固体物理学ppt课件
合集下载
固体物理知识总结PPT课件

惯用元胞、轴矢
三、常见晶体结构举例
致密度η(又称空间利用率)、配位数、密 堆积
1. 简单立方(sc) 配位数=6,惯用元胞包含格点数 = 1 惯用元胞包含格原子数 = 1
2. 面心立方(fcc) 配位数=12,惯用元胞包含格点数=4 惯用元胞包含格原子数 = 4
3.体心立方(bcc) 配位数=8,惯用元胞包含格点数=2 惯用元胞包含格原子数 = 2
1.决定散射的诸因素 (1)原子散射因子 (2)几何结构因子
2.衍射极大的条件(必要条件)
即当 k-k0=S=Gh 时,所有元胞间的
散射光均满足相位相同的加强条件,产生衍
射极大。
(反射球)
4.消光条件
第二章 晶体结合
一、原子的负电性
负电性=常数(电离能+亲和能)
电离能:让原子失去电子所必需消耗的能量
第四章 固体能带论 基本近似:绝热近似、单电子近似 一、固体电子的共有化和能带 二、布洛赫(Bloch)定理
1.布洛赫定理:表述及讨论 2. Bloch 定理的证明 3.布洛赫定理的一些重要推论 4.能态密度 三、近自由电子模型 1.索末菲(Sommerfeld)模型
(1)自由电子(半量子)模型
(2)自由电子费米(Femi)气模型 2.近自由电子模型
亲和能:处于基态的中性气态原子获得一个 电子所放出的能量
负电性大的原子,易于获得电子 负电性小的原子,易于失去电子 二、离子结合 三、共价结合 共价键的特性:饱和性、方向性 四、金属结合 五、范德瓦尔斯键结合 六、氢键结合
第三章 晶格振动
一、一维单原子晶格的振动
1. 物理模型 2.近似条件:近邻作用近似、简谐近似 3. 分析受力:牛顿方程 4. 定解条件―――玻恩-卡曼
三、常见晶体结构举例
致密度η(又称空间利用率)、配位数、密 堆积
1. 简单立方(sc) 配位数=6,惯用元胞包含格点数 = 1 惯用元胞包含格原子数 = 1
2. 面心立方(fcc) 配位数=12,惯用元胞包含格点数=4 惯用元胞包含格原子数 = 4
3.体心立方(bcc) 配位数=8,惯用元胞包含格点数=2 惯用元胞包含格原子数 = 2
1.决定散射的诸因素 (1)原子散射因子 (2)几何结构因子
2.衍射极大的条件(必要条件)
即当 k-k0=S=Gh 时,所有元胞间的
散射光均满足相位相同的加强条件,产生衍
射极大。
(反射球)
4.消光条件
第二章 晶体结合
一、原子的负电性
负电性=常数(电离能+亲和能)
电离能:让原子失去电子所必需消耗的能量
第四章 固体能带论 基本近似:绝热近似、单电子近似 一、固体电子的共有化和能带 二、布洛赫(Bloch)定理
1.布洛赫定理:表述及讨论 2. Bloch 定理的证明 3.布洛赫定理的一些重要推论 4.能态密度 三、近自由电子模型 1.索末菲(Sommerfeld)模型
(1)自由电子(半量子)模型
(2)自由电子费米(Femi)气模型 2.近自由电子模型
亲和能:处于基态的中性气态原子获得一个 电子所放出的能量
负电性大的原子,易于获得电子 负电性小的原子,易于失去电子 二、离子结合 三、共价结合 共价键的特性:饱和性、方向性 四、金属结合 五、范德瓦尔斯键结合 六、氢键结合
第三章 晶格振动
一、一维单原子晶格的振动
1. 物理模型 2.近似条件:近邻作用近似、简谐近似 3. 分析受力:牛顿方程 4. 定解条件―――玻恩-卡曼
固体物理学课件

晶胞与原胞的关系
以立方晶系为例:
立方晶系:晶胞基矢互相垂直而且模相等,即 a b c 、 a b c
的晶格。立方晶系包括简单立方、体心立方、面心立方三种。 简单立方
取晶轴作为坐标轴,坐标轴单位矢量用 i , j , k 表示。 晶胞基矢: a ai , b aj , c ak a b c
例1:
基元 分子 分子 格点
分子
分子 点阵
基元周期性分布
例2: 基元 格点
基元周期性分布
点阵
晶格:格点在空间3个方向上的周期性排列形成与晶体几何特征相同、但没有
任何物理实质的三维空间网络,称为晶格或布拉菲格子(或布拉菲点阵)。
