XRD技术介绍PPT演示

合集下载

XRD分析课堂PPT

XRD分析课堂PPT
西南科技大学分析测试中心
引言
问题
❖ 科研、生产、商业和日常活动中,我们经常遇到: 这是一种什么物质?含有那些杂质或有害物质?用 什么方法鉴定?
❖ X射线衍射分析(XRD)的原理?仪器?样品? ❖ XRD除物相分析还能做些什么? ❖ 如何从XRD所给出的数据中提取更多的信息?包括
成分、结构、形成方式(条件)、结晶度、晶粒度? 等等。
19
西南科技大学分析测试中心
特征X射线的命名方法
❖ 当K电子被打出K层时,如L层电子来填充K空位时,则 产生Kα辐射。同样当K空位被M层电子填充时,则产生 Kβ辐射。M能级与K能级之差大于L能级与K能级之差, 即一个Kβ光子的能量大于一个Kα光子的能量; 但因 L→K层跃迁的几率比M→K迁附几率大,故Kα辐射强 度比Kβ辐射强度大五倍左右。显然,当L层电子填充K 层后,原子由K激发状态变成L激发状态,此时更外层 如M、N……层的电子将填充L层空位,产生L系辐射。
26
16
西南科技大学分析测试中心
特征X射线产生的机理
❖ 特征X射线光谱产生的原因与连续光谱完全不 同。由阴极飞驰来的电子,在其与阳极的原子 相作用时,把其能量传给这些原子中的电子, 把这些电子激发到更高一级的能阶上;换句话 说,就是把原子的内层电子打到外层或者甚至 把它打到原子外面,而使原子电离,从而在原 子的内电子层中留有缺席的位置。
I k1iZVm
14
西南科技大学分析测试中心
管电流、管电压、阳极靶的原子序数对连续谱的影响
15
西南科技大学分析测试中心
1.4.2 特征X射线(标识X射线)
❖ 从图可见,当电压加到25KV时, Mo 靶 的 连 续 X 射 线 谱 上 出 现 了 两 个 尖 锐 的 峰 Kα 和 Kβ 。 随 着 电 压的增大,其强度进一步增强, 但波长不变。也就是说,这些谱 线的波长与管压和管流无关,它 与靶材有关,对给定的靶材,它 们的这些谱线是特定的。因此, 称之为特征X射线或标识X射线。 产生特征X射线的最低电压称激 发电压。

[课件]XRD解析PPT

[课件]XRD解析PPT

Bragg 公式 2dhkl sinθhkl = nλ 应用
1)将晶体结构周期性(通过d)和射线本质(通过λ)
2)结合起来,并反映在图象上(通过θ)。 3)λ恒定,通过测θ求d(晶体结构分析) 4) d 恒定,通过测θ求λ(荧光分析) 5)波粒性 E=hv (能谱分析)
6)衍射充要条件 2dhkl sinθhkl = nλ, F 2
(2)用衍射仪法或照相法获得样品衍射花样; (3)检索PDF卡片; (4)核对PDF卡片与物相判定。
多相物质分析
多相物质相分析的方法是按上述基本步骤逐个确定其组
成相。 多相物质的衍射花样是其各组成相衍射花样的简单叠加, 这就带来了多相物质分析(与单相物质相比)的困难: 检索用的三强线不一定局于同一相,而且还可能发生一 个相的某线条与另一相的某线条重叠的现象。 因此,多相物质定性分析时,需要将衍射线条轮番搭配、 反复尝试,比较复杂。
分数表示,即物相定量分析)。
1、物相定性分析
基本原理与方法: 物质的X射线衍射花样特征:分析物质相组成
的“指纹脚印”。
制备各种标准单相物质的衍射花样并使之规
范化,将待分析物质 ( 样品 ) 的衍射花样与之
对照,从而确定物质的组成相。
物相定性分析的基本步骤
(1)制备待分析物质样品;

