逻辑函数的卡诺图化简

合集下载

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

[例]已知:真值表如下,写出 已知:真值表如下, 该逻辑函数和其反函数的标 准与或式 解:由题可知: 由题可知:
F = XY Z + XY Z + XY Z + XYZ
= m0 + m2 + m5 + m7
= ∑ ( 0 ,2 ,5 ,7 ) m
∴ F =
QF + F = 1
∑ m (1, 3 , 4 , 6 )
例如 CD AB 00 01 11 10 00 1 1 1 1 01 1 1 11 1 1 10 1 1 1 1 8 个相邻项合并消去 3 个变量 A ABCD+ABCD=ABD ABCD+ABCD=ABD ABCD+ABCD +ABCD+ABCD =ACD +ACD =AD
2 个相邻项合并消去 4 个变量, 个相邻项合并消去 个变量, 1 个变量,化简结果 2 个变量, 化简结果为相同变量相与。 化简结果为相同变量相与。 为相同变量相与。 为相同变量相与。
3. 已知一般表达式画函数卡诺图 的卡诺图。 [例] 已知 Y = AD + AB ( C + BD ) ,试画出 Y 的卡诺图。 解:(1) 将逻辑式转化为与或式 ) (2) 作变量卡诺图 ) Y = AD + AB + (C + BD ) (3) 根据与或式填图 ) = AD + AB + CBD CD 00 01 11 10 AB 1 1 00 01 11 10 1 1 1 1 1 1
[例 ]
Y = ABC + ABC + ABC + ABC
合并最小项 三个圈最小项分别为: 三个圈最小项分别为:

逻辑函数的卡诺图化简

逻辑函数的卡诺图化简

逻辑函数的卡诺图化简默认分类2009-11-21 13:33:47 阅读74 评论0 字号:大中小逻辑函数有四种表示方法,分别是真值表、逻辑函数式、逻辑图和卡诺图。

前三种方法在1.3.4中已经讲过,此处首先介绍逻辑函数的第四种表示方法-卡诺图表示法。

1.5.1 用卡诺图表示逻辑函数1.表示最小项的卡诺图(1)相邻最小项若两个最小项只有一个变量为互反变量,其余变量均相同,则这样的两个最小项为逻辑相邻,并把它们称为相邻最小项,简称相邻项。

例如三变量最小项ABC和AB,其中的C和为互反变量,其余变量AB都相同,故它们是相邻最小项。

显然两个相邻最小项相加可以合并为一项,消去互反变量,如。

(2)最小项的卡诺图将n 变量的2n 个最小项用2n 个小方格表示,并且使相邻最小项在几何位置上也相邻且循环相邻,这样排列得到的方格图称为n 变量最小项卡诺图,简称为变量卡诺图。

二变量、三变量、四变量的卡诺图如图1-17所示。

图1-17变量卡诺图注意:卡诺图一般画成正方形或矩形,卡诺图中小方格数应为2n 个;变量取值的顺序按照格雷码排列。

几何相邻的三种情况:①相接——紧挨着,如m5和m7、m8和m12等;②相对——任意一行或一列的两头(即循环相邻性,也称滚转相邻性)如m4和m6、m8和m10 、m3和m11等;相重——对折起来位置相重合,如五变量卡诺图中m19和m23、m25和m29等,显然相对属于相重的特例。