a3 a 2
a1
周期:某一方向上相邻两格点的距离。 基矢:从晶格中任意格点出发,沿空间任意三个不同方向的三个最小平移矢量。
,这种变换
称为对称操作。对称操作越多,晶体对称性越高。 2、晶体对称操作的数学表示及限制条件
由于格点与坐标一一对应,晶体的对称操作实际就是对晶体的坐标进行线性变换。
对称操作中应不改变晶体中任意两点间距离,对应的变换矩阵是正交变换矩阵。 变换:
,按照某一规律 ,在 中存在唯一的向量 与 对于集合 U 任意向量 U A 称为 的象, 称为 之对应,则这个对应的规律 A 就称为 U 的一个变换。 的原象,记为 A 。
a
Cs+和Cl-各自构成简单立方布拉菲晶格,沿立方体空间相互移动1/2对角线长度套 构形成氯化铯结构。其基元由相距1/2对角线长度的一个Cs+ 和Cl-组成,基元代表点 (格点)形成简单立方格子。
固体物理学绪论ppt课件

B类碳原子的 共价键方向26
hcp也是复式晶格。
复式晶格包含多个等价原子,不同等价原子的简单晶格 相同。复式晶格是由等价原子的简单晶格嵌套而成。
ppt精选版
27
二、基矢和原胞
a2 0 a1
ppt精选版
28
1. 格矢: R l 2. 基矢:
任一格矢
R l l1 a 1 l2 a 2 l,3 a 3
56
例1:简立方格子的倒格子。
例2:二维四方格子,其基矢为
a1 ai
a 2。2aj
此时可假设一个垂直于平面的单位矢量
再计算 b1 、b2 。
a3 k
ppt精选版
57
二、倒格子基矢的性质 1、正倒格子基矢的关系
bi aj 2 ij
2、倒格子原胞体积是正格子原胞体积倒数的 (2π)3 倍。
ppt精选版
58
推论: 1、如果有一矢量与正格矢点乘后等于2π的整数
倍,这个矢量一定是倒格矢。
2、如果有一矢量与正格矢点乘后为一个没有量纲 的数,这个矢量一定能在倒空间中表示出来。
ppt精选版
59
倒格矢的性质:
1) Ghkl是密勒指数为(h,k,l)所对应的晶面族的法线。
2)
Gh kl
2
dh kl
晶胞基矢),其长度a,b,c称为晶格常数。
下面对结晶学中属于立方晶系的布拉格原胞简立方、 体心立方和面心立方的固体物理原胞进行分析。
晶胞:
原胞:
a ai
基矢 b a j
c
ak
基矢
a1 a2
ai aj
a
3
ak
sc
体积 V a 3 ppt精选版
体积 V a 3
(完整PPT)固体物理学

(a)理想石英晶体(b)人造石英晶体
属于同一品种的晶体,两个对应晶面之间的夹角 恒定不变,这一规律称为晶面角守恒定律。
显然,晶面之间的相对方位是晶体的特征因素, 因而常用晶面法线的取向来表征晶面的方位,而以 法线间夹角来表征晶面间的夹角(两个晶面法线间 的夹角是这两个晶面夹角的补角)。
二、晶体的基本性质
显然,WS 原胞也只包含一个格点,因此它与固 体物理学原胞的体积一样,也是最小周期性重复单 元。
3.晶格的周期性
* 一维布喇菲格子
一维布喇菲格子是由一种
原子组成的、无限周期性的 点列,所有相邻原子间的距
a
离均为周期为a,如图所示。
在一维情况下,原胞取原子及周围长度为 a 的区 域。重复单元的长度矢量称为基矢,通常用以某原 子为起点,相邻原子为终点的有向线段 a 表示。
1
2
3
原胞的体积为
a3
简立方体格子的原胞和基矢 选取,如图所示。
a3 ai a2 aj a2 ai a2
尽管由于生长条件的不同,会使同一晶体外型产 生一定的差异。但是对同一种晶体,相应两个晶面 之间的夹角却总是恒定的。即:每一种晶体不论其 外形如何,总具有一套特征性的夹角。
例如,对于石英晶体,在下图中所示的 mm 两面 间的夹角总是60º0' , mR 两面间的夹角总是38º13' , mr 两面间的夹角总是38º13' 。
点之间的距离。
三个基矢不要求相互正交, 且大小一般也不相同。并且, 对于同一个晶格,基矢的选择 也不是唯一的。
* 晶格平移矢量
若选择某一格点为坐标原点,则晶体中任一格点 的位置可以表示为
Rn n1a1 n2a2 n3a3 (ni 0,1,2,......)