示例
未煅烧白云石的主相为碳酸钙 镁(CaMg(CO3)2),次相 为二氧化硅
300℃
500℃
750℃
1000℃
经过300和500℃煅烧后,白云石的主相和次相没有发 生变化,主相和次相仍分别为碳酸钙镁(CaMg(CO3) 2)和二氧化硅。当煅烧温度达到750℃时,碳酸钙镁 部分分解为碳酸钙和氧化镁,其主相变为碳酸钙镁 (CaMg(CO3)2),氧化镁和氧化钙。由于碳酸钙 镁在750℃下分解出二氧化碳并溢出,所以在750℃ 的烧失量达到15.1%。当煅温度提高到1000℃时,碳 酸钙镁全部分解为氧化钙和氧化镁,烧失量达到45.68 %。

XRD技术介绍PPT课件

XRD技术介绍PPT课件

一束X射线通过物质时,它的能量可分为三部分: 一部分被吸收;一部分透过物质继续沿原来的方向 传播;还有一部分被散射。
X射线的产生及与物质的相互作用
X射线的散射
• X射线被物质散射时,产生两种现象: • 相干散射; • 非相干散射。
相干散射
• 物质中的电子在X射线电场的作用下, 产生强迫振动。这样每个电子在各方 向产生与入射X射线同频率的电磁波。 新的散射波之间发生的干涉现象称为 相干散射。
在劳厄等发现X衍射不久,W.L.布拉格(Bragg )父子对劳厄花 样进行了深入的研究,提出花样中的各个斑点可认为是由晶体中 原子较密集的一些晶面反射而得出的,并导出了著名的布拉格定 律。
1913年英国布拉格父子(W.H .bragg .WL Bragg)建立了一个公 式--布喇格公式。不但能解释劳厄斑点,而且能用于对晶体结构的 研究。
X射线的吸收
物质对X射线的吸收指的是X射线能量在 通过物质时转变为其它形式的能量,X射 线发生了能量损耗。物质对X射线的吸收 主要是由原子内部的电子跃迁而引起的。 这个过程中发生X射线的光电效应和俄歇 效应。
光电效应
• 以X光子激发原子所发生的激发和辐射过程。 被击出的电子称为光电子,辐射出的次级 标识X射线称为荧光X射线。
短波限
• 连续X射线谱在短波方向有一个波长极限,称为短 波限λ0,它是由光子一次碰撞就耗尽能量所产生的 X射线。它只与Байду номын сангаас电压有关,不受其它因素的影响。
• 相互关系为:
• 式中:ee为V电子h电ma荷x ,he=0c1.662 18920×110V.-2149C;(nm)

V为电子通过两极时的电压降V。
• X射线管的效率:

XRD的原理及应用ppt课件

XRD的原理及应用ppt课件

.
10
三、X射线衍射方法
• X 射线的波长较短, 大约在10- 8~ 10- 10cm 之间。与晶体中的原子间距数量级相同, 因 此可以用晶体作为X 射线的天然衍射光栅, 这就使得用X射线衍射进行晶体结构分析成 为可能。在研究晶体材料时,X射线衍射方 法非常理想非常有效,而对于液体和非晶 态物固体,这种方法也能提供许多基本的 重要数据。所以X射线衍射法被认为是研究 固体最有效的工具。在各种衍射实验方法 中,基本方法有单晶法、多晶法和双晶法。
衍射),已成为近代X射线衍射技术取得突出成 就的标志。但在双晶体衍射体系中,当两个晶体 不同时,会发生色散现象。因而,在实际应用双 晶衍射仪进行样品分析时,参考晶体要与被测晶
体相同,这使得双晶衍射仪的使用受到限制。
.
24
四、X射线衍射的应用
• X射线衍射技术发展到今天, 已经成为最基 本、最重要的一种结构测试手段, 其主要应 用主要有物相分析 、 精密测定点阵参数、 应力的测定、晶粒尺寸和点阵畸变的测定、 结晶度的测定 、 晶体取向及织构的测定
.
18
德拜相机
德拜相机结构简单,主 要由相机圆筒、光栏、 承光管和位于圆筒中心 的试样架构成。相机圆 筒上下有结合紧密的底 盖密封,与圆筒内壁周 长相等的底片,圈成圆 圈紧贴圆筒内壁安装, 并有卡环保证底片紧贴 圆筒。
.
19
X射线衍射仪法
• X射线衍射仪法以布拉格实验装置为原型,融合了机械与 电子技术等多方面的成果。衍射仪由X射线发生器、X射 线测角仪、辐射探测器和辐射探测电路4个基本部分组成, 是以特征X射线照射多晶体样品,并以辐射探测器记录衍 射信息的衍射实验装置。现代X射线衍射仪还配有控制操 作和运行软件的计算机系统。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

