空间插值方法大致总结

合集下载

《空间插值方法简介》PPT课件

《空间插值方法简介》PPT课件

表1 样本数据特征值统计
特征值 时期
70年代 80年代 90年代 2000年代
最小值
11.27 11.33 11.77 11.50
最大值
19.53 19.43 19.53 19.80
平均值
17.52 17.51 17.74 17.97
标准差
1.09 1.07 1.03 1.23
变异系数
6.22% 6.11% 5.81% 6.84%
正态分布
检验数据分布 正态QQPlot图
趋势分析
趋势效应分析(Trend Analysis)
为了满足平稳 假设
预测表面 =确定的全局趋势+随机的短程变异
剔除!
趋势分析 ArcGIS软件的地统计分析模块中趋势效应
趋势名称

none
常量 const
一阶 first 二阶 second 三阶 third
靠的越近越相似!
反距离加权法
应用条件
研究区域内的采样点分布均匀, 采样点不聚集
假设前提
各已知点对预测点的预测值都有局部性 的影响,其影响随着距离的增加而减小
样点的数量
反距离加权法
各样点的权重
n
公式: Z(s0)=
iZ (si )
i 1
观测值
预测值
注:在预测过程中,权重随着样 点与预测点之间距离的增加而减小。 各样点值对预测点值作用的权重大 小是成比例的,这些权重值的总和 为1。
空间插值常用的两种方法:
确定性插值方法:
地统计方法:
反距离权重(IDW)
3模型分析
不同的方法有其适用的条件
当数据不服从正态分布时,若服从对数正态分布,则选用对数正态克里格; 若不服从简单分布时,选用析取克里格。 当数据存在主导趋势时,选用泛克里格。 当只需了解属性值是否超过某一阈值时,选用指示克里格。 当同一事物的两种属性存在相关关系,且一种属性不易获取时,可选用协同 克里格方法,借助另一属性实现该属性的空间内插。当假设属性值的期望值为 某一已知常数时,选用简单克里格。 当假设属性值的期望值是未知的,选用普通克里格。

空间插值方法对比整理版

空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)

空间数据分析方法有哪些(两篇)2024

空间数据分析方法有哪些(两篇)2024

空间数据分析方法有哪些(二)引言概述空间数据分析是一种重要的数据分析方法,在众多领域包括城市规划、地理信息系统、环境管理和农业等方面具有广泛应用。

本文将就空间数据分析方法进行详细的介绍和阐述,希望能够帮助读者更好地了解和运用这些方法。

正文内容一、地理分析工具1. 空间插值方法- 空间插值方法是一种将已知数据点的值推断到未知区域的方法。

常用的空间插值方法有反距离权重法、克里金法和径向基函数插值法。

这些方法可以通过数学模型推断出未知区域的值,从而帮助分析人员进行更加准确的决策。

- 反距离权重法假设周围已知点的权重与距离的倒数成正比,通过加权平均的方式来估计未知点的值。

克里金法则基于空间半变异函数对已知点进行插值,可以得到更加平滑的结果。

径向基函数插值法则使用基函数对已知点进行插值,可以灵活地应用于不同类型的数据。

2. 空间聚类方法- 空间聚类方法是对空间数据进行聚类分析的方法。

常用的空间聚类方法有基于密度的聚类和基于网格的聚类。

基于密度的聚类方法将空间数据划分为高密度和低密度区域,从而得到聚类结果。

基于网格的聚类方法则将空间数据划分为网格,并且根据网格内数据的特征进行聚类分析。

- 空间聚类方法在城市规划和地理信息系统等领域具有重要的应用。

通过空间聚类,可以发现具有相似特征的空间对象,从而更好地理解和分析空间数据。

3. 空间相关性分析- 空间相关性分析是研究空间数据之间关系的分析方法。

常用的空间相关性分析方法有空间自相关分析和空间回归分析。

空间自相关分析可以帮助分析人员理解空间数据的空间分布模式,了解空间数据之间的依赖关系。

空间回归分析则是研究空间数据之间的线性关系,并进行回归分析。

- 空间数据的相关性分析可以帮助分析人员发现隐藏在数据背后的规律和关系,从而做出更加准确的决策。

4. 空间网络分析- 空间网络分析是研究网络结构和空间数据之间关系的分析方法。

常用的空间网络分析方法有路径分析、中心性分析和聚类分析。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