2.逻辑函数的卡诺图上面讲的是空白卡诺图,任何逻辑函数都可以填到与之相对应的卡诺图中,称为逻辑函数的卡诺图。

对于确定的逻辑函数的卡诺图和真值表一样都是唯一的。

(1)由真值表填卡诺图由于卡诺图与真值表一一对应,即真值表的某一行对应着卡诺图的某一个小方格。

因此如果真值表中的某一行函数值为“1”,卡诺图中对应的小方格填“1”;如果真值表的某一行函数值为0”,卡诺图中对应的小方格填“0”。

即可以得到逻辑函数的卡诺图。

【例1-18】已知逻辑函数,画出表示该函数的卡诺图解:逻辑函数的真值表如表1-14所示。

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件
01 0 0 1 0
11 0 0 1 1 10 0 1 1 1
例:将F(A、B、C、D) ACD AB BCD ABC AC
化为最简与非—与非式。 CD
解:
ACD
AB
00 01 11 10
00 01
1 1
1 0
0 m104,m15 1 两1次填1
AB
11 1 1 1 1
10 0 1 1 1
B CD AC
ABC
1.卡诺图化简逻辑函数旳原理 : 具有相邻性旳最小项能够合并,并消去不同旳因子,
合并旳成果为这些项旳公因子.
(1)2个相邻旳最小项结合,2项能够而合并为1项, 并消去1个不同旳变量。
(2)4个相邻旳最小项结合, 4项能够而合并为1项, 并消去2个不同旳变量。
(3)8个相邻旳最小项结合, 8项能够而合并为1项, 并消去3个不同旳变量。
解: 写成简化形式: F m0 m3 m6 m7 然后填入卡诺图:
例3 画出 Y ABC D ACD AC 旳卡诺图
解:直接填入
CD 00 01 11 10
AB
00 0 0 1 0
01 0 0 1 0
11 0 0 1 1
10 0 1 1 1
CD 00 01 11 10
AB
00 0 0 1 0
总之, 2n 个相邻旳最小项结合,2n 项能够而合并为1
项,能够消去n个不同旳变量。
化简根据
2n项相邻,并构成一种矩形组, 2n项能够而合并为 1项,消去n个因子,合并旳成果为这些项旳公因子。
利用卡诺图化简旳规则
相邻单元格旳个数必须是2n个,并构成矩 形组时才能够合并。
CD 00 01 11 10
诺图

逻辑函数的卡诺图法化简

逻辑函数的卡诺图法化简

精品课件
26
输入变量ABC取值为001、010、100时,
逻辑函数Y有确定的值,根据题意,有任一命令(正 转、反转和停止)时为1,否则为0。
反变 函换 数为
CD BD
CD
AB
00 01 11 10
Y AB AC BD CD AB
00 1
0
1
1
01 1
0
0
1
11 0
0
0
0
10 0
0
1
1
AC
精品课件
13
4、卡诺图的性质
(1)任何两个(21个)标1的相邻最小项,可以合并为一项, 并消去一个变量(消去互为反变量的因子,保留公因子)。
AB C
但是,若 F= ABCD+ABC+BC+ABC ,显然,该函数式
难于找到相邻项。
精品课件
1
2.4.2 逻辑函数的标准式——最小项表达 式
问题的提出:逻辑函数 F= ABC+ABC ,之所以易于看出它们 的乘积项是逻辑相邻项,是因为它们的每一个乘积项中都包 含了所有的变量。而F= ABCD+ABC+BC+ABC,每个乘积项没有 包含所有的变量,所以逻辑相邻关系不直观。于是引入了最 小项的概念。
15
AB CD
00 01 11 10
00 0
1
1
0
01 1 0 0 1
11 1
0
0
1 AD
10 0 1 1 0
BD
AB CD
00 01 11 10
00 1
0
0
1
01 0
1
1
0
11 0

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法
首先讨论三变量(A、B、C)函数卡诺图的画 法。
① 3变量的卡诺图 有23个小方块;
相邻 相邻
② 几何相邻的必须
逻辑相邻:变量的 取值按00、01、11、 10的顺序(循环码 ) 排列 。
图1-11 三变量卡诺图的画法
2021/8/13
11
不 相邻
相邻
相邻
图1-12 四变量卡诺图的画法
正确认识卡诺 图的“逻辑相邻”: 上下相邻,左右相 邻,并呈现“循环 相邻”的特性,它 类似于一个封闭的 球面,如同展开了 的世界地图一样。
A因BB此C是N个三变变量量共函有数2的N个最最小小项项吗。?
2021/8/13
4
最小项的定义:对于N个变量,如果P是一个含有N 个因子的乘积项,而且每一个变量都以原变量或者反 变量的形式,作为一个因子在P中出现且仅出现一次, 那么就称P是这N个变量的一个最小项。
表1-17 三变量最小项真值表
2021/8/13
5
(2)最小项的性质
①对于任意一个最小项,只有一组变量取值使它 的值为1,而变量取其余各组值时,该最小项均为0;
②任意两个不同的最小项之积恒为0; ③变量全部最小项之和恒为1。
2021/8/13
6
最小项也可用“mi” 表示,下标“i”即最小 项的编号。编号方法:把最小项取值为1所对应的 那一组变量取值组合当成二进制数,与其相应的十 进制数,就是该最小项的编号。
ABC ABC AC
(A B)C ABC AC
AC BC ABC AC
(2) 根据与或表达式画出卡诺图,如下
图所示。
2021/8/13
17
BC
A
00 01 11 10
0
11 1