XRD简介及应用 ppt课件

XRD简介及应用 ppt课件

9
2.2 X射线的本质、能量
X射线本质上和无线电波、可见光、射线一样,也是 一种电磁波,具有波粒二象性。其波长在0.01~10nm之 间,介于紫外线和射线之间,但没有明显的界限。其 短波段与射线长波段相重叠,其长波段则与紫外线的 短波段相重叠。
γ射线
X射线
UV
IR
可见光
微波
无线电波
10-15
2021/3/26
2021/3/26
XRD简介及应用 ppt课件
33
2.5.1 X射线的吸收
当X射线穿过物质时,由于受到散射,光电效应等 的影响,强度会减弱,这种现象称为X射线的衰减。
XRD简介及应用 ppt课件
17
2021/3/26
XRD简介及应用 ppt课件
18
2.4.1 连续X射线谱
为什么会出现连续X射线谱呢?
我们假设管电流强度为10mA,即0.01C/s,电子电 荷为1.6×10-19C,则一秒钟时间内到达阳极靶上的电子 数目为:
n=0.01/1.6×10-19=6.25×1016
此时它的能量为:
可发现最短波长只与管压有关。
2021/3/26
XRD简介及应用 ppt课件
20
连续X射线谱是由某一短波限开始的一系列连续波长组 成。它具有如下的规律和特点:
(1)、当增加X射线管的加速电压时,各波长射线的 相对强度一致增高,最大强度波长λm和短波限λ0变小。 (2)、当管压保持不变,增加管的电流时,各种波长 的X射线相对强度一致增高, 但λm和短波限λ0数值大 小不变。
我们再按电子跃迁时所跨越的能级数目的不同 把同一辐射线系分成几类,对跨越1,2,3…..个能 级所引起的辐射分别标以, , 等符号。电子由 LK,M K跃迁(分别跨越1、2个能级)所引起 的K系辐射定义为K, K线。

XRD的原理、方法及应用 ppt课件

XRD的原理、方法及应用 ppt课件
样品中晶体学取向与样品外坐 标系的位向关系。一般用劳厄 法单晶定向,其根据是底片上 劳埃斑点转换的极射赤面投影 与样品外坐标轴的极射赤面投 影之间的位置关系。(透射/ 背射)
X射线单晶衍射仪
XRD的应用
• 多晶材料中晶粒取向沿一定方位偏聚的现象称为织 构,常见的织构有丝织构和板织构两种类型。
• 为反映织构的概貌和确定织构指数,有三种方法描 述织构:极图、反极图和三维取向函数。
便携式XRD应力测试仪
XRD的应用
• 4、晶粒尺寸和点阵畸变的测定 • 在晶粒尺寸和点阵畸变测定过程中,需要做的工作
有两个:⑴ 从实验线形中得出纯衍射线形,最普 遍的方法是傅里叶变换法和重复连续卷积法。⑵ 从衍射花样适当的谱线中得出晶粒尺寸和缺陷的信 息。
XRD的应用
• 5、单晶取向和多晶织构测定 • 单晶取向的测定就是找出晶体
• 2. 1912年,德国,劳厄,第一张X射线衍射花样, 晶体结构,电磁波,原子间距,劳厄方程;
• 1913-1914年,英国,布拉格父子,布拉格方程( 2dsinθ=nλ),晶体结构分析;
• 3. 1916年,德拜、谢乐,粉末法,多晶体结构分析 ;
• 4. 1928年,盖格,弥勒,计数管,X射线衍射线强 度,衍射仪。
材料表征概述
• 以纳米粉体材料为例,常用的表征手法如下图所示 :
材料表征概述
• XRD即X-Ray Diffraction(X射线衍射)的缩写。通 过对材料进行X射线衍射,分析其衍射图谱,获得 材料的成分、材料内部原子或分子的结构或形态等 信息的研究手段。
X射线衍射仪
材料表征概述
• 1. 1895年,德国,伦琴,发现,医疗,第一个诺贝 尔物理奖;
• 然而,如果为了研究样品的某一特征衍射,择优取 向却是十分有用的,此时,制样将力求使晶粒高度 取向,以得到某一晶面的最大强度。