空间插值方法大致总结

空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。

➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。

⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

空间插值方法

空间插值方法


数据拟合问题就是根据若干参考点上的已知值求出待定点 上(未知点)的研究值。数据拟合问题通常可分为插值问 题和光顺逼近问题。 插值问题的解要求严格经过已知量测点,而光顺逼近问题 的解虽不要求严格经过已知点,但它要求在某种约束条件 下(比如最上 乘意义下 最小曲面能或最小粗糙度意义 下(比如最上二乘意义下、最小曲面能或最小粗糙度意义 下)达到整体逼近效果。
6/21/2010
空间插值方法
第6讲 空间插值方法及 TIN/TEN构建算法

6.1 问题的提出 6.2 空间数据插值方法概述 6.3 几种空间数据插值方法原理
6.1 空间插值问题的提出

6.2 空间数据插值方法概述

GIS在实际应用过程中,很多情况下,比如采样密度不够、 曲线与曲面光滑处理、空间趋势预测、采样结果的可视化 等,必须对空间数据进行插值和拟合,因此空间数据插值 是GIS数据处理的一项重要任务。其主要目的是根据一组 已知的离散数据,按照某种数学关系推求其他未知点和未 知区域的数据的过程。
Delauny三角化方法自提出后并未引起足够多 的重视,到了20世纪80年代才开始研究这个算 法,目前比较有效的算法有:

分治算法 逐点加入法 生长算法 凸壳法

分治算法

分治算法的基本思想是一个递归思想,把点集划分到足够小, 使其易于生成三角网,然后把子集中的三角网合并生成最终 的三角网。 逐点加入法有两个基本步:1.定位,找到包含新加点的三角 形;2.更新,形成新的三角形。 生长法从第一个DT开始,而后由三角形边逐步形成新的DT。 如果二维上的任意一点对应到三维点,可以计算出提升点的 凸壳,除去朝上的凸壳面,剩下的朝下的面就是原始点的DT (这个关系适合于任意n维)。

第六讲 空间插值

第六讲 空间插值

每个采样点对插值结果的影响随距离增加而减弱,因 此距目标点近的样点赋予的权重较大。
n
a ttr0 a ttri * w i i1
wi
1 pow er (D isti )n
n
1 pow er(D isti )n
i1
二、空间插值方法
4. 距离反比加权法—参数对插值结果的影响
权重的影响
权重过高,较近点的影响较大,拟合表面更细致(不光 滑);
趋势面分析的一个基本要求就是,所选择的趋势面模型应 该是剩余值最小,而趋势值最大,这样拟合度精确度才能 达到足够的准确性;
在数学上,拟合数学曲面要注意两个问题:一是数学曲面 类型(数学表达式)的确定,二是拟合精度的确定。
二、空间插值方法
5.1 趋势面模型的建立
设地理要素的实际观测数据为Zi(xi,yi)(i=1,2,…,n),
基本内容
空间插值:定义及应用 空间插值方法及特征
泰森多边形( Voronoi )及不规则三角网(TIN) 距离反比加权法(IDW) 地质统计学(Geostatistics)
利用样条曲线优化插值结果 插值精度评估 三参数插值方法(体数据或者动态演化特征)
为何进行插值?
1. 2D离散点转化为连续面,如地表、地层界面 如基于空间离散点,剖面数据和等高线等来构建连续
不足——对权重函数的选择十分敏感;易受数据点集群的 影响,结果常出现一种孤立点数据明显高于周围数据点的 “鸭蛋”分布模式;
全局最大和最小变量值都散布于数据之中。 距离反比很少有预测的特点,内插得到的插值点数据在样
点数据取值范围内。
二、空间插值方法
5. 趋势面分析
实际的地理曲面分解为趋势面和剩余面两部分,前者反应 地理要素的宏观分布规律,属于确定性因素作用的结果; 而后者则对应于微观区域,被认为是随机因素影响的结果。