用卡诺图化简逻辑函数

用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。

所谓卡诺图,就是逻辑函数的一种图形表示。

对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。

在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。

二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。

通常用m 表示最小项,其下标为最小项的编号。

编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。

如最小项C B A 对应的变量取值为000,它对应十进制数为0。

因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。

2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。

(2)不同的最小项,使它的值为1的那组变量取值也不同。

(3)对于变量的任一组取值,全体最小项的和为1。

图1.4.1分别为二变量、三变量和四变量卡诺图。

在卡诺图的行和列分别标出变量及其状态。

变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。

这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。

小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m0, m1,m2,……来编号。

01 0100011110 01ABCABCDBA0001111000011110m m m mm m m mm mm m01230112233mmmmmmmmmmmmmmmm456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。

但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。

运用卡诺图法可以较简便的方法得到最简表达式。

但首先需要了解最小项的概念。

一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。

由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。

(2)不同的最小项,使它的值为1的那一组变量取值也不同。

(3)对于变量的任一组取值,任意两个最小项的乘积为0。

(4)对于变量的任一组取值,全体最小项之和为1。

3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。

以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。

下面举例说明把逻辑表达式展开为最小项表达式的方法。

例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。

(完整版)逻辑函数的卡诺图化简法

(完整版)逻辑函数的卡诺图化简法

第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。

卡诺图是按一定规则画出来的方框图。

优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。

缺点:当变量超过六个以上,就没有什么实用价值了。

公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。

2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。

注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。

如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。

三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。

(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。

3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。

而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。

例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。

卡诺图化简法

卡诺图化简法

m 0 m 1 m 2 m 3 m 7
m (0,1,2,3,7)
2021/10/10
第6章
9
➢ 已知真值表,写出函数的最小项之和的形式
如果列出了函数的真值表,则只要将函数值为1的那些最 小项相加,便是函数的最小项表达式。
ABC Y
000 0 001 1 010 1 011 1 100 0 101 1 110 0 111 0
18
再如:
AC
BD
ABCDABCDABCDABCD ACD(BB)ACD(BB) CD(AA)CD
2021/10/10
BD
19
性质3:卡诺图中八个相邻1格的最小项可以合并成一个与项, 并 消去三个变量。
综上所述,在 n 个变量卡诺图中,若有2k个1格相邻(k为
0,1,2…,n), 它们可以圈在一起加以合并,合并时可消去
相邻的两个最小项之和可以合并成一项,并消去一个变 量。如:
m 0 m 2 A B C A B C A ( B B ) C A C
第6章
2021/10/10
12
2.卡诺图
◆ 基本知识
卡诺图是由美国工程师卡诺(Karnaugh)首先提出的一种 用来描述逻辑函数的特殊方格图。
在这个方格图中,每一个方格代表逻辑函数的一个最小项, 而且几何相邻(在几何位置上,上下或左右相邻)的小方格具 有逻辑相邻性,即两相邻小方格所代表的最小项只有一个变量 取值不同。
的最简与或表达式
解:1画出函数F 的卡诺图。对于在函数 F 的标准与或表达式中出现
的那些最小项,在其卡诺图的对应小方格中填上1,其余方格不填;
2合并最小项。把图中所有的1格都圈起来,相邻且能够合并在 一起的1 格圈在一个大圈中; 3写出最简与或表达式。对卡诺图中所画每一个圈进行合并,保 留相同的变量,去掉互反的变量。

