空间插值方法大致总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!
--------------------------------
所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取
空间数据插值方法的基本原理:
任何一种空间数据插值法都是基于空间相关性的基础上进行的。即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)
➢
由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。从而空间统计学应用而生。
➢
无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。常用的空间数据插值方法之一:趋势面分析
⏹
趋势面分析(Trend analyst)。严格来说趋势面分析并不是在一种空间数据插值法。它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹
根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。精度以最小二乘法进行验证。
趋势面分析中,将Z值分解成如下等式:
➢
由于空间数据不具备重复抽样条件,所以通常将后两项合并。趋势值即回归值,而后两项将合并到拟合残差中。
➢
在趋势面拟合中,空间位置以平面坐标为佳,即将经纬度坐标转换为以米为单位的平面大地坐标。
➢
通常趋势面分析用于分析趋势和异常而不追求高的拟合精度,一般达到60-80%,阶数在1-4之间即可。拟合精度按R^2系数和F值检验。
由上述可知,趋势面分析是经典统计学在点数据进行空间展面上的应用,属于全局多项式插值,即对整个研究区域用一个多项式进行拟合。
它的缺点在于:当研究区域范围较大,地形很复杂时,需要用高阶多项式拟合以提高精度,但高阶将增加其计算成本,因而需要进行改进。
常用的空间数据插值方法之二:局部多项式插值
局部多项式插值(Local Polynomial Interpolation):用多个多项式进行拟合。每个多项式都只在特定重叠的邻近区域内有效,通过设定搜索半径和方向的来定义邻近区域。
显然,局部多项式插值是对全局多项式,即趋势面拟合的一大改进。这里涉及到一个搜索邻域的概念。
空间数据插值之邻近区域:
⏹
从空间自相关性的概念可知,空间上越靠近,属性就越相似,相关性也越高。那么,两个样点间在多远的距离内所具备相关性可以不考虑,或者其相关将消失呢?可以根据经验或专业背景找出这么一个阈值,作为邻近区域的半径。
⏹
同时,如果其自相关性在不同的方向上消失的距离值也不同的话,将还需要设置一个方向值以及长短两个半径值,此时的邻近区域将呈椭圆。(如当属性值受风向影响较大时,应当将风向角度设置为搜索方向,即长半径所在的方向)
⏹
通过半径和方向可以定义出一个以待估点为中心的区域(圆或者椭圆)。
⏹
此外,还可以通过限制参与某待估点值进行预测的样点数来定义邻近区域。即参与某点预测的最多样点数和最少样点数。
⏹
在由半径和方向决定的区域内包含到的样点数为0时,则扩大搜索区域使其达到最小样点数值。
空间数据插值之各向异性:
在设定邻近区域时,提到了一个方向参数。即当空间相关性沿各个方向上的消失距离都一致时,其邻近区域应该是一个圆,如图a,叫各向同性。否则,如图b,在西南-东北方向上的消失距离明显小于东南-西北方向,则其邻近区域应当是一个平行于东南-西北方向的椭圆,其方向角度(Angle Direction)设为长轴与X轴的角度值。图b的现象即各向异性(Anisotropy)。(图片来源:Arcgis Desjktop Help文件)图中的Range(变程)参数,即自相关消失或不予考虑的半径值。图b中的Minor Range,最小变程,即相关性消失得最快的方向上的半径值,而Major Range,最大变程即相关性消失最慢的方向上的半径值。
常用的空间数据插值方法之三:移动平均插值法(Moving Average)
移动平均插值法,通过设定邻近区域,取该区域内样点的平均值作为待估点的值。
适用于样点分布均匀、密集,而且变化缓慢的情况下,对缺失值进行填补。
主要用于消除随机干扰,即局部降噪功能。
优势在于计算简便快速,但适用范围较窄。
常用的空间数据插值方法之四:线性三角网法(Triangulaion with Linear Interpolation)
线性三角网法是最佳的Delaunay三角形,连续样点数据间的连线形成三角形,覆盖整个研究区域,所有三角形的边都不相交。(即与构建TIN文件的原理一致)
线性三角网法将在整个研究区域内均匀分配数据,地图上的稀疏区域会形成截然不同的三角面。
常用的空间数据插值方法之五:最近邻点插值法(Nearest Neighbor)
最近邻点插值法,又称泰森多边形(Thiessen或Voronoi多边形)分析法。即在每个样点数据周边生成一个邻近区域,即Thiessen多边形,使得每个多边形内的任意一点离其内部的样点最近,在多边形内插值时只有其中心样点参与运算,如图:
最近邻点插值法同样只适用于样点分布均匀、紧密完整,且只有少数缺失值时,对缺失值进行填补
常用的空间数据插值方法之六:自然邻近插值法(Natural Neighbor)