尼龙66结构特征及其共混改性的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尼龙66的结构特征及其共混改性研究
1.引言
聚酰胺(PA)又称尼龙,其品种繁多,有PA 6,PA66,PA11,PA12,PA46,PA610,PA1010,PA612和近几年开发的新品种PA6T,PA9T等,其中PA6,PA66占主导地位,占总量的80%以上。聚酰胺(PA)由杜邦公司发明以来,已经经历了半个多世纪,到目前为止,聚酰胺仍是应用广泛的塑料,特别是在工程塑料领域的发展十分迅速,在五大工程塑料中占有很重要的地位[1]。尼龙66原料供应短缺大大限制了全球尼龙66纤维需求的增长进入2007年后,尼龙66纤维需求的年增长率为2.5%,而中国尼龙66纤维需求的年增长率将超过10%,为此对原料的需求也在增长。罗地亚公司和英威达公司在中国均有原料项目建设计划。据分析,2006年中国尼龙纤维消费量已超过130万吨,占全球尼龙纤维消费量约30%。
我国尼龙66的生产起步于20世纪60年代中期。1964年,上海辽原化工厂建设了我国第一个尼龙66盐生产厂,年产能力仅600吨。1973年辽阳石油化纤公司引进了法国罗纳·普朗克公司的尼龙66生产技术,建设了年产万吨的生产装置。“八五”期间,我国尼龙66盐需求量已达10万吨,而生产尼龙66盐的企业只有辽阳一家,无法满足市场需求。国家每年要花费大量外汇进口尼龙66,仅神马集团一家生产锦纶帘子布用尼龙66盐每年就需外汇5000万美元。1994年,中国神马集团开工建设了我国第二个尼龙66生产装置,该装置引进日本的技术,年产尼龙66盐6.5万吨。目前,我国尚没有自主开发的尼龙66生产技术,国内仅有的两个主要生产企业的技术都是引进的。尼龙66生产技术、生产规模主要集中在美国、日本、德国几个经济大国手中。随着我国化纤、机械、电子、仪器、仪表等领域的发展,尼龙66将被应用到更广阔的领域,尤其是我国工程塑料的迅猛发展,为尼龙66的发展提供了很好的空间。进入2007年后,全球对尼龙66切片的需求增长率为6%,国内市场年均增长率达12%据分析,2006年中国尼龙纤维消费量已超过130万吨,占全球尼龙纤维消费约30%。但是我国在尼龙66工程塑料的生产方面还处于起步阶段,尼龙66的产量还远不能满足国内不断增长的对产品量的需求,而且在产品质量及种类方面与国外有一定的差距。面对国际市场上日益激烈的竞争,我国必须在尼龙的生产工艺和改性技术方面不断创新。目前,国内许多专家学者都致力于尼龙生产及加工工艺的优化和改性尼龙产品的开发,特别是进入21世纪以来,相关的研究层出不穷,也取得了显著
的成果,开发出了一大批新型增强增韧尼龙以及功能化尼龙制品,极大的扩展了尼龙的应用领域,同时也使尼龙66的改性理论得到了发展[2]。
2.尼龙66的结构及性能特征
2.1尼龙66的结构
聚酞胺,俗称尼龙(Nylno)是由二元胺和二元酸通过缩聚反应制取,或者由一种内酞胺通过自身开环聚合而成。尼龙分子结构中主要由一个酞胺基(一NHCO一)和若干个次甲基(一CH2一)或其它环氧基、芳香基组成。尼龙的两种通式是:
一NH(CH2)一NHCO(CH2)n-2C0]x称为尼龙mn,一[NH(CH2)n-1CO]-x称为尼龙n。尼龙的命名由二元胺二元酸中的碳原子数来决定。如乙二胺和癸二酸反应所得的缩聚物就称为尼龙610,前一个数字是指二元胺中的碳原子数,后一个数字是指二元酸中的碳原子数。由氨基酸自聚的尼龙,则由氨基酸中的碳原子数决定。如己内酞胺中含有6个碳原子,则其聚合物为尼龙6[3]。Bill认为,尼龙66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形。Bunn等确定了尼龙66α型的结晶构造,认为尼龙66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长,其相邻的分子以氢键连成平面的片状。尼龙66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合。熔融状态下的尼龙66缓慢冷却时,在235~245℃急剧生成球晶,球晶不仅包含于结晶部分,也包含于非结晶部分,结晶度为20%~40%。球晶有在径向上优先取向的正球晶及在切线方向上优先取向的负球晶。尼龙66球晶通常为正球晶,但在250~265℃下加热熔融结晶时可以生成负球晶。球晶生成速度和球晶大小,除显著地受冷却温度的影响之外,还受到熔融温度、分子量等因素的影响。一般认为,普通结晶形高分子,具有结晶区域和非结晶区域,结晶区域的比例便称为结晶度。在很大程度上,结晶度可以左右尼龙66的物理、化学和机械性质。
2.2尼龙66的性能特征
尼龙66与其它聚酰胺相比,最容易热降解和三维结构化。当尼龙66发生热分解时,首先表现为主链开裂引起分子量、熔体粘度降低;进一步降解时,由三维结构化引起熔体粘度上升而最终变成凝胶,成为不溶不熔物。在惰性气体氛围中,尼龙66可以在300℃保持短时间的稳定性,但时间长后(如290℃5小时)就可看出明显的
分解,产生氨和二氧化碳等。在无氧的条件下,其分解产物为氰基(-CN)和乙烯基(-CH=CH2)。在有氧和水等存在时,尼龙66在200℃就显示出明显的分解倾向。在有氧存在时,加热还会引起分子链之间的交联。尼龙66对室温水和沸水是稳定的,但在高温尤其是在熔融状态下则会发生水解。另外,尼龙66在碱性水溶液中也很稳定,即使在10%的NaOH溶液中于85℃处理16小时也观察不到明显的变化,但在酸性水溶液中容易发生水解。
总的说来,尼龙66系由己二酸与己二胺缩聚而成。尼龙66的大分子结构中含有大量的酸胺基,大分子末端为氨基或竣基,所以它是一种强极性、分子间形成氢键且具有一定反应活性的结晶性聚合物。它的性能特点为:优良的力学性能,耐磨性,自润滑性,耐腐蚀性、无噪音、无毒、易染色及较好的成型加工性。但尼龙66的缺口冲击强度较差,并且具有较大的吸水性,影响其尺寸的稳定性和电绝缘性[4]。
3.尼龙66的改性方法
尼龙66虽然具有很多的优异性能,但是在一定的条件还有一些不足之处,以至于不能被广泛的应用,很多科学研究者们很感兴趣,他们利各种物理和化学方法对尼龙66进行了改性,并取得很显著的成果。科学研究者们对PA的无规共聚改性研究较多,并有工业化产品,而嵌段、接枝共聚改性仍处于研究阶段。PA与其它共聚物的掺混技术发展较快,且有工业化产品,与各种添加剂的混合技术仍是简便有效的常用改性办法。针对聚酞胺工程塑料的耐热性和耐酸性较差,在干态和低温下抗冲击强度低,吸水率大,影响制品尺寸稳定性和电性能,还有不透明、溶解性差等特点,改性技术应用进展增快,尼龙使用范围得以拓展。
3.1尼龙66的物理改性方法
掺混技术是尼龙物理改性的重要途径。与开发新的聚合物相比,聚合物掺混能在较短的时间内开发出多种多样的高性能材料。尼龙经掺混改性能达到高强度、高韧性、高耐热性、低吸水性及阻燃性,而且掺混改性工艺和设备比较简单,投资少,见效快。因此,引起了人们的普遍关注尼龙因其主链上有强极性酞胺基团,其氢键能增加分子间的作用力,分子链端又具有反应性高的氨基和羧基,故尼龙易与其它材料掺混。
3.1.1填充增强改性
PA可通过添加增韧剂、润滑剂、热稳定剂、加工助剂和着色剂来改进和提高性能,或同时使用添加剂和改性剂进行改性。加入不同的添加剂,可制取阻燃、尺寸稳