液晶材料的分类_发展和国内应用情况

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第34卷第11期2006年11月

化工新型材料

N EW CH EMICAL MA TERIAL S

Vol134No111

・81・

NCM产品介绍

液晶材料的分类、发展和国内应用情况

徐晓鹏1 底 楠2

(11上海和氏璧化工有限公司西安办事处,西安710002)

(21西安通信学院二系,西安710106)

摘要:介绍了液晶材料的种类,及国内主要液晶材料的分类性能,论述了实际应用和市场前景。

关键词:液晶聚合物,液晶,近晶相,胆甾相,向列相,扭曲向列型,薄膜晶体管阵列

1 液晶的简介和分类

随着人们对液晶的逐渐了解,发现液晶物质基本上都是有机化合物,现有的有机化合物中每200种中就有一种具有液晶相。

显示用液晶材料是由多种小分子有机化合物组成的,现已发展成很多种类,例如各种联苯腈、酯类、环己基(联)苯类、含氧杂环苯类、嘧啶环类、二苯乙炔类、乙基桥键类和烯端基类以及各种含氟苯环类等。人们通常根据液晶形成的条件,将液晶分为溶致液晶(L yot ropic liquid crystals)和热致液晶(Thermot ropic liquid crystals)两大类。

111 溶致液晶

将某些有机物放在一定的溶剂中,由于溶剂破坏结晶晶格而形成的液晶,被称为溶致液晶。比如:简单的脂肪酸盐、离子型和非离子型表面活性剂等。

溶致液晶广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。

112 热致液晶

热致液晶是由于温度变化而出现的液晶相。低温下它是晶体结构,高温时则变为液体,这里的温度用熔点(T m)和清亮点(T c)来标示。液晶单分子都有各自的熔点和清亮点,在中间温度则以液晶形态存在。目前用于显示的液晶材料基本上都是热致液晶。

在热致液晶中,又根据液晶分子排列结构分为三大类:近晶相(Smectic)、向列相(Nematic)和胆甾相(Cholesteric)。

1.2.1 胆甾相液晶

这类液晶大都是胆甾醇的衍生物。胆甾醇本身不具有液晶性质,其中只有当O H基团被置换,形成胆甾醇的酯化物、卤化物及碳酸酯,才成为胆甾相液晶。并且随着相变而显示出特有颜色的液晶相。

胆甾相液晶在显示技术中很有用,TN、STN等显示都是在向列相液晶中加入不同比例的胆甾相液晶而获得的。另外,温度计也应用于此液晶。

1.2.2 近晶相液晶

虽然目前液晶显示技术中主要应用的是向列相液晶,而近晶相液晶黏度大,分子不易转动,即响应速度慢,被认为不宜作显示器件。但是向列相液晶显示模式几乎已接近极限,从TN到STN直至FSTN (Formulated Super T wisted Nematic)格式化超级扭曲向列,对其应用没有新的理论模式。因而,人们将目光重新转移到了近晶相液晶上,目前各近晶相中的手性近晶C相,即铁电相引起人们广泛兴趣。铁电液晶具备向列相液晶所不具备的高速度(微秒级)和记忆性的优异特征,它们在最近几年得到大量研究。

1.2.3 向列相液晶

向列相液晶又称丝状液晶。在应用上,与近晶相液晶相比,向列相液晶各个分子容易顺着长轴方向自由移动,因而黏度小,富于流动性。向列相液晶分子的排列和运动比较自由,对外界作用相当敏感,因而应用广泛。

向列相液晶与胆甾相液晶可以互相转换,在向列相液晶中加入旋光材料,会形成胆甾相,在胆甾相液晶中加入消旋光向列相材料,能将胆甾相转变成向列相。

2 液晶显示中所用液晶材料的主要分类液晶材料介于晶体与液体之间性质,兼有液体

化工新型材料第34卷

与晶体的特性,一方面,液晶具有流体的流动特性;另一方面,液晶又呈现出晶体的空间各向异性,包括介电特性、磁极化、光折射率等空间各向异性。液晶分子的部分有序排列还使得液晶具有类似晶体的、能承受扰乱这种秩序的切变应力。即使液晶具有切变弹性模量。对于实际显示器件性能的影响,液晶材料有许多技术参数,包括光电参数与物性参数,主要有介电各向异性Δε、双折射率Δn、体积黏度η、弹性常数K、相变温度Tm/Tc(熔点\清亮点)和液晶电阻率ρ等。根据液晶的上述特性产生出来的光电效应,把液晶对电场、磁场、光线和温度等外界条件的变化在一定下装换成可视信号,就可以制成显示器,即液晶显示器件。

