基于深度卷积神经网络的图像分类

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SHANGHAI JIAO TONG UNIVERSITY

论文题目:基于卷积神经网络的自然图像分类技术研

姓名: 高小宁

专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究

摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了88.1%的分类精度,有效地提高了卷积神经网络的分类效果。

关键词:卷积神经网络,图像分类,Batch Normalization,Dropout

Research on Natural Image Classification Based on

Convolution Neural Network

Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, 88.1% classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network.

Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

目录

基于卷积神经网络的自然图像分类技术研究....................................................... - 1 -1引言.. (3)

2卷积神经网络的模型分析 (4)

2.1网络基本拓扑结构..................................................................................... - 4 -

2.2卷积和池化................................................................................................. - 5 -

2.3激活函数..................................................................................................... - 6 -

2.4 Softmax分类器与代价函数...................................................................... - 7 -

2.5学习算法..................................................................................................... - 8 -

2.6 Dropout ..................................................................................................... - 10 -

2.7 Batch Normalization ................................................................................. - 11 -3模型设计与实验分析.. (12)

3.1 CIFAR-10数据集..................................................................................... - 12 -

3.2 模型设计.................................................................................................. - 13 -

3.3 实验结果与分析...................................................................................... - 15 -4结论 (22)

参考文献 (23)

相关文档
最新文档