固体物理第一讲 绪论PPT课件

70年代出现了高分辨电子显微镜点阵成像技术,
在于晶体结构的观察方面有所进步。近年来发展
的扫描隧道显微镜,可以相当高的分辨率探测表
面的原子结构。
• 晶体的结构以及它的物理、化学性质 同晶体结合的基本形式有密切关系。通常 晶体结合的基本形式可分成:离子键合、 金属键合、共价键合、分子键合(范德瓦耳 斯键合)和氢键合。根据X射线衍射强度分 析晶体的物理、化学性质,或者依据晶体 价电子的局域密度分布的自洽理论计算, 人们可以准确地判定该晶体具有何种键合 形式。
(二)、固体物理的发展史
几百万年前的石器时代,或者几万年前人类开
始冶炼金属、制造农具和刀箭的时代。通过炼金术, 人们了解了一些材料的颜色、硬度、熔化等性质, 并用之于绘画、装饰等。
1611年,开普勒就开始思考雪花为什么呈六角 形;
1843年法拉第曾惊奇地发现硫化银的电阻随着 温度的升高而下降;
阿拉克西曼德:万物是由无数的原始物质构成的。 阿拉克西美尼:万物的本质是空气。 赫拉克里特:万物的本质是火,火与其他物类的混合物,一
般都以我们可以感知气味的其他物类来命名,但是火本身 是不变的因素。 埃姆毕多克拉斯:万物是由水、气、火、土组成。
• 巴门尼德: 宇宙中只有一个永恒的存在,像一个充实的
固体物理学
第一讲 绪论
• 一:固体物理学 • 二:发展史 • 三:当前研究的热点和前沿 • 四:本课程的主要讲解内容 • 五、参考书籍
一:固体物理学
固体物理学是研究固体物质的物理 性质、微观结构、构成物质的各种粒 子的运动形态,及其相互关系的科学。 它是物理学中内容极丰富、应用极广 泛的分支学科。
融汇了力学、热力学与统计物理学、 电动力学、量子力学和晶体学等多学 科的知识。
固体物理基础精选课件PPT

而碳原子2P态只有二个电子,则可以认 为,这二个电子均是处于自旋均未配对的 状态,这时,它最多与其它原子间形成二 个共价键。
2021/3/2
12
实验事实
(1)金刚石中每个原子与周围四个原子形成结合。 (2)周围四个原子的排列呈四面体结构,具有等
同性,即碳原子与周围原子具有四个等价的共 价键。C原子的葫芦状杂化轨道必定大头相对, 以保证最大的电子云交叠,系统能量最低。
2021/3/2
16
由此可知
对同种元素,孤立原子和组成晶 体后的原子的最低能量状态的电 子云分布可以不同(电子态可不 同)。
2021/3/2
17
四.金属结合
由于负电性小的元素易于失去电子,而难 以获得电子,所以当大量负电性小的原子相 互接近组成晶体时,各原子给出自己的电子 而成为带正电的原子实,价电子则在整个晶 体中运动为所有原子所共有,因此可以认为 金属晶体是带正电的原子实规则分布在价电 子组成的电子云中。晶体的结合力主要为带 正电的原子实与负电子云之间的库仑力。
2021/3/2
15
说明:
(1)为什么一定要提出“杂化轨道”概念?
答:只有这样所得结论,才与其中实验结果(金 刚石有四个共价键且四个键等价指向四面体顶角 方向)一致。
(2) 孤立C原子的2S态能量E2s低于2P态能量E2P 即E2s< E2P,孤立C原子中的电子从2s态跃迁到2P 态,需吸收能量,即系统总能量上升,而在形成 金刚石晶体的过程中,各原子自旋“未配对”的 电子云交叠,系统能量反而下降,所以才可以结 合成稳定的晶体。
第二章 晶体结合
一.原子的负电性
原子得失价电子能力的一种度量。 其定义为:
负电性=常数(电离能+亲和能)
2021/3/2
12
实验事实
(1)金刚石中每个原子与周围四个原子形成结合。 (2)周围四个原子的排列呈四面体结构,具有等
同性,即碳原子与周围原子具有四个等价的共 价键。C原子的葫芦状杂化轨道必定大头相对, 以保证最大的电子云交叠,系统能量最低。
2021/3/2
16
由此可知
对同种元素,孤立原子和组成晶 体后的原子的最低能量状态的电 子云分布可以不同(电子态可不 同)。
2021/3/2
17
四.金属结合
由于负电性小的元素易于失去电子,而难 以获得电子,所以当大量负电性小的原子相 互接近组成晶体时,各原子给出自己的电子 而成为带正电的原子实,价电子则在整个晶 体中运动为所有原子所共有,因此可以认为 金属晶体是带正电的原子实规则分布在价电 子组成的电子云中。晶体的结合力主要为带 正电的原子实与负电子云之间的库仑力。
2021/3/2
15
说明:
(1)为什么一定要提出“杂化轨道”概念?
答:只有这样所得结论,才与其中实验结果(金 刚石有四个共价键且四个键等价指向四面体顶角 方向)一致。
(2) 孤立C原子的2S态能量E2s低于2P态能量E2P 即E2s< E2P,孤立C原子中的电子从2s态跃迁到2P 态,需吸收能量,即系统总能量上升,而在形成 金刚石晶体的过程中,各原子自旋“未配对”的 电子云交叠,系统能量反而下降,所以才可以结 合成稳定的晶体。
第二章 晶体结合
一.原子的负电性
原子得失价电子能力的一种度量。 其定义为:
负电性=常数(电离能+亲和能)
(完整版)固体物理课件ppt完全版

布拉伐格子 + 基元 = 晶体结构
③ 格矢量:若在布拉伐格子中取格点为原点,它至其
他格点的矢量 Rl 称为格矢量。可表示为
Rl
l1a1
l2a2
l3a3
,
a1,
a2 ,
a3为
一组基矢
注意事项:
1)一个布拉伐格子基矢的取法不是唯一的
2
4x
·
1
3
二维布拉伐格子几种可能的基矢和原胞取法 2)不同的基矢一般形成不同的布拉伐格子
2·堆积方式:AB AB AB……,上、下两个底面为A
层,中间的三个原子为 B 层
3·原胞:
a, 1
a 2
在密排面内,互成1200角,a3
沿垂直
密排面的方向构成的菱形柱体 → 原胞
B A
六角密排晶格的堆积方式
A
a
B c
六角密排晶格结构的典型单元
a3
a1
a2
六角密排晶格结构的原胞
4·注意: A 层中的原子≠ B 层中的原子 → 复式晶格
bγ a
b a
b a
b a
简六体心底正简单三面心正单方底心单心交 立斜交斜 方 简单立方体心正交面立方简四体心四方简单正交简单菱方简单单斜单方
二 、原胞
所有晶格的共同特点 — 具有周期性(平移对称性)
描
用原胞和基矢来描述
述
方
位置坐标描述
式
1、 定义:
原胞:一个晶格最小的周期性单元,也称为固体物理 学原胞
a1, a2 , a3 为晶格基矢
复式晶格:
l1, l2 , l3 为一组整数
每个原子的位置坐标:r l1a1 l2a2 l3a3
固体物理11090214PPT课件

1980,1981 (根据谢希德,方俊鑫,国体物理学 1965版扩充改编) 5.顾秉林,王喜坤,固体物理学* 清华大学出版社 1990 6. 王矜奉, 固体物理教程 (4版) 山东大学出版社 2004 (1999年初版)
7.Kittel C. Introduction to Solid State Physics, 8th ed. John Wiley ﹠ Sons Inc.,2005
➢ 面心立方(face-centered cubic, fcc)堆积 排列方式: ABCABC (立方密堆积)
典型晶体:Ca、Sr、Al、Cu、Ag
2.固体分类
(1)晶体(晶态) :原子按一定的周期、排列规则的固体(长程有 序),例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是 晶体.