空间插值方法在地理信息系统中的应用

空间插值方法在地理信息系统中的应用

空间插值方法在地理信息系统中的应用空间插值是地理信息系统中常用的技术之一,它可以通过在不同位置上采集的数据来推断出其他位置的数值。

利用空间插值方法,我们可以填补数据缺失的区域,生成光滑的表面模型,甚至可以预测未来的趋势变化。

本文将探讨空间插值方法在地理信息系统中的应用。

一、插值方法概述空间插值方法主要用于处理地理空间数据,包括地表高程、气象数据、土壤含水量等等。

常用的插值方法包括:反距离加权法(IDW)、克里金插值法、双线性插值法、三次样条插值法等。

每种插值方法都有其适用的场景和优势,因此在具体应用中需要根据数据特点选择合适的插值方法。

二、地表高程插值地表高程是地理信息系统中常用的数据类型之一。

通过地表高程插值,可以生成数字高程模型(DEM)或栅格地形模型(DTM),以便进行地形分析、洪水模拟、土地规划等工作。

其中,克里金插值法是广泛应用于地表高程插值的方法之一。

它通过对不同点之间的空间关系进行建模,可以根据点数据的空间分布来估计未知点的数值。

三、气象数据插值气象数据的插值通常用于填补气象观测站点之间的数据空缺,以便进行气候分析、天气预测等工作。

常用的插值方法包括:反距离加权法和克里金插值法。

在气象数据插值中,需要考虑到气象数据的时空特性,并根据气象站点的分布情况进行合理的插值方法选择。

四、土壤含水量插值土壤含水量是农业生产和水文模拟中的重要参数。

通过土壤含水量的插值,可以了解土壤水分分布的空间变化规律,优化灌溉策略,预测作物的生长情况。

反距离加权法和克里金插值法都可以用于土壤含水量的插值,但需要根据具体的目标和数据特点进行选择和调整。

五、应用案例以某城市的高程数据为例,通过采集大量地面高程数据点,并借助插值方法生成了该城市的数字高程模型。

在此基础上,我们可以进行地形分析,如制图、等高线生成等。

同时,根据插值结果可以生成三维地形模型,以实现虚拟飞行、景观分析等功能。

在气象数据插值方面,以某地区的气象观测数据为基础,利用克里金插值法填补了数据缺失区域。

空间插值方法对比整理版1ppt课件

空间插值方法对比整理版1ppt课件

方次,较近的数据点被给定一个较高的权重份额,对于一个
较小的方次,权重比较均匀地分配给各数据点。计算一个格
网结点时给予一个特定数据点的权值与指定方次的从结点到
观测点的该结点被赋予距离倒数成比例。当计算一个格网结
点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个
一般插值过程
内插方法(模型)的选择; 空间数据的探索性分析,包括对数据的均值、方
差、协方差、独立性和变异函数的估计等; 进行内插; 内插结果评价; 重新选择内插方法,直到合理; 内插生成最后结果。
10
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(2)“实际”验证 将部分已知变量值的样本点作为“训练数据集”,用于插值 计算;另一部分样点 “验证数据集”,该部分站点不参加 插值计算。然后利用“训练数据集” 样点进行内插,插值 结果与“训练数据集”验证样点的观测值对比,比较插值的 效果。
12
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
17
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
算术平均值法评价
算术平均值的算法比较简单,容易实现。但只考虑算术 平均,根本没有顾及其他的空间因素,这也是其一个致命的 弱点,因而在实际应用中效果不理想。
插值方法选择的原则