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法代数化简法的优点是不受变量数目的限制。

缺点是:没有固定的步骤可循;需要熟练运用各种公式和定理;需要一定的技巧和经验;有时很难判定化简结果是否最简。

本节介绍一种比代数法更简便、直观的化简逻辑函数的方法。

它是一种图形法,是由美国工程师卡诺(Karnaugh )发明的,所以称为卡诺图化简法。

卡诺图实际上是真值表的一种变形,一个逻辑函数的真值表有多少行,卡诺图就有多少个小方格。

所不同的是真值表中的最小项是按照二进制加法规律排列的,而卡诺图中的每一项则是按照相邻性排列的。

1.卡诺图的结构(1)二变量卡诺图。

00011110m ABm AB1m 03m AB AB4A(a)B 0132AB(b)(2)三变量卡诺图。

0m ABC m ABC 1m 3m ABC ABC 265m ABC74ABCm m m ABCABC0(a)(b)132457610011100BCA 01BC A(3)四变量卡诺图。

m 0ABCD ABCD m 1ABCD m 3m ABCD 2m 567m m ABCD ABCD m ABCD 4ABCD ABCD m m 13ABCD ABCD 1412m 15m ABCDABCD ABCD m ABCD 8m 1011m 9m ABCD ABCD 0132765413141512981110AB CD0000010111111010(a)(b)2.从真值表到卡诺图例3.2.3 某逻辑函数的真值表如表3.2.3所示,用卡诺图表示该逻辑函数。

解: 该函数为三变量,先画出三变量卡诺图,然后根据表3.2.3将8个最小项L 的取值0或者1填入卡诺图中对应的8个小方格中即可,如图3.2.4所示。

图3.2.4 例3.2.3的卡诺图3.从逻辑表达式到卡诺图(1)如果逻辑表达式为最小项表达式,则只要将函数式中出现的最小项在卡诺图对应的小方格中填入1,没出现的最小项则在卡诺图对应的小方格中填入0。

逻辑函数的化简方法

逻辑函数的化简方法

一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。

常用方法有:①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。

②吸收法利用公式A+AB=A 吸收多余的与项。

③消因子法利用公式A+A’B=A+B 消去与项多余的因子④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。

⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。

二、卡诺图化简法逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。

逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。

1.表示最小项的卡诺图将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。

具有逻辑相邻性的最小项在位置上也相邻地排列。

用卡诺图表示逻辑函数:方法一:1、把已知逻辑函数式化为最小项之和形式。

2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。

方法二:根据函数式直接填卡诺图。

用卡诺图化简逻辑函数:化简依据:逻辑相邻性的最小项可以合并,并消去因子。

化简规则:能够合并在一起的最小项是2n个。

如何最简:圈数越少越简;圈内的最小项越多越简。

注意:卡诺图中所有的1 都必须圈到,不能合并的1 单独画圈。

说明,一逻辑函数的化简结果可能不唯一。

合并最小项的原则:1)任何两个相邻最小项,可以合并为一项,并消去一个变量。

2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。

3)任何8个相邻最小项,可以合并为一项,并消去3个变量。

卡诺图化简法的步骤:画出函数的卡诺图;画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。

《卡诺图化简法》课件

《卡诺图化简法》课件
总结词
卡诺图化简的基本步骤
详细描述
详细阐述卡诺图化简的基本步骤, 包括如何根据逻辑函数绘制卡诺图 、如何根据卡诺图进行化简等。
实例二:复杂的逻辑函数化简
总结词
通过卡诺图化简复杂逻辑函数
01
02
详细描述
选取具有代表性的复杂逻辑函数,如含有多 个变量和复合逻辑运算的函数,利用卡诺图 进行化简,展示化简过程和结果。
优化最小项的排列方式
优化最小项的排列方式,可以减少重复计算和提高化简效率。
THANKS
感谢观看
杂。
约束条件
卡诺图化简法要求逻辑函数在最小 项上的取值必须明确(0或1),对 于含有未知取值的逻辑函数不适用 。
非二进制系统
卡诺图仅适用于二进制逻辑系统, 对于非二进制系统(如三进制、四 进制等)需要其他化简方法。
03
卡诺图化简法的步骤
构造卡诺图
01
02
03
确定变量
首先确定待化简的逻辑函 数的变量,即确定卡诺图 的行数和列数。
注意约束条件
在使用卡诺图化简法时,应考虑约束条件,如输 入变量的取值范围和输出变量的取值范围。
避免重复计算
在化简过程中,应避免重复计算最小项,以提高 化简效率。
如何提高卡诺图化简法的效率
熟悉卡诺图化简法的步骤
熟练掌握卡诺图化简法的步骤,可以更快地完成化简过程。
选择合适的软件工具
使用合适的软件工具,如逻辑模拟软件等,可以提高卡诺图化简法 的效率。
《卡诺图化简法》 PPT课件
目录
• 卡诺图化简法简介 • 卡诺图的构成与特性 • 卡诺图化简法的步骤 • 卡诺图化简法的实例分析 • 卡诺图与其他化简方法的比较 • 卡诺图化简法的实际应用与注意事项