图1 图3
图2
图1和图2是CaCO3和雪花结 晶的结构; 图3是高温超导体 YBaCuO 晶 体的结构。
(2)非晶体(非晶态):原子的排列没有明确的周期性(短程有
中译本:固体物理导论 (原著8版)化学工业出版社,2005 8. Busch G. Sc文,瑞士联邦技术学院教材,1972) 9.M A Omar Elementary Solid State Physics: Principle and
Applications 中译本:固体物理学基础 北京师范大学出版社 1987 10.H E Hall Solid State Physics John Wiley ﹠ Sons Ltd 1974 (英国曼彻斯特大学教材) 11. Ashcroft, Mermin Solid State Physics 1976
表面物理——在研究体内过程的基础上进入了固体表面 (界面)的研究,半导体实际界面的研究在改善和稳定 半导体器件性能上已显示锐利的锋芒。
7.Kittel C. Introduction to Solid State Physics, 8th ed. John Wiley ﹠ Sons Inc.,2005
➢ 面心立方(face-centered cubic, fcc)堆积 排列方式: ABCABC (立方密堆积)
典型晶体:Ca、Sr、Al、Cu、Ag
2.固体分类
(1)晶体(晶态) :原子按一定的周期、排列规则的固体(长程有 序),例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是 晶体.
图1 图3
图2
图1和图2是CaCO3和雪花结 晶的结构; 图3是高温超导体 YBaCuO 晶 体的结构。
(2)非晶体(非晶态):原子的排列没有明确的周期性(短程有
中译本:固体物理导论 (原著8版)化学工业出版社,2005 8. Busch G. Sc文,瑞士联邦技术学院教材,1972) 9.M A Omar Elementary Solid State Physics: Principle and
Applications 中译本:固体物理学基础 北京师范大学出版社 1987 10.H E Hall Solid State Physics John Wiley ﹠ Sons Ltd 1974 (英国曼彻斯特大学教材) 11. Ashcroft, Mermin Solid State Physics 1976
表面物理——在研究体内过程的基础上进入了固体表面 (界面)的研究,半导体实际界面的研究在改善和稳定 半导体器件性能上已显示锐利的锋芒。
大学固体物理ppt课件

离子、电子在外场中的势能 e z e z ez
V r2单m2↓电V子2r体V系Rrn 6
周期势场中单电子态薛定谔方程:
V单电r子2的mV2 本r征2态RV波n 函r数
r
E r
单电子本征态能量
布洛赫电子:这种无相互作用并在周期性势场中
运动的电子!
7
二、Bloch 定理证明:布洛赫定理内容
当势场具有晶格周期性时,
k x a eika k x
21
k x a
k x
i cos3
a
x
若若若若若iieikkieekkkek只只只i只ekccciciii只kkkkkkkkcoaioaoaoakk取取取s取xsoaxssxaxa取s3x布3a布3a3a布布aaaaa1aa1a,1a1,3里布里,a,x里ax里xxa133渊a渊,3ia3里i渊渊acaixic区,co区,co3区,区s渊o,osa内i5内s5as3ac内35a内5a的区a3i,a的3oiaca的ci的s值iox值oxc内5cs:s值oax:3值ox3aas:s3aa的:iaaa3ac3aaxaxa值oxaikxsik:xccoik3oaiskcaascaaok3oak3saxasxaxxk3k3axaikxexc3xei若k3xoaikasiekkea3只keci3ikkkik3akxoaaax取sxkak2x32布xaax1,e里3
如果引入矢量:
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
根据倒格子基矢的定义:(i,j = 1,2,3)
i j, ai .bj 0
i j, ai .bj 2
e n1 n2 n3 123
i k .Rn
e N1
V r2单m2↓电V子2r体V系Rrn 6
周期势场中单电子态薛定谔方程:
V单电r子2的mV2 本r征2态RV波n 函r数
r
E r
单电子本征态能量
布洛赫电子:这种无相互作用并在周期性势场中
运动的电子!