空间插值方法对比整理版

空间插值方法对比整理版

优点
能够处理非线性数据,对局部变化敏 感且具有较好的平滑效果。
缺点
计算复杂度较高,需要选择合适的核 函数和参数。
03
全局插值方法对比
线性插值
01
02
03
定义
线性插值是利用两点之间 的直线关系来估计未知点 的值。
公式
$z(x) = z(x_0) + frac{(x x_0) times (z(x_1) z(x_0))}{x_1 - x_0}$
06
各种方法的优缺点比较
计算复杂度
全局插值方法
计算复杂度较低,适用于大规模数据集,但牺牲了局部拟合 精度。
局部插值方法
计算复杂度较高,适用于小规模数据集,能更好地拟合局部 变化。
预测精度
全局插值方法
预测精度相对较低,适用于对全局趋 势的预测。
局部插值方法
预测精度较高,适用于对局部细节的 预测。
存在问题
尽管现有的空间插值方法取得了一定的成果,但在实际应用中仍存在一些问题。例如,对于复杂地形 和地貌的插值效果不够理想,插值结果的稳定性和可靠性有待提高。此外,现有方法在处理大规模数 据时效率较低,不能满足实时性要求。
未来研究方向与展望
研究方向
为了解决现有问题,未来的研究可以从以下几个方面展开:一是开发更为智能、自适应的插值算法,以提高 插值结果的稳定性和可靠性;二是研究如何将机器学习、深度学习等先进技术应用于空间插值中,以提高插 值的精度和效率;三是探索如何利用高性能计算技术,如并行计算、云计算等,实现大规模数据的快速处理。
适用于各种类型的空间数据,尤其适 用于具有空间结构性和随机性的数据。
特点
考虑了空间数据的结构性和随机性, 能够较好地反映空间数据的变异特征, 插值结果较为准确。

空间插值方法

空间插值方法

空间插值方法一、空间插值方法概述空间插值方法是指在给定的有限点数据集合上,通过某种数学模型,对未知位置的数值进行估计或预测的方法。

它广泛应用于地理信息系统、遥感、气象、环境监测等领域中,是一种重要的数据处理和分析手段。

常见的空间插值方法包括:反距离权重法、克里金法、径向基函数插值法等。

二、反距离权重法1. 原理反距离权重法是一种基于距离加权平均的插值方法。

其基本思想是:对于未知点,用已知点到未知点之间的距离作为权重系数,将已知点的观测值按照这些系数进行加权平均,得到未知点的估计值。

该方法假设空间变量在空间上具有连续性,并且与其邻近区域内观测值相关。

2. 步骤(1)确定待插值点和邻近观测点(2)计算待插值点与邻近观测点之间的欧式距离或曼哈顿距离等(3)根据距离计算每个邻近点的权重系数(4)将邻近点的观测值按照权重系数进行加权平均,得到待插值点的估计值3. 优缺点反距离权重法简单易懂,计算速度快,适用于数据密度较小、空间变异性较大的情况。

但其估计结果容易受到邻近点数量和距离的影响,可能出现插值误差较大的情况。

三、克里金法1. 原理克里金法是一种基于统计学原理的空间插值方法。

其基本思想是:通过对已知点之间的空间关系进行建模,利用半方差函数来描述变量在空间上的相关性,并通过最小二乘法求解出半方差函数中未知参数,从而得到未知位置处的预测值。

该方法假设空间变量在空间上具有稳定性,并且与其邻近区域内观测值相关。

2. 步骤(1)确定待插值点和邻近观测点(2)计算待插值点与邻近观测点之间的欧式距离或曼哈顿距离等(3)根据距离和半方差函数计算每个邻近点的权重系数(4)利用最小二乘法求解半方差函数中的未知参数(5)将邻近点的观测值按照权重系数进行加权平均,得到待插值点的估计值3. 优缺点克里金法能够考虑空间变异性和空间相关性,插值结果较为准确,但需要对半方差函数进行拟合,模型复杂度较高,计算量大。

四、径向基函数插值法1. 原理径向基函数插值法是一种基于核函数的空间插值方法。

空间插值介绍简洁明了

空间插值介绍简洁明了

(2)“实际”验证
将部分已知变量值的样本点作为“训练数据集”,用于插值 计算;另一部分样点 “验证数据集”,该部分站点不参加 插值计算。然后利用“训练数据集” 样点进行内插,插值 结果与“训练数据集”验证样点的观测值对比,比较插值的 效果。
插值方法
1. 最近邻法(Nearest Neighbor) 2. 算术平均值(Arithmetic Mean) 3. 距离反比法(Inverse Distance) 4. 高次曲面插值(Multiquadric) 5. 趋势面插值(Polynomial) 6. 最优插值(Optimal) 7. 样条插值(Spline Surface) 8. 径向基函数插值(Radial Basis Functions) 9. 克里金插值(Kriging) 10. 最小曲率 (Minimum Curvature)
公式
其数学表达式为:
v e vi vi 表示 i 点的变量值。 其中ve 表示待估点变量值,
i 点必须满足如下条件:
d ei min( d e1 , d e 2 , d en )
d ij xi x j y i y j
一、最近邻法(Nearest Neighbor)
• 最近邻点法又叫泰森多边形方法。它采用一种极端的边界内 插方法—只用最近的单个点进行区域插值(区域赋值)。 • 泰森多边形按数据点位置将区域分割成子区域,每个子区域 包含一个数据点,各子区域到其内数据点的距离小于任何到 其它数据点的距离,并用其内数据点进行赋值。
⑤ 可视化、可操作性(插值软件选择):三维的透视图等。
插值验证
(1) 交叉验证 交叉验证法(cross-validation),首先假定每一测点 的要素值未知,而采用周围样点的值来估算,然后计算所有 样点实际观测值与内插值的误差,以此来评判估值方法的优 劣。 各种插值方法得到的插值结果与样本点数据比较。