逻辑函数卡诺图化简

逻辑函数卡诺图化简
0001
11
二、用卡诺图表示逻辑函数
0100
最简与非—与非式为: 本节的重点是逻辑函数的卡诺图表示法和卡诺图化简方法。
1111 n个变量的函数--k图有2n个小方格,分别对应2n个最小项;
BD
11 10
1
1 1
1 1
1 1
八个相邻格圈在一起,结果消去三个变量
F F AB CA CB D D A B C
1100
01 1 0 0 1
八个相邻格圈在一起,结果消去三个变量
0101 1011
说明:如果求得了函数
1 1 1Y1 的反函数Y,则对Y中所
11 0 0 0 0 10 0 0 1 1
包含的各个最小项,在卡诺 图相应方格内填入0,其余
BC的公因子
方格内填入1。
图形法化简函数
一A 、 A卡B诺C图D合 并A B最C小D项的规则:
0001111000011110abcd两个相邻格圈在一起两个相邻格圈在一起结果消去一个变量结果消去一个变量abdad000111100001111011abcd四个相邻格圈在一起四个相邻格圈在一起结果消去两个变量结果消去两个变量八个相邻格圈在一起八个相邻格圈在一起结果消去三个变量结果消去三个变量十六个相邻格圈在十六个相邻格圈在一起结果一起结果mmii并在一起构成正方形或矩形圈消去i个变量而用含ni个变量的积项标注该圈
并在一起构成正方形或矩形圈,消去i个变量, 而用含(n - i)个变量的积项标注该圈。
CDE
AE
AB 000 001 011 010 110 111 101 100
00 m0 m1 m3 m2 m6 m7 m5 m4
01 m8 m9 m11 m10 m14 m15 m13 m12

卡诺图化简逻辑函数

卡诺图化简逻辑函数

利用卡诺图化简逻辑函数的方法称为卡诺图化简法或图形化简法。

化简时依据的基本原理就是具有相邻性的最小项可以合并,并消去不同的因子。

由于在卡诺图上几何位置相邻与逻辑上的相邻性是一致的,因而从卡诺图上能直观地找出那些具有相邻性的最小项并将其合并化简。

1.合并最小项的规则(1)若两个最小项相邻,则可合并为一项并消去一对因子。

合并后的结果中只剩下公共因子。

(2)若四个最小项相邻并排列成一个矩形组,则可合并为一项并消去两对因子。

合并后的结果中只包含公共因子。

(3)若八个最小项相邻并且排列成一个矩形组,则可合并为一项并消去三对因子。

合并后的结果中只包含公共因子。

l下图给出了最小项相邻的几种情况最小项相邻的几种情况图(a)(b)两个最小项相邻(c)(d)四个最小项相邻(e)八个最小项相邻至此,可以归纳出合并最小项的一般规则:如果有个最小项相邻(n=1,2,…)并排列成一个矩形组,则它们可以合并为一项,并消去n对因子。

合并后的结果中仅包含这些最小项的公共因子。

2.卡诺图化简法的步骤用卡诺图化简逻辑函数时可按如下步骤进行:(1)将函数化为最小项之和的形式。

(2)画出表示该逻辑函数的卡诺图。

(3)找出可以合并的最小项。

(4)选取化简后的乘积项。

选取的原则:n这些乘积项应包含函数式中所有的最小项(应覆盖卡诺图中所以的1)n所用的乘积项数目最少,即可合并的最小项组成的矩形组数目最少n每个乘积项包含因子最少,即各可合并的最小项矩形组中应包含尽量多的最小项例1:用卡诺图化简法将式化简为最简与—或函数式解:首先画出表示函数y的卡诺图,如图通过合并最小项,得出结果,左图:右图:注:l在填写y的卡诺图时,并不一定要将y化为最小项之和的形式。

l需要找出可以何并的最小项,将可能合并的最小项用线圈出,有时存在多种可能合并最小项的方案,所以有时一个逻辑函数的化简结果不是唯一的。

例2:用卡诺图法将化为最简与—或逻辑式解:首先画出y的卡诺图,然后把可能合并的最小项圈出,并按照前面所述的原则选择化简与—或式中的乘积项最后得到结果l补充说明:在以上的两个例子中,我们都是通过合并卡诺图中的1来求得化简结果的。