7
二、Bloch 定理证明:布洛赫定理内容
当势场具有晶格周期性时,
k x a eika k x
21
k x a
k x
i cos3
a
x
若若若若若iieikkieekkkek只只只i只ekccciciii只kkkkkkkkcoaioaoaoakk取取取s取xsoaxssxaxa取s3x布3a布3a3a布布aaaaa1aa1a,1a1,3里布里,a,x里ax里xxa133渊a渊,3ia3里i渊渊acaixic区,co区,co3区,区s渊o,osa内i5内s5as3ac内35a内5a的区a3i,a的3oiaca的ci的s值iox值oxc内5cs:s值oax:3值ox3aas:s3aa的:iaaa3ac3aaxaxa值oxaikxsik:xccoik3oaiskcaascaaok3oak3saxasxaxxk3k3axaikxexc3xei若k3xoaikasiekkea3只keci3ikkkik3akxoaaax取sxkak2x32布xaax1,e里3
如果引入矢量:
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
根据倒格子基矢的定义:(i,j = 1,2,3)
i j, ai .bj 0
i j, ai .bj 2
e n1 n2 n3 123
i k .Rn
e N1
固体物理学--ppt课件

22
简立方(Simple Cubic,简称 SC )
三个基矢等长并且互相垂直。
a3 a
a2
原胞与晶胞相同。 a1
a1 ai a 2 aj a3 ak
PPT课件
23
体心立方(Body
问题一
Centered
Cub8ic以1, 体B1心C原C2子个)为原顶子
点,分8别向三个顶角
体心立方晶胞中含有几个原子? 原子引基矢。
PPT课件
11
固体物理学原胞(原胞)特点:
只反映晶格周期性特征 体积最小的周期性重复单元 结点必为顶点,边长等于该方向周期的平行六
面体 六面体内部和面上皆不含其他的结点
PPT课件
12
结晶学原胞(晶胞)的特点:
除反映晶体周期性特征外,还反映其特有 的对称性;
不一定是最小的重复单元; 结点不仅在顶角上,还可在体心或面心; 原胞边长总是一个周期,并各沿三个晶轴
任何基元中相应原子周围的情况相同,但每个基 元中各原子周围情况不同。
c 基元
b a
PPT课件
10
3、晶格、原胞
晶格:通过点阵中 的结点,做许多平 行的直线族和平行 的晶面族,点阵就 成为一些网格,即 晶格。
原胞:用来反映晶 体周期性(及对称 性)特征的六面体 单元,有:
固体物理学原胞 结晶学原胞
问题二
体心立方原胞如何选取?
问题三
原胞的基a1矢 a形2 式 a?3
1 2
a3
问题原四胞体a1积 a?2 (i
j
k)
a2
a 2
(i
j
k)
a3
a 2
(i
j
k)
PPT课件
固体物理学精品PPT课件

பைடு நூலகம்
4.最小内能性
由同一种化学成分构成的物质,在不同的条件下 可以呈现不同的物相,其相应的结合能或系统的内 能也必不相同。
但是,在相同的热力学条件下,在具有相同化学 成分物质的各种物态——气体、液体、非晶体、晶 体中,以晶体的内能最小,这个结论称为晶体的最 小内能性。
对于固体物质,由于晶体内能比非晶体内能小, 所以非晶体具有自发地向晶体转变的趋势;反之, 晶体不可能自发地转变为其它的物态形式。
在单晶体内部,原子都是规则地排列的。
* 多晶体( Multiple Crystal )
由许多小单晶(晶粒)构成的晶体,称为多晶体。 多晶体仅在各晶粒内原子才有序排列,不同晶粒内 的原子排列是不同的。
晶面的大小和形状受晶体生长条件的影响,它们 不是晶体品种的特征因素。
例如,岩盐(氯化钠)晶体的外形可以是立方体 或八面体,也可能是立方和八面的混合体,如图所 示。
有些晶体的解理性不明显,例如,金属晶体等。
晶体解理性在某些加工工艺中具有重要的意义, 例如,在划分晶体管管芯时,利用半导体晶体的解 理性可使管芯具有平整的边缘和防止无规则的断裂 发生,以保证成品率。
3.晶面角守恒定律
发育良好的单晶体,外形上最显著的特征是晶面 有规则地配置。一个理想完整的晶体,相应的晶面 具有相同的面积。晶体外形上的这种规则性,是晶 体内部分子或原子之间有序排列的反映。
晶格振动是晶体的特性之一。
§1.2 晶体的周期性
一、空间点阵学说 1.空间点阵
为了描述晶体结构的周期性,布拉菲在1848年提 出空间点阵学说,从而奠定了晶体结构几何理论的 基础。
按照空间点阵学说,晶体内部结构是由一些相同 的点子在空间规则地作周期性无限分布所构成的系 统,这些点子的总体称为点阵。
4.最小内能性
由同一种化学成分构成的物质,在不同的条件下 可以呈现不同的物相,其相应的结合能或系统的内 能也必不相同。