空间插值方法

空间插值方法

空间插值方法1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重,受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。

它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。

使用克里金插值需确定半变异函数的类型、步长、步数。

对于这种方法,原始的输入点可能会发生变化。

在数据点多时,结果更加可靠。

该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。

首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。

该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。

4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。

插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。

该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。

空间插值方法

空间插值方法

7.空间插值7.1空间插值的概念和理论空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。

空间内插算法是一种通过已知点的数据推求同一区域其它未知点数据的计算方法;空间外推算法则是通过已知区域的数据,推求其它区域数据的方法。

在以下几种情况下必须作空间插值:1)现有的离散曲面的分辨率,象元大小或方向与所要求的不符,需要重新插值。

例如将一个扫描影象(航空像片、遥感影象)从一种分辨率或方向转换到另一种分辨率或方向的影象。

2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值。

如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。

3)现有的数据不能完全覆盖所要求的区域范围,需要插值。

如将离散的采样点数据内插为连续的数据表面。

空间插值的理论假设是空间位置上越靠近的点,越可能具有相似的特征值;而距离越远的点,其特征值相似的可能性越小。

然而,还有另外一种特殊的插值方法——分类,它不考虑不同类别测量值之间的空间联系,只考虑分类意义上的平均值或中值,为同类地物赋属性值。

它主要用于地质、土壤、植被或土地利用的等值区域图或专题地图的处理,在“景观单元”或图斑内部是均匀和同质的,通常被赋给一个均一的属性值,变化发生在边界上。

7.2空间插值的数据源连续表面空间插值的数据源包括:●摄影测量得到的正射航片或卫星影象;●卫星或航天飞机的扫描影象;●野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线);●数字化的多边形图、等值线图;空间插值的数据通常是复杂空间变化有限的采样点的测量数据,这些已知的测量数据称为“硬数据”。

如果采样点数据比较少的情况下,可以根据已知的导致某种空间变化的自然过程或现象的信息机理,辅助进行空间插值,这种已知的信息机理,称为“软信息”。

但通常情况下,由于不清楚这种自然过程机理,往往不得不对该问题的属性在空间的变化作一些假设,例如假设采样点之间的数据变化是平滑变化,并假设服从某种分布概率和统计稳定性关系。

空间插值IDW

空间插值IDW
空间插值
空间插值是用已知点的 数值来估算其它点的数 值的过程
例如:在一个没有数据记录的地点,其降水量可 通过对附近气象站已知降水量记录的插值来估 算出来。
为什么插值为栅格?
在GIS应用中主要用于估算出栅格 中每个象元的值。因此空间插值 是将点数据转换成面数据的一种 方法,目的是使点数据也能用于 空间分析和建模。
空间插值的理论假设是:空间位置上越靠近的点,越可能具有相 似的特征值,而距离越远的点,其特征值相似的可能性越小。空 间插值方法正是依据该假设设计的,分为整体插值方法和部分插值方 法两类。
整体插值:用研究区域所有采样点的数据进行全区域特征拟合, 如边界内插法、趋势面分析等。
部分插值:仅仅用邻近的数据点来估计未知点的值,如最邻近点 法(泰森多边形方法)、移动平均插值方法(距离倒数插值法)、 样条函数插值方法、空间自协方差最佳插值方法(克里金插值)等。
nA1 += nTemp; nValue += nTemp * ValueList[i]; }
nValue = nValue / nA1; return nValue; }
IDW实现-公共函数2
//获取要素参数 protected void getFeaturesParameters(ref double[] nPointsX, ref double[] nPointsY, ref double[] nValues)
nValues[i] = Convert.ToDouble(pFeature.get_Value(this.m_nFieldIndex)); i++; pFeature = pCursor.NextFeature(); } }
IDW实现-公共函数3