《X射线衍射仪XRD》PPT课件

《X射线衍射仪XRD》PPT课件

测角仪的构造
X射线发生器
XRD-6000
X射线发生器是高稳定度的 它是由:X射线管
高压发生器
管压管流稳定电路
各种保护电路等




用 的 X
密封式 最大功率≤3KW
射 线
管 分为
视靶材料的不同而异


于 热 电 子
转靶式
是为获得高强度X射 线而设计的

极 管

功率≥9KW

产生条件
高速电子遇靶突然停止产生X-射线 1.灯丝 产生自由电子 2.高压 加速电子
• 试样产生的衍射线也会发散,同 样在试样到探测器的光路中也设 置防散射光栏SS、梭拉光栏S2和 接收狭缝光栏RS,这样限制后仅 让聚焦照向探测器的衍射线进入 探测器,其余杂散射线均被光栏 遮挡。
单色器
晶体单色器
• 晶体单色器的作用与图示
– 作用:消除衍射花样的背底和Kβ散射
衍射束弯曲晶体单色器
应变
77.9%
α(110)
α (200)
400
200
800
600 应变 55%
400
200
400
应变 35.6%
300
α (211)
200
100
1000 应变 0(1γ11)γ
500
(200)
(2γ20) (31γ1)(γ222)
0
20
40
60
80
100
2θ /degrees
基体为304奥氏体不锈钢, 经过冷轧变形后,以样品厚度 的减少量计算样品的应变分别 为35.6%,55.0%,77.9%。图 中γ为奥氏体相,α为马氏体相, 从XRD的结果可以看出,304 基体没有应变的情况下,奥氏 体的5个衍射峰均存在,并且马 氏体(110)晶面上出现衍射峰; 随着应变量的增加,马氏体的 衍射峰逐渐增多,到应变量为 77.9%时,马氏体在(110)、 (200)、(211)晶面上出现 衍射峰,而奥氏体的衍射峰削 弱,只有(220)晶面的衍射 峰存在。

XRD衍射分析技术PPT课件

XRD衍射分析技术PPT课件

建立布拉格衍射方程的基本出发点是:考虑为每组晶面族的反射。
即当衍射线对某一晶面族来说恰为光的反射方向时,此反射方向便是衍射加 强的方向。由于衍射线的方向恰好相当于原子面对入射波的反射,才得以使 用Bragg条件,不能因此混淆平面反射和晶体衍射之间的本质区别。
最新课件
24
(II) 厄瓦尔德图解
中心思想: 衍射波矢量和入射波矢量(夹角即为衍射角2θ)相差一个倒 易矢量时,衍射能产生
直线点阵
平面点阵
空间点阵
最新课件
4
点阵必须具备的三个条件:
a·点阵点必须无穷多; b·每个点阵点必须处于相同的环境; c·点阵在平移方向的周期必须相同。 3.结构基元: 点阵点所代表的重复单位的具体内容
晶体结构
点阵 结构单元
+
晶体结构=点阵+结构单元
最新课件
5
4.晶 胞:是晶体结构的基本重复单位。
最新课件
13
(4)晶体X射线衍射的方向
劳埃方程, 布拉格方程, 厄瓦尔德图解
(I) 布拉格方程
中心思想:
将晶体看作是由许多平行的原子面堆积而成,把衍射线看作是原子面对 入射线的反射,也就是说,在X射线照射到原子面中,所有原子的散射波在原子 面的反射方向上的相位是相同的,是干涉加强的方向
注意:
X射线的原子面反射和可见光的镜面反射不同,一束可见光以任意角 度透射到镜面上都可以产生发射,而原子面对X射线的反射并不是任意的, 只有当入射波长λ,入射角θ和晶面间距d三者之间满足布拉格方程时才能 发生反射,所以将X射线的这种反射称为选择反射
最新课件
16
布拉格方程的导出
• 布拉格方程的导出基础: • ①晶体结构具有周期性(可将晶体视为由许多相互平行且