但是,在相同的热力学条件下,在具有相同化学 成分物质的各种物态——气体、液体、非晶体、晶 体中,以晶体的内能最小,这个结论称为晶体的最 小内能性。
对于固体物质,由于晶体内能比非晶体内能小, 所以非晶体具有自发地向晶体转变的趋势;反之, 晶体不可能自发地转变为其它的物态形式。
在单晶体内部,原子都是规则地排列的。
* 多晶体( Multiple Crystal )
由许多小单晶(晶粒)构成的晶体,称为多晶体。 多晶体仅在各晶粒内原子才有序排列,不同晶粒内 的原子排列是不同的。
晶面的大小和形状受晶体生长条件的影响,它们 不是晶体品种的特征因素。
例如,岩盐(氯化钠)晶体的外形可以是立方体 或八面体,也可能是立方和八面的混合体,如图所 示。
有些晶体的解理性不明显,例如,金属晶体等。
晶体解理性在某些加工工艺中具有重要的意义, 例如,在划分晶体管管芯时,利用半导体晶体的解 理性可使管芯具有平整的边缘和防止无规则的断裂 发生,以保证成品率。
3.晶面角守恒定律
发育良好的单晶体,外形上最显著的特征是晶面 有规则地配置。一个理想完整的晶体,相应的晶面 具有相同的面积。晶体外形上的这种规则性,是晶 体内部分子或原子之间有序排列的反映。
晶格振动是晶体的特性之一。
§1.2 晶体的周期性
一、空间点阵学说 1.空间点阵
为了描述晶体结构的周期性,布拉菲在1848年提 出空间点阵学说,从而奠定了晶体结构几何理论的 基础。
按照空间点阵学说,晶体内部结构是由一些相同 的点子在空间规则地作周期性无限分布所构成的系 统,这些点子的总体称为点阵。
固体物理绪论ppt课件

2. 金属的研究 —— 抽象出电子公有化的概念,再用单电 子近似的方法建立能带理论
3. 物质的铁磁性 —— 研究了电子与声子的相互作用,阐 明低温磁化强度随温度变化的规律
4. 超导的理论 —— 研究电子和声子的相互作用,形成库 柏电子对,库柏对的凝聚表现为超导电相变
六、固体物理学领域的一些重要进展 1. 人造材料、超晶格半导体、MBE、CVO等 2. 量子霍尔效应:电势差按量子变化而非连续变化 3. 降维效应:三维→二维→一维→零维(量子点) 4. 电荷密度波、自旋密度波 5. 无序:等效介质+微扰 6. 混合原子价 7. 3He的超流相(低温下流动无阻力) 8. 重整化群的方法(处理多体问题、相变、临界点等)
23. 生物物理(蛋白质、DNA等) 24. 软凝聚态物质(生物体、胶体、各种细小颗粒、沙堆
模型等) 25. 纳米材料 26. Bose-Einstein凝聚
……
《固体物理学》参考书目
1.《固体物理学》 —— 黄昆 韩汝琪,高等教育出版社
2. 《Introduction to Solid State Physics》Seventh Edition —— CHARLES KITTEKL, John Wiley
—— 费米发展了统计理论,为以后研究晶体中电子运动的 过程指出了方向
—— 20世纪三十年代,建立了固体能带论和晶格动力学
—— 固体能带论说明了导体与绝缘体的区别,并断定有 一类固体,其导电性质介于两者之间______半导体
—— 20世纪四十年代末,以诸、硅为代表的半导体单晶的 出现并制成了晶体三极管______ 产生了半导体物理
程序)(急冷方式获得)
16. 细小体系、团簇、C60、介观物理 17. 有机导体、高分子材料(具有掺杂导电性) 18. 非线性、非平衡、孤子、突变、湍流 19. 量子计算机,由量子态控制(传统计算机由0、1控制) 20. 超硬材料,如导电性极强的金刚石半导体,性能稳定、
3. 物质的铁磁性 —— 研究了电子与声子的相互作用,阐 明低温磁化强度随温度变化的规律
4. 超导的理论 —— 研究电子和声子的相互作用,形成库 柏电子对,库柏对的凝聚表现为超导电相变
六、固体物理学领域的一些重要进展 1. 人造材料、超晶格半导体、MBE、CVO等 2. 量子霍尔效应:电势差按量子变化而非连续变化 3. 降维效应:三维→二维→一维→零维(量子点) 4. 电荷密度波、自旋密度波 5. 无序:等效介质+微扰 6. 混合原子价 7. 3He的超流相(低温下流动无阻力) 8. 重整化群的方法(处理多体问题、相变、临界点等)
23. 生物物理(蛋白质、DNA等) 24. 软凝聚态物质(生物体、胶体、各种细小颗粒、沙堆
模型等) 25. 纳米材料 26. Bose-Einstein凝聚
……
《固体物理学》参考书目
1.《固体物理学》 —— 黄昆 韩汝琪,高等教育出版社
2. 《Introduction to Solid State Physics》Seventh Edition —— CHARLES KITTEKL, John Wiley