空间插值方法汇总

空间插值方法汇总

空间插值方法汇总在GIS的地理空间信息采集过程中,我们对某种地理空间现象或特征进行地理空间测量,都是基于一种离散的样本测量,利用这些有限的采样点数据,而对研究区域内其他未知区域的特征数据进行地理空间信息的推理和估计,从而构建一个连续的地理特征表面分布,我们把这种地理空间推理计算和估计的方法称为地理空间插值。

空间插值主要有如下类别:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modifi ed Shepard’s Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点:1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

插值方法总结范文

插值方法总结范文

插值方法总结范文插值方法是一种用于预测未知数据点的方法,基于已知数据点之间的关系进行推断。

在统计学、计算机图形学、数据分析和地理信息系统等领域广泛应用。

插值方法可以大致分为确定性插值和随机插值两类。

1.确定性插值方法:a)线性插值:线性插值是一种最简单的插值方法,基于线性关系对两个已知数据点之间的未知点进行估计。

假设有两个已知数据点(x1,y1)和(x2,y2),要估计点(x,y)的值。

可以通过以下公式计算:y=y1+(x-x1)*(y2-y1)/(x2-x1)b)多项式插值:多项式插值利用多项式函数逼近已知数据点之间的未知点。

最常用的多项式插值方法是拉格朗日插值和牛顿插值。

拉格朗日插值基于拉格朗日多项式,牛顿插值基于牛顿插值多项式,两者都可以计算未知点的值。

c)样条插值:样条插值方法通过逼近已知数据点之间的未知点来构建平滑的曲线。

常用的样条插值方法有线性样条插值、二次样条插值和三次样条插值。

2.随机插值方法:a)克里金插值:克里金插值是一种常用的随机插值方法,基于空间自相关性对未知点进行估计。

克里金插值假设未知点的值是空间上的一个随机变量,并通过不同的变差函数和半方差函数来进行预测。

b)泛克里金插值:泛克里金插值是克里金插值的扩展,可以处理非正定半方差函数和离散样本点,对于大规模数据有较好的适用性。

c)径向基函数插值:径向基函数插值是一种基于径向基函数构建稀疏矩阵的插值方法。

径向基函数是一个以数据点为中心的函数,通过计算未知点与已知数据点之间的距离来进行估计。

插值方法的选择取决于数据的特点、插值的目的和要求。

线性插值简单且计算效率高,适用于均匀分布的数据。

多项式插值可以实现较高的精度,但在数据点密集的情况下容易产生振荡。

样条插值可以实现光滑曲线,在光滑性要求较高的应用中较为常用。

克里金插值适用于具有空间自相关性的数据,并且可以通过参数调整来达到不同的预测效果。

总之,插值方法是一种对未知数据点进行预测的有力工具。

空间数据插值

空间数据插值

常用的空间数据插值方法之四:线性 常用的空间数据插值方法之四: 三角网法( 三角网法(Triangulaion with Linear Interpolation) Interpolation)
每一个三角形定义了一个覆盖该三角形内格 网结点的面。三角形的倾斜和标高由定义这 个三角形的三个原始数据点确定。给定三角 形内的全部结点都要受到该三角形的表面的 限制。因为原始数据点被用来定义各个三角 形,所以你的数据是很受到尊重的。 文献实例方法之一: 面分析
趋势面分析(Trend analyst)。 趋势面分析(Trend analyst)。 趋势面法 实际上是多项式回归法的一种。多项式回归 的基本思想是用多项式表示的线或面、按最 小二乘法原理对数据点进行拟合,线或面多项 式的选择取决于数据是一维还是二维或3维。 常用的是二、三次趋势面多项式: 常用的是二、三次趋势面多项式:
图b 图a
常用的空间数据插值方法之二:局部 常用的空间数据插值方法之二: 多项式插值
文献实例
– 局部多项式插值方法在多源海底沉积厚度 数据融合中的应用
常用的空间数据插值方法之三:移动 常用的空间数据插值方法之三: 平均插值法( 平均插值法(Moving Average)