14 逻辑函数的卡诺图化简法

14 逻辑函数的卡诺图化简法

Y ABC D ACD AC
例:试将逻辑函数
展为最小项之和的形式。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
三、逻辑函数的“最大项之积”形式——标准“或与”表
达式 证明:任何一个逻辑函数都可以化成最大项之积的标 准形式。 例:试将逻辑函数
Y ABC BC
化为最大项之积的标准形式。
(4)任意两个最小项的乘积为0; (5)具有相邻性的两个最小项之和可以合并成一项 并消去一对因子。 2、最大项 在n变量函数中,若M为n个变量之和,且这n个变 量均以原变量或反变量的形式在M中出现一次,则称M 为该组变量的最大项。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
表1-4-2
三变量最大项编号表
(4)任意两个最大项之和为1;
(5)只有一个变量不同的两个最大项的乘积等于 各相同变量之和。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
二、逻辑函数的“最小项之和”形式——标准“与或”表 达式
A A 1
利用基本公式 ,可将任何一个逻辑函
数化为最小项之和的标准形式。这种标准形式在逻辑函数
的化简以及计算机辅助分析和设计中得到了广泛的应用。
《数字电子技术》
1.4 逻辑函数的卡诺图化简法
③ 圈的个数应尽可能少,因为一个圈对应一个与
项,即与项最少; 例:
CD AB CD
00 1 0 0 0
01 1 1 0 0
1.4 逻辑函数的卡诺图化简法
§1.4
逻辑函数的卡诺图化简法
§1.4.1 逻辑函数的两种标准形式 任何一个逻辑函数均可化成“最小项之和”与“最大 项之积”这两种标准形式。 一、最小项和最大项定义 1、最小项 在n变量逻辑函数中,若m为包含n个因子的乘积项, 而且这n个变量均以原变量或反变量的形式在m中出现一 次,则称m为该组变量的最小项。