XRD培训ppt

XRD培训ppt

连续X射线
具有连续波长的X射线,构成连续X射线谱, 它和可见光相似,亦称多色X射线。
Intensity
50 kV
2
40 kV
1
30 kV
20 kV
0 0.0 0.2 0.4 0.6 0.8 1.0
wavelength
产生机理 短波限 X射线的强度
短波限
连续X射线谱在短波方向有一个波长极限,称为短波 限λ0。它是由电子一次碰撞就耗尽能量所产生的X射 线。它只与管电压有关,不受其它因素的影响。
积上发射出X射线。
D8 advance衍射仪中:
线焦斑面积:0.4*12mm
X射线谱
X射线谱指的是X射线的强度随波长变化的关系曲线。X 射线强度大小由单位面积上的光量子数决定。
由X射线管发射出来的X射线可以 分为两种类型:
(1)连续(白色)X射线 (2)特征(标识)X射线 连续辐射,特征辐射
发散狭缝
索拉狭缝 防散射狭缝
发散狭缝 防散射狭缝
D8 可以轻松的实现聚焦光和平行光的转换
实际测试过程参数的设置
1. 狭缝越大,强度越大,但是分辨率越低。
2.
1.2S dewell time 0.1S dewell tim
实际的测试过程中要注意的问题
(1). 过小的样品对于衍射测试的影响: 实际测试样品尺寸随着角度的变化曲线:
X射线衍射技术的主要应用领域
1,晶体结构分析:人类研究物质微观 结构的第一种方法。 2,物相定性分析 3,物相定量分析 4,晶粒大小分析 5, 非晶态结构分析,结晶度分析 6,宏观应力与微观应力分析 7,择优取向分析
伦 琴
产生原理
高速运动的电子与物体碰撞时,发生能量转换,电子 的运动受阻失去动能,其中一小部分(1%左右)能 量转变为X射线,而绝大部分(99%左右)能量转变 成热能使物体温度升高。

XRD教程PPT课件

XRD教程PPT课件
对K系列和L系列的进一步研究 得到了有关原子内部结构的极 为重要的结果:是原子的核电 荷,而不是原子量,决定该原 子在元素周期表中的位置。也 就是说,原子的核电荷决定原 子的化学属性。
巴克拉(1877~1944)获1917年诺贝尔物理学奖
5
➢ 1924年,西格班(Karl Manne Georg Siegbahn)发现X射 线中的光谱线。 X射线标识谱间的辐射起源于原子内部而与外围电子 结构所支配的复杂光谱线及化学性质无关。他证明了 巴克拉发现的K辐射与L辐射的确存在,另外他还发现 了M系。他的工作支持波尔等科学家关于原子内电子 按照壳层排列的观点。
24
X射线衍射的基本原理
• 衍射又称为绕射,光线照射到物体边沿后通过散射 继续在空间发射的现象。
• 如果采用单色平行光,则衍射后将产生干涉结果。 相干波在空间某处相遇后,因位相不同,相互之间 产生干涉作用,引起相互加强或减弱的物理现象。
• 衍射的条件,一是相干波(点光源发出的波),二 是光栅。
• 衍射的结果是产生明暗相间的衍射花纹,代表着衍的吸收限位于辐射源的Kα和Kβ之间,且尽量靠近Kα,
强烈吸收Kβ,而K吸收很小; • 2. 滤波片以将Kα强度降低一半最佳。 • Z靶<40时 Z滤片= Z靶-1;
Z靶>40时 Z滤片= Z靶-2
阳极靶的选择: 1. 阳极靶K波长稍大于试样的K吸收限; 2. 试样对X射线的吸收最小。 Z靶≤Z试样+1
I ∝iZV 2
2. 连续谱强度分布的形状
主要决定于X光管加速电压
的大小。连续谱各波长的
强度与X光管的电流成正比,
且随阳极材料的原子序数
增大而增加。
12
特征X射线:由若干互相分离且具有特定波长的谱线组成,其