移动平均插值法,通过设定邻近区域,取该 区域内样点的平均值作为待估点的值。 移动平均插值适用于样点分布均匀、密集, 而且变化缓慢的情况下,对缺失值进行填补。 移动平均主要用于消除随机干扰,即局部降 噪功能。 移动平均插值的优势在于计算简便快速,但 适用范围较窄。
空间数据插值之各向异性: 空间数据插值之各向异性:
(图片来源:Arcgis Desjktop Help文件)图中的 图片来源:Arcgis Help文件) Range(变程)参数,即自相关消失或不予考虑的半 Range(变程)参数,即自相关消失或不予考虑的半 径值。图b中的Minor Range,最小变程,即相关性消 径值。图b中的Minor Range,最小变程,即相关性消 失得最快的方向上的半径值,而Major Range,最大 失得最快的方向上的半径值,而Major Range,最大 变程即相关性消失最慢的方向上的半径值。 变程即相关性消失最慢的方向上的半径值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!
--------------------------------
所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取
空间数据插值方法的基本原理:
任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)

由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。


无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析

趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。


根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

趋势面分析中,将Z值分解成如下等式:

由于空间数据不具备重复抽样条件,所以通常将后两项合并。

趋势值即回归值,而后两项将合并到拟合残差中。


在趋势面拟合中,空间位置以平面坐标为佳,即将经纬度坐标转换为以米为单位的平面大地坐标。


通常趋势面分析用于分析趋势和异常而不追求高的拟合精度,一般达到60-80%,阶数在1-4之间即可。

拟合精度按R^2系数和F值检验。

由上述可知,趋势面分析是经典统计学在点数据进行空间展面上的应用,属于全局多项式插值,即对整个研究区域用一个多项式进行拟合。

它的缺点在于:当研究区域范围较大,地形很复杂时,需要用高阶多项式拟合以提高精度,但高阶将增加其计算成本,因而需要进行改进。

常用的空间数据插值方法之二:局部多项式插值
局部多项式插值(Local Polynomial Interpolation):用多个多项式进行拟合。

每个多项式都只在特定重叠的邻近区域内有效,通过设定搜索半径和方向的来定义邻近区域。

显然,局部多项式插值是对全局多项式,即趋势面拟合的一大改进。

这里涉及到一个搜索邻域的概念。

空间数据插值之邻近区域:

从空间自相关性的概念可知,空间上越靠近,属性就越相似,相关性也越高。

那么,两个样点间在多远的距离内所具备相关性可以不考虑,或者其相关将消失呢?可以根据经验或专业背景找出这么一个阈值,作为邻近区域的半径。


同时,如果其自相关性在不同的方向上消失的距离值也不同的话,将还需要设置一个方向值以及长短两个半径值,此时的邻近区域将呈椭圆。

(如当属性值受风向影响较大时,应当将风向角度设置为搜索方向,即长半径所在的方向)

通过半径和方向可以定义出一个以待估点为中心的区域(圆或者椭圆)。


此外,还可以通过限制参与某待估点值进行预测的样点数来定义邻近区域。

即参与某点预测的最多样点数和最少样点数。


在由半径和方向决定的区域内包含到的样点数为0时,则扩大搜索区域使其达到最小样点数值。

空间数据插值之各向异性:
在设定邻近区域时,提到了一个方向参数。

即当空间相关性沿各个方向上的消失距离都一致时,其邻近区域应该是一个圆,如图a,叫各向同性。

否则,如图b,在西南-东北方向上的消失距离明显小于东南-西北方向,则其邻近区域应当是一个平行于东南-西北方向的椭圆,其方向角度(Angle Direction)设为长轴与X轴的角度值。