试述卡诺图化简逻辑函数的原则和步骤

试述卡诺图化简逻辑函数的原则和步骤

试述卡诺图化简逻辑函数的原则和步骤卡诺图化简逻辑函数原理和步骤:
一、原则:
1. 完全性原则:卡诺图中的结构应与被化简的逻辑函数的结构一致。

2. 可辨识性原则:任意节点中的入度以及出度都应与被化简的逻辑函
数的语义一致。

3. 简化性原则:卡诺图中每条路径上的简单运算次数,都应该最少。

二、步骤:
1. 将主逻辑函数按照异或、与和或结构划分,将各个交换节点添加至
卡诺图中,并根据完全性原则建立其他节点;
2. 用实心箭头表示与运算,用虚线箭头表示或运算,即将表达式中带
有+的运算符改写为由向中心的实心箭头,将表达式中带有*.的运算符
改写为由中心向外的虚线箭头;
3. 根据可辨识性原则,以及表达式的结构对卡诺图中的节点进行排列,使其具有可读性和可懂性;
4. 根据简化性原则,消除各个简单差分路径上的不必要简单路径,使
得路径上的简单运算节点数量最少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 卡诺图上最小项的相邻性
Digital Logic Circuit
1)几何相邻 2)相对相邻 3)重叠相邻
演示
3. 卡诺图的填写方法
1. 函数为最小项表达式
因为构成函数的每一个最小项,其逻辑取值都是使函数值为1的 最小项,所以填写卡诺图时,在构成函数的每个最小项相应的小方 格中填上1,而其它方格填上0即可。也就是说,任何一个逻辑函数 都等于它的卡诺图中填1的那些最小项之和。
解:作出逻辑函数F(A,B,C,D)的卡诺图如下。若将任意项全部看 作为1来处理,卡诺圈构成如图a)所示,函数化简为:
F(A, B,C, D) A BC BD A B(C D)
Digital Logic Circuit
a)
b)
若将任意项全部看作为0来处理,卡诺圈构成如图b)所示,函数化简 为:
复习(提问): 逻辑函数的几种表示方法的相互转换。
Digital Logic Circuit
逻辑函数卡诺图化简
卡诺图适合于化简变量数小于5的逻辑函数。 1 卡诺图的结构
2变量逻辑函数的方格表示 卡诺图:每个小方格表示了函数的一个最小项,每相邻小方格的变量 组合之间只有一个变量不同。 演示
在画卡诺图时,通常将原变量用“1”表示,反变量用“0”表示, 将变量组合标注在大方格的左上角,在大方格的左边和上边标注变量 组合的取值,小方格中只需标出对应最小项的编号就行了。
相个
加圈
3 最简与或表达式
Y (A, B,C, D) BD CD AC D
两点说明:
Digital Logic Circuit
① 在有些情况下,最小项的圈法不只一种,得到的各个乘积项组成 的与或表达式各不相同,哪个是最简的,要经过比较、检查才能确定。
AB
CD
00 01 11 10
00 1 1 0 1
Digital Logic Circuit
用卡诺图化简逻辑函数举例
例1. 化简函数F(A,B,C,D)=∑m(3,4,5,7,9,13,14,15)。 解:首先作出逻辑函数F的卡诺图如下:
F ( A, B,C, D) ABC ABC ACD ACD
Digital Logic Circuit
Digital Logic Circuit
卡诺图化简逻辑函数的步骤
用卡诺图化简逻辑函数可按下列步骤进行:
①将逻辑函数用卡诺图表示出来。
②首先圈出没有相邻最小项的孤立的值为1的最小项方格,这是一 个主要项。
③找出只有一种合并可能的值为1的最小项方格,从它出发将所有 为1的相邻最小项按2的整数次幂为一组构成卡诺圈,所有圈中必须至 少有一个为1的最小项方格没有被圈过,并使所有的圈尽可能大。
Digital Logic Circuit
AB CD 00 01 11 10
00 1 1 0 0 01 1 1 1 0
11 0 0 1 0 10 1 0 1 0
AB CD 00 01 11 10
00 1 1 0 0
01 1 1 1 0
11 0 0 1 0 10 1 0 1 0
AC+ABD+ABC+BCD AC+ABD+ABC+ABD
④写出最简的函数表达式。
演示1
演示2
基本步骤图示
Digital Logic Circuit
逻辑表达式 或真值表
Y(A, B,C, D) m(3,5,7,8,11,12,13,15)
1 1
卡诺图
AB
CD
00
01
11
10
00
0
0
1
101 011011 1
1
1
1
10
0
0
0
0
Digital Logic Circuit
例1. 作出逻辑函数F(A,B,C,D)=∑m(1,3,6,7)对应的卡诺图。
解:先作一个4变量的卡诺图,在编号为1、3、6、7的小方格中 填 写 1 , 其 余 小 方 格 中 填 写 0 , 得 到 逻 辑 函 数 F(A,B,C,D)=∑m (1,3,6,7)的卡诺图如下。
Digital Logic Circuit
F(A, B,C, D) AB C ABC ABD AB C AB(C D)
Digital Logic Circuit
6. 多输出逻辑函数的化简
关键:充分利用各函数间可供共享的部分。 衡量多输出逻辑函数最简的标准: • 逻辑表达式中包含的不同的“与项”总数最少。 • 在“与项”总数最少的前提下,各不同“与项”中所包含的变量总数最 少。
