《通信原理课件》
如果用两个二进制码元来表示一个消息,有4 种可能的码字,即“00”、 “01”、“10”和
“11”。比如规定“00”表示消息A, “11”表 示消息B。码字“01”或“10”不允许使用,称
为禁用码字,对应地,用来表示消息的码字称为 许用码字。如果在传输消息的过程中发生一位错 码,则变成禁用码字“01”或“10”,译码器就 可判决为有错。这表明在信息码元后面附加一位 监督码元以后,当只发生一位错码时,码字具有 检错能力。但由于不能判决是哪一位发生了错码, 所以没有纠错能力。
《通信原理课件》
《通信原理课件》
本章我们将讨论常见的信道编码和译码的方法。信道编码的数字 通信模型如图 9-1 所示。进入信道编码器的是二进制信息码元序列
M 。信道编码根据一定的规律在信息码元中加入监督码元,输出码 字序列 C 。由于信道中存在噪声和干扰,接收码字序列 R 与发送码 字序列 C 之间存在差错。信道译码根据某种译码规则,从接收到的码 字 R 给出与发送的信息序列 M 最接近的估值序列 Mˆ 。
《通信原理课件》
9.2.1 信道编码的检错和纠错能力
信道编码的检错和纠错能力是通过信息 量的冗余度来换取的。为了便于理解,先 通过一个简单的例子来说明。例如,要传
送A和B两个消息,可以用一个二进制码元 来表示一个消息,比如“0” 码代表A, “1”码表示B。在这种情况下,若传输中
产生错码,即“0”错成“1”,或“1”错 成“0”,接收端将无法检测到差错,因此, 这种编码没有检错和纠错能力。
间的最小距离,称为该编码的最小汉明距离,简称为最小码距,用 d min 表示。例如码长 n =3 的重复码,只有 2 个许用码字,即 000 和 111, 显然 d min =3。
《通信原理课件》
《通信原理课件》
信道编码的效用
《通信原理课件》
[例9.2.1]
《通信原理课件》
《通信原理课件》
9.2.2 信道编码的译码方法
元,构成 n k r 个码元组成的码字。线性码是指监督码元与信
息码元之间的关系是线性关系,它们的关系可用一组线性代数方程 联系起来。
线性分组码一般用符号 n, k 表示,其中 k 是每个码字中二进制信
息码元的数目; n 是码字的长度。
《通信原理课件》
一个 n 长的码字 C 可以用矢量 C cn1,cn2 ,,c1,c0 表示。线性分组码 n, k 为系统码的结构如图 9-3 所示,码字的前 k 位为信息码元,与编码前原
样不变,后 r 位为监督码元。
图9-3 (n,k)线性分组码为系统码的结构
《通信原理课件》
9.3.1线性分组码的编码
在介绍线性分组码的原理之前,首先我 们来看一种简单而又常用的线性分组码— —奇偶监督码(也称为奇偶校验码),分 为奇数监督码和偶数监督码。无论信息码 元有多少,监督码元只有一位。在偶数监 督码中,监督码元的加入使得每个码字中 “1”的数目为偶数;在奇数监督码中,监 督码元的加入使得每个码字中“1”的数目 为奇数。