图b的现象即各向异性(Anisotropy)。

(图片来源:Arcgis Desjktop Help文件)图中的Range(变程)参数,即自相关消失或不予考虑的半径值。

图b中的Minor Range,最小变程,即相关性消失得最快的方向上的半径值,而Major Range,最大变程即相关性消失最慢的方向上的半径值。

常用的空间数据插值方法之三:移动平均插值法(Moving Average)
移动平均插值法,通过设定邻近区域,取该区域内样点的平均值作为待估点的值。

适用于样点分布均匀、密集,而且变化缓慢的情况下,对缺失值进行填补。

主要用于消除随机干扰,即局部降噪功能。

优势在于计算简便快速,但适用范围较窄。

常用的空间数据插值方法之四:线性三角网法(Triangulaion with Linear Interpolation)
线性三角网法是最佳的Delaunay三角形,连续样点数据间的连线形成三角形,覆盖整个研究区域,所有三角形的边都不相交。

(即与构建TIN文件的原理一致)
线性三角网法将在整个研究区域内均匀分配数据,地图上的稀疏区域会形成截然不同的三角面。

常用的空间数据插值方法之五:最近邻点插值法(Nearest Neighbor)
最近邻点插值法,又称泰森多边形(Thiessen或Voronoi多边形)分析法。

即在每个样点数据周边生成一个邻近区域,即Thiessen多边形,使得每个多边形内的任意一点离其内部的样点最近,在多边形内插值时只有其中心样点参与运算,如图:
最近邻点插值法同样只适用于样点分布均匀、紧密完整,且只有少数缺失值时,对缺失值进行填补
常用的空间数据插值方法之六:自然邻近插值法(Natural Neighbor)
自然邻近插值法是对泰森多边形插值法的改进。

它对研究区域内各点都赋予一个权重系数,插值时使用邻点的权重平均值决定待估点的权重。

每完成一次估值就将新值纳入原样点数据集重新计算泰松多边形并重新赋权重,再对下一待估点进行估值运算。

对于由样点数据展面生成栅格数据而言,通过设置栅格大小(cell size)来决定自然邻近插值中的泰森多边形的运行次数n,即,设整个研究区域的面积area,则有:n=area/cell size
可设置各向异性参数(半径和方向)来辅助权重系数的计算。

常用的空间数据插值方法之七:反距离权重插值法(Inverse Distance Weighting, IDW)
反距离权重插值综合了泰森多边形的自然邻近法和多元回归渐变方法的长处,在插值时为待估点Z值为邻近区域内所有数据点都的距离加权平均值,当有各向异性时,还要考虑方向权重。

权重函数与待估点到样点间的距离的U次幂成反比,即随着距离增大,权重呈幂函数递减。

且对某待估点而言,其所有邻域的样点数的权重和为1。

决定反距离权重插值法结果的参数包括距离的U次幂值的确定,同时还取决于确定邻近区域的所使用的方法。

此外,为消除样点数据的不均匀分布的影响,还可设置引入一个平滑参数,以保证没有哪个样点被赋予全部的权重,即使得插值运算时尽可能不只有一个样点参与运算。

IDW是一种全局插值法,即全部样点都参与某一待估点的Z值的估算;
IDW的适用于呈均匀分布且密集程度足以反映局部差异的样点数据集;
IDW与之前介绍的插值法的不同之处在于,它是一种精确的插值法,即插值生成的表面中预测的样点值与实测样点值完全相等。

常用的空间数据插值方法之八:最小曲率法(Minimum Curvature)
最小曲率插值法,非精确插值法。

其插值基准是生成一个具有最小曲率(即弯曲度最小),且到各样点的Z值的距离最小的曲面。

影响最小曲率插值法精度的参数有:
最大残差,通常允许残差在10%-1%之间
最大循环次数,与栅格大小(cell size)有关,通常设置为生成的栅格数量的一到两倍。

常用的空间数据插值方法之九:径向基函数插值法(Radial Basis Function)
所谓径向基函数即基函数是由单个变量的函数构成的,是一系列精确插值法的统称。

该插值法中的单个变量是指待估点到样点间的距离H,其中每一插值法都是距离H的基函数。

径向基函数是对最小曲率插值的改进,即属于精确的最小曲率插值法。

径向基函数包括的多种函数有:倒转复二次函数(InverseMultiquadric),复对数(Multilog),复二次函数(Multiquadratic),自然三次样条函数(Natural CubicSpline),薄板样条法函数(Thin Plate Spline);
上述的每一函数式中都带有一个平滑因子R,即使得生成的曲面不至于太粗糙。

在实际应用中,许多人都发现复二次函数的效果最佳。

相关文档
最新文档