Digital Logic Circuit
逻辑函数的卡诺图化简
课时授课计划 课程内容
Digital Logic Circuit
内容:逻辑函数的卡诺图化简法
目的与要求: 掌握卡诺图的填写方法; 掌握最小项的卡诺图表示; 熟练运用卡诺图化简逻辑函数。
重点与难点: 重点:用卡诺图表示逻辑函数; 用卡诺图化简逻辑函数; 具有无关项的逻辑函数的化简。 难点:卡诺图填写; 具有无关项的逻辑函数的化简。
Digital Logic Circuit
1~5变量逻辑函数的卡诺图
n变量的函数有2n个最小项,卡诺图上有2n个小方格,每个最小项有 n个最小项与之相邻。由于两个相邻最小项只有一个变量不同且互为反 变量,因而两个相邻最小项合并后可以消去一个变量。也就是说卡诺图 上两个相邻的小方格合并可以消去一个变量;四个相邻的小方格合并可 以消去二个变量;八个相邻的小方格合并可以消去三个变量;十六个相 邻的小方格合并可以消去四个变量;……。这就是用卡诺图化简逻辑函 数的原理。
Digital Logic Circuit
2. 函数为最大项表达式
因为相同编号的最小项和最大项之间存在互补关系,所以使函数值 为0的那些最小项的编号与构成函数的最大项表达式中的那些最大项编号 相同,按这些最大项的编号向卡诺图的相应小方格中填上0,其余方格上 填上1即可。
例2.作出函数F(A,B,C,D)=∏M(3,4,8,9,11,15)对应的卡诺图。 解:先作一个4变量的卡诺图,在编号为3、4、8、9、11、15的小方 格中填写0,其余小方格中填写1,得到逻辑函数F(A,B,C,D)=∏M (3,4,8,9,11,15)的卡诺图如下。
3. 函数为任意与或表达式
首先分别将每个与项的原变量用1表示,反变量用0表示,在卡诺 图上找出交叉小方格并填写1,没有交叉点的小方格填写0即可。
例3. 作出函数F(A,B,C,D)=AB+BC+CD对应的卡诺图。
Digital Logic Circuit
Digital Logic Circuit
Digital Logic Circuit
4. 卡诺图化简逻辑函数
一般规则:2n个相邻最小项构成的一个矩形框可合并为一项,该项仅含有这 些最小项中的公共因子,其余n对以原变量和反变量形式出现的因子均可消去。 卡诺圈包含值为1的最小项的数目必须是2n(n=1,2,3…)。
主要项:把2n个为1的相邻最小项进行合并,若卡诺圈不能再扩大,则圈得的合 并与项称为主要项。 必要项:若主要项圈中至少有一个为1的“特定”最小项没有被其它主要项所覆 盖,则称此主要项为必要项或实质主要项。最简逻辑函数中的与项都是必要项。 冗余项:若主要项圈中不包含有为1的“特定”最小项,或者说它所包含为1的最 小项均已被其它的主要项圈所覆盖,则称其为冗余项或多余项。
01 0 1 1 1
11 0 0 1 1
10 0 0 0 0
AB
CD
00 01 11 10
00 1 1 0 1
01 0 1 1 1
11 0 0 1 1
10 0 0 0 0
ACD+BCD+ABC+AD 不是最简
BCD+ABC+AD 最简
② 在有些情况下,不同圈法得到的与或表达式都是最简形式。 即一个函数的最简与或表达式不是唯一的。
例1. 化简下列两输出的逻辑函数
F1 AB C ABC ABC F2 ABC ABC ABC
解:① 若按单个函数分别化简,则:
F1 AB AC F2 AB BC
Digital Logic Circuit
两个表达式中共有4个不同的与项,变量总数为8个。
② 若将函数F1和F2 中的公共与项“ABC”公用,则两个输出函数分 别化简为:
例2. 化简函数F(A,B,C,D)=∑m(2,3,5,7,8,10,12,13)。 解:首先作出逻辑函数F的卡诺图如下:
F(A, B,C, D) AC D BCD ACD BCD F(A, B,C, D) AB D ABC ABD A BC
可见,函数的化简结果不具有唯一性,函数表示的唯一性仅在最大项 表达式或最小表达式中才具有。
①画出函数对应的卡诺图,任意项对应的小方格填上φ或d或×。 ②按2的整数次幂为一组构成卡诺圈,如果任意项方格为1时可以圈得 更大,则将任意项当作1来处理,否则当0处理。未被圈过的任意项一律当 作0处理。 ③写出化简的表达式。
演示
例1 化简函数 F(A,B,C,D)=∑m(5,6,7,8,9)+∑φ(10,11,12,13,14,15)
4.函数为任意或与表达式
对于任意的或与表达式,只要当任意一项的或项为0时,函数 的取值就为0。要使或项为0,只须将组成该或项的原变量用0、反 变量用1代入即可。故填写方法是:首先将每个或项的原变量用0、 反变量用1代入,在卡诺图上找出交叉小方格并填写0;然后在其余 小方格上填写1即可。
例4. 作出函数 F ( A, B,C, D) ( A C)(B D)(C D) 对应的卡诺图。
Digital Logic Circuit
5. 具有任意项的逻辑函数的化简
任意项(无关最小项):不决定函数的值的最小项。 从定义可以看出,与任意项对应的逻辑函数值既可以看成1,也可以看
相关文档
最新文档