—— 费米发展了统计理论,为以后研究晶体中电子运动的 过程指出了方向
—— 20世纪三十年代,建立了固体能带论和晶格动力学
—— 固体能带论说明了导体与绝缘体的区别,并断定有 一类固体,其导电性质介于两者之间______半导体
—— 20世纪四十年代末,以诸、硅为代表的半导体单晶的 出现并制成了晶体三极管______ 产生了半导体物理
程序)(急冷方式获得)
16. 细小体系、团簇、C60、介观物理 17. 有机导体、高分子材料(具有掺杂导电性) 18. 非线性、非平衡、孤子、突变、湍流 19. 量子计算机,由量子态控制(传统计算机由0、1控制) 20. 超硬材料,如导电性极强的金刚石半导体,性能稳定、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体解理性在某些加工工艺中具有重要的意义, 例如,在划分晶体管管芯时,利用半导体晶体的解 理性可使管芯具有平整的边缘和防止无规则的断裂 发生,以保证成品率。
7
3.晶面角守恒定律
发育良好的单晶体,外形上最显著的特征是晶面 有规则地配置。一个理想完整的晶体,相应的晶面 具有相同的面积。晶体外形上的这种规则性,是晶 体内部分子或原子之间有序排列的反映。
(c) 立方和八面混合体
6
2.解理(Cleavage)
晶体具有沿某一个或数个晶面发生劈裂的特征, 这种特征称为晶体的解理。解理的晶面,称为解理 面。
解理面通常是那些面与面之间原子结合比较脆弱 的晶面。
有些晶体的解理性比较明显,例如,NaCl晶体等, 它们的解理面常显现为晶体外观的表面。
有些晶体的解理性不明显,例如,金属晶体等。
4
长程有序是所有晶体材料都具有的共同特征,这 一特性导致晶体在熔化过程中具有一定的熔点。
晶体分为单晶体和多晶体。
* 单晶体( Single Crystal )
单晶体是个凸多面体,围成这个凸多面体的面是 光滑的,称为晶面。
在单晶体内部,原子都是规则地排列的。
* 多晶体( Multiple Crystal )
描述晶体结构的空间点阵,可以通过点子的平移 而得到。
14
2.空间点阵学说
布喇菲空间点阵学说能够准确地反映晶体结构的 周期性,它可以概括为以下几个要点。
* 基元(Basis)
通过在空间无限重复而能构成一种理想晶体结构 的原子群,称为基元。
基元就是构成晶体的基本单元,它可能只包含一 个原子,如许多金属晶体的基元;也可能包含多个 原子,如蛋白质晶体的基元。
晶体的晶面往往排列成带状,晶面间的交线(称 为晶棱)互相平行,这些晶面的组合称为晶带,晶 棱的共同方向称为该晶带的带轴。晶体的物理性质 沿不同带轴方向具有差异,呈现出各向异性。
物理性质这种差异来源于晶体结构的各向异性, 例如,晶体的解理在有些晶轴上明显,而在其它晶 轴方向不明显;又如,某些晶体的电阻值在一个特 定晶轴方向上显著地高于其它晶轴方向;再如,一 些晶体的折射率在不同晶向数值不同等。
8
(a)理想石英晶体(b)人造石英晶体
属于同一品种的晶体,两个对应晶面之间的夹角 恒定不变,这一规律称为晶面角守恒定律。
显然,晶面之间的相对方位是晶体的特征因素, 因而常用晶面法线的取向来表征晶面的方位,而以 法线间夹角来表征晶面间的夹角(两个晶面法线间 的夹角是这两个晶面夹角的补角)。
9
二、晶体的基本性质 1.周期性( Periodicity )
晶格振动是晶体的特性之一。
13
§1.2 晶体的周期性
一、空间点阵学说 1.空间点阵
为了描述晶体结构的周期性,布拉菲在1848年提 出空间点阵学说,从而奠定了晶体结构几何理论的 基础。
按照空间点阵学说,晶体内部结构是由一些相同 的点子在空间规则地作周期性无限分布所构成的系 统,这些点子的总体称为点阵。
晶体中原子的规则排列可以看作是由一个基本结 构单元在空间重复堆砌而成,晶体结构的这一性质 称为周期性。
2.对称性( Symmetry )
晶体的外形、结构及性质在不同方向和位置有规 律地重复出现,这种现象称为晶py )
晶体的物理性质,常随方向不同而有量的差异。 晶体所具有的这种性质,称为各向异性。
尽管由于生长条件的不同,会使同一晶体外型产 生一定的差异。但是对同一种晶体,相应两个晶面 之间的夹角却总是恒定的。即:每一种晶体不论其 外形如何,总具有一套特征性的夹角。
例如,对于石英晶体,在下图中所示的 mm 两面 间的夹角总是60º0' , mR 两面间的夹角总是38º13' , mr 两面间的夹角总是38º13' 。
11
4.最小内能性
由同一种化学成分构成的物质,在不同的条件下 可以呈现不同的物相,其相应的结合能或系统的内 能也必不相同。
但是,在相同的热力学条件下,在具有相同化学 成分物质的各种物态——气体、液体、非晶体、晶 体中,以晶体的内能最小,这个结论称为晶体的最 小内能性。