X射线衍射分析(XRD)PPT课件

X射线衍射分析(XRD)PPT课件

1845——1923) 面有广泛应用,因此而获得1901年诺贝尔物
理奖。 2021
4
X射线衍射技术的主要应用领域
1,晶体结构分析:人类研究物质微观
结构的第一种方法。
2,物相定性分析 3,物相定量分析
4,晶粒大小分析 5, 非晶态结构分析,结晶度分析
6,宏观应力与微观应力分析 7,择优取向分析
2021
50
40 Mo
30 Cu
Ka 1
20
10 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1/2 (109 Hz1/2)
1 CZ
K1: C=3*103 =2.9
2021
C1Z
K1: C1=5.2*107 =2.9
37
产生机理
• 特征X射线谱的产生机理与阳极物质的原子内 部结构紧密相关的。
2021
30
当增加X射线管的电压,连续X射线谱有下列特征
1,各种波长的X射线的 相对强度一致增高, 2,最高强度的射线的波 长逐渐变短(曲线的峰 向左移动), 3,短波极限逐渐变小, 即0向左移动, 4,波谱变宽。
Intensity
50 kV
2
40 kV
1
30 kV
20 kV
0 0.0 0.2 0.4 0.6 0.8 1.0

相互关系为:
eV
hmax
hc
0
或者
0
hc eV
• 式中 e —电子电荷,等于 1.61019C(库仑)
• V—管电压
• h—普朗克常数,等于 6.6251034js
2021
27
相关习题
• 试计算用50千伏操作时,X射线管中的电子 在撞击靶时的速度和动能,所发射的X射线 短波限为多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