目前,各种形态的液晶材料基本上都用于开发液晶显示器,现在已开发出的有各种向列相液晶、聚合物分散液晶、双(多)稳态液晶、铁电液晶和反铁电液晶显示器等。而在液晶显示中,开发最成功、市场占有量最大、发展最快的是向列相液晶显示器。按照液晶显示模式,常见向列相显示就有TN(扭曲向列相)模式、H TN(高扭曲向列相)模式、STN(超扭曲向列相)模式、TF T(薄膜晶体管)模式等。其中TF T模式是近10年发展最快的显示模式。

2.1 TN(Twist Nematic)扭曲向列型液晶材料

TN型液晶材料的发展起源于1968年,当时美国公布了动态散射液晶显示(DSM2L CD)技术。但由于提供的液晶材料的结构不稳定性,使它们作为显示材料的使用受到极大的限制。1971年扭曲向列相液晶显示器(TN2L CD)问世后,介电各向异性为正的TN2液晶材料便很快开发出来;特别是1972年相对结构稳定的联苯腈系列液晶材料由Gray G 等合成出来后,满足了当时电子手表、计算器和仪表显示屏等L CD器件的性能要求,从而真正形成了TN2L CD产业时代。

TN2L CD用的液晶材料已发展了很多种类。它们的特点是分子结构稳定,向列相温度范围较宽,相对黏度较低。不仅可以满足混合液晶的高清亮点、低黏度,而且能保证体系具有良好的低温性能。联苯环类液晶化合物的△n值较大,是改善液晶陡度的有效成分。嘧啶类化合物的K33/K11值较小,只有0.60左右,在TN2L CD和STN2L CD液晶材料配方中,经常用它们来调节温度序数和△n值。而二氧六环类液晶化合物是调节“多路驱动”性能的必需成分。TN液晶一般分子链较短,特性参数调整较困难,所以特性差别比较明显。

2.2 STN(Super TN)超扭曲向列相型液晶材料

自1984年发明了超扭曲向列相液晶显示器(STN2L CD)以来,由于它的显示容量扩大,电光特性曲线变陡,对比度提高,要求所使用的向列相液晶材料电光性能更好,到80年代末就形成了STN2 L CD产业,其代表产品有移动电话、电子笔记本、便携式微机终端。

STN型与TN型结构大体相同,只不过液晶分子扭曲角度更大一些,特点是电光响应曲线更好,可以适应更多的行列驱动。

STN2L CD用混晶材料的主要成分是酯类和联苯类液晶化合物,这两类液晶黏度较低,液晶相范围较宽,适合配制不同性能的混晶材料。另外为了满足STN混晶的大K33/K11值和适度△n的要求,通常需要在混晶中添加炔类、嘧啶类、乙烷类和端烯类液晶化合物。调节混晶体系的△n通常用炔类单体、嘧啶类单体乙烷类单体等。K33/K11值对STN2L CD的阈值锐角有很大影响,较大的K33/ K11值使显示有较高的对比度。为了提高K33/ K11值,往往需要在混晶中添加短烷基链液晶化合物和端烯类液晶化合物。

2.3 TFT(Thin Film T ransistor)薄膜晶体管显示型

液晶材料

由于采用薄膜晶体管阵列直接驱动液晶分子,消除了交叉失真效应,因而显示信息容量大;配合使用低黏度的液晶材料,响应速度极大提高,能够满足视频图像显示的需要。因此,TF T2L CD较之TN 型、STN型液晶显示有了质的飞跃。

TF T2L CD用液晶材料与传统液晶材料有所不同。除了要求具备良好的物化稳定性、较宽的工作温度范围之外,TF T2L CD用液晶材料还须具备以下特性:低黏度、高电压保持率、与TF T2L CD相匹配的光学各向异性(△n)。

目前针对TFT2LCD用液晶材料的合成设计趋势集中于以下几个方面:(1)以氟原子或含氟基团作为极性端基取代氰基;(2)在液晶分子侧链、桥键引入氟原子来调节液晶相变区间、介电各向异性等性能参数;(3)含有环己烷,尤其是双环己烷骨架的液晶分子得到广泛重视;(4)乙撑类柔性基团作桥键的液晶。

在液晶显示材料中,液晶材料大都是由几种乃至十几种单体液晶材料混合而成。向列相液晶和胆甾相液晶目前已具有非常广泛的应用,尤其是在液

2

8

相关文档
最新文档