劳厄想到了这一点,去找普朗克ቤተ መጻሕፍቲ ባይዱ师,没得到支持 后,去找正在攻读博士的索末菲,两次实验后终于 做出了X射线的衍射实验。
晶体的三维光栅 Three-dimensional “diffraction grating” Laue spots proves wave properties of X-ray.
X射线衍射仪
目录
A X射线简介 B XRD的结构及原理 C XRD操作及分析方法 D 晶体学基础知识 E XRD的表征应用
X射线简介
1895年伦琴(W.C.Roentgen)研究阴极射线管时,发现管 的阴极能放出一种有穿透力的肉眼看不见的射线。由于它的本质 在当时是一个“未知数”,故称之为X射线。
1953年英国的威尔金斯、沃森和克
里克利用X射线的结构分析得到了遗传
基因脱氧核糖核酸(DNA)的双螺旋
结构,荣获了1962年度诺贝尔生物和医
学奖。
❖ 与X射线及晶体衍射有关的部分诺贝尔奖获得者名单
年份 学科
得奖者
1901 物理
伦琴Wilhelm Conral Rontgen
1914 物理
劳埃Max von Laue
在1913年—1914年,莫莱特首先系统地研究了各种元素的标识辐射。结 果发现元素的X射线光谱线的频率与原子系数Z之间存在一定的关系,从而建 立了莫莱特定律。
1913年Ewald提出了倒易点阵概念以及反射球构造方法,并于1921年进一 步完善。
Moseley于1913年发现入射X射线光子和被照射元素中原子的交互作用能 产生荧光X射线,其波长大于入射波。并且这种荧光辐射的波长与靶元素有一 定的关系,其规律被称为Moseley定律。
1954 化学
鲍林Linus Carl Panling
1962 化学
肯德鲁John Charles Kendrew 帕鲁兹Max Ferdinand Perutz
1962 生理医学 Francis H.C.Crick、JAMES d.Watson、 Maurice h.f.Wilkins
1964 化学
1895年11月8日(星期 五) ,伦琴给他妻子 Bertha拍的左手透视 片,手上戴有戒指。
1896年2月8日,X射线在美国首次用于临 床诊断
❖ 1908~1911年,Barkla发现物质被X射线照射 时,会产生次级X射线。次级X射线由两部分 组成,一部分与初级X射线相同,另一部分
与被照射物质组成的元素有关,即每种元素 都能发射出各自的X射线(标识谱)。 Barkla同时还发现不同元素的X射线吸收谱 有不同的吸收限。
布拉格父子认为当能量很高 的X射线射到晶体各层面的原子 时,原子中的电子将发生强迫振 荡,从而向周围发射同频率的电 磁波,即产生了电磁波的散射, 而每个原子则是散射的子波波 源;劳厄斑正是散射的电磁波的 叠加。
Adding “reflection” rays from the entire family planes
在劳厄等发现X衍射不久,W.L.布拉格(Bragg )父子对劳厄花 样进行了深入的研究,提出花样中的各个斑点可认为是由晶体中 原子较密集的一些晶面反射而得出的,并导出了著名的布拉格定 律。
1913年英国布拉格父子(W.H .bragg .WL Bragg)建立了一个公 式--布喇格公式。不但能解释劳厄斑点,而且能用于对晶体结构的 研究。
❖ (1)可见光的衍射现象:光栅常数 (a+b)只要与点光源的光波波长为同一数 量级,就可产生衍射,衍射花样取决于 光栅形状。
❖ (2)晶体学家和矿物 学家对晶体的认识:晶 体是由原子或分子为单 位的共振体(偶极子) 呈周期排列的空间点阵, 各共振体的间距大约是 10-8-10-7cm,天然晶体 可以看作是光栅常数很 晶体的三维光栅 小的空间三维衍射光栅。 Three-dimensional “diffraction grating”
XRD——X射线晶体学基础
材料表征概述
• 材料表征技术是关于材 料的化学组成、内部组 织结构、微观形貌、晶 体缺陷与材料性能等的 表征方法、测试技术及 相关理论基础的实验科 学,是现代材料科学研 究以及材料应用的重要 手段和方法
• 以纳米粉体材料为例,常用的表征手法如下图所示:
• XRD即X-Ray Diffraction(X射线衍射)的缩写。通 过对材料进行X射线衍射,分析其衍射图谱,获得 材料的成分、材料内部原子或分子的结构或形态等 信息的研究手段。
Dorothy Crowfoot Hodgkin
1985 化学 1986 物理 1994 物理
霍普特曼Herbert Hauptman 卡尔Jerome Karle 鲁斯卡E.Ruska 宾尼希G.Binnig 罗雷尔H.Rohrer 布罗克豪斯 B.N.Brockhouse 沙尔 C.G.Shull
劳厄斑
1912年德国慕尼黑大学的实验物理学教授冯•劳厄用晶 体中的衍射拍摄出X射线衍射照片。由于晶体的晶格常数 约10nm,与 X 射线波长接近,衍射现象明显。
X射线 X-ray
晶体 crystal
劳厄斑 Laue spots
在照相底片上形成对称分布的若干衍射斑点,称 为劳厄斑。
❖ 1912年慕尼黑大学的劳厄将X射线用于 CuSO4晶体衍射,证明了X射线是一种电 磁波,并提出X射线透过晶体时,可能会 产生衍射。从此诞生了X射线晶体衍射学。
φ O. φ d A . φ. .B
C
d
晶面间距
φ
掠射角
光程差 : δ = AC + CB = 2dsinφ
The condition of a constructive interference:
2dsink(k1.2.3 )
This relation is called Bragg’s law.
1915 物理
亨利.布拉格Henry Bragg 劳伦斯.布拉格Lawrence Bragg.
1917 物理
巴克拉Charles Glover Barkla
1924 物理
卡尔.西格班Karl Manne Georg Siegbahn
1937 物理
戴维森Clinton Joseph Davisson 汤姆孙George Paget Thomson
相关文档
最新文档