对于固体物质,由于晶体内能比非晶体内能小, 所以非晶体具有自发地向晶体转变的趋势;反之, 晶体不可能自发地转变为其它的物态形式。
即,晶体是一种稳定的物态形式。
12
5.晶格振动( Lattice Vibration )
晶体中的原子总是围绕其平衡位置作振动,且相 互联系。晶体中原子的这种集体振动,称为晶格振 动。
晶格振动不仅对晶体的热学性质有直接的重要影 响,而且对晶体的其它一些物理性质,例如光学性 质、电学性质、超导电性、结构相变等起到重要影 响,甚至决定性的作用。
由许多小单晶(晶粒)构成的晶体,称为多晶体。 多晶体仅在各晶粒内原子才有序排列,不同晶粒内 的原子排列是不同的。
5
晶面的大小和形状受晶体生长条件的影响,它们 不是晶体品种的特征因素。
例如,岩盐(氯化钠)晶体的外形可以是立方体 或八面体,也可能是立方和八面的混合体,如图所 示。
(a)立方体 (b)八面体
基元在晶体中的位置,可以用基元中的任一点代 表,此代表点称为基点或称为格点。
晶体的结构和特性决定了它在现代科学技术上有 着及其广泛的应用,因此,固体物理学以晶体作为 主要的研究对象。
上节 目录 下节3
§1.1 晶体的基本性质
一、晶体的特征
虽然不同的晶体具有各自不同的特性,但是,在 不同的晶体之间仍存在着某些共同的特征,这主要 表现在以下几个方面。
1.长程有序
具有一定熔点的固体,称为晶体。 实验表明:在晶体中尺寸为微米量级的小晶粒内 部,原子的排列是有序的。在晶体内部呈现的这种 原子的有序排列,称为长程有序。
固体物理学
1
目录
晶体的结构 晶体的结合 晶格振动和晶体的热学性质 晶体中的缺陷 金属电子论 能带理论与能带结构
2
第1章 晶体的结构
固体物质是由大量的原子、分子或离子按照一定 方式排列而成的,这种微观粒子的排列方式称为固 体的微结构。
按照微结构的有序程度,固体分为晶体、准晶体 和非晶体三类。其中,晶体的研究已经非常成熟, 而非晶体和准晶体则是固体研究的新领域。
7
3.晶面角守恒定律
发育良好的单晶体,外形上最显著的特征是晶面 有规则地配置。一个理想完整的晶体,相应的晶面 具有相同的面积。晶体外形上的这种规则性,是晶 体内部分子或原子之间有序排列的反映。
(c) 立方和八面混合体
6
2.解理(Cleavage)
晶体具有沿某一个或数个晶面发生劈裂的特征, 这种特征称为晶体的解理。解理的晶面,称为解理 面。
解理面通常是那些面与面之间原子结合比较脆弱 的晶面。
有些晶体的解理性比较明显,例如,NaCl晶体等, 它们的解理面常显现为晶体外观的表面。
有些晶体的解理性不明显,例如,金属晶体等。
4
长程有序是所有晶体材料都具有的共同特征,这 一特性导致晶体在熔化过程中具有一定的熔点。
晶体分为单晶体和多晶体。
* 单晶体( Single Crystal )
单晶体是个凸多面体,围成这个凸多面体的面是 光滑的,称为晶面。
在单晶体内部,原子都是规则地排列的。
* 多晶体( Multiple Crystal )
描述晶体结构的空间点阵,可以通过点子的平移 而得到。
14
2.空间点阵学说
布喇菲空间点阵学说能够准确地反映晶体结构的 周期性,它可以概括为以下几个要点。
* 基元(Basis)
通过在空间无限重复而能构成一种理想晶体结构 的原子群,称为基元。
基元就是构成晶体的基本单元,它可能只包含一 个原子,如许多金属晶体的基元;也可能包含多个 原子,如蛋白质晶体的基元。
晶体的晶面往往排列成带状,晶面间的交线(称 为晶棱)互相平行,这些晶面的组合称为晶带,晶 棱的共同方向称为该晶带的带轴。晶体的物理性质 沿不同带轴方向具有差异,呈现出各向异性。
物理性质这种差异来源于晶体结构的各向异性, 例如,晶体的解理在有些晶轴上明显,而在其它晶 轴方向不明显;又如,某些晶体的电阻值在一个特 定晶轴方向上显著地高于其它晶轴方向;再如,一 些晶体的折射率在不同晶向数值不同等。
8
(a)理想石英晶体(b)人造石英晶体
属于同一品种的晶体,两个对应晶面之间的夹角 恒定不变,这一规律称为晶面角守恒定律。
显然,晶面之间的相对方位是晶体的特征因素, 因而常用晶面法线的取向来表征晶面的方位,而以 法线间夹角来表征晶面间的夹角(两个晶面法线间 的夹角是这两个晶面夹角的补角)。
9
二、晶体的基本性质 1.周期性( Periodicity )
晶格振动是晶体的特性之一。
13
§1.2 晶体的周期性
一、空间点阵学说 1.空间点阵
为了描述晶体结构的周期性,布拉菲在1848年提 出空间点阵学说,从而奠定了晶体结构几何理论的 基础。
按照空间点阵学说,晶体内部结构是由一些相同 的点子在空间规则地作周期性无限分布所构成的系 统,这些点子的总体称为点阵。
晶体中原子的规则排列可以看作是由一个基本结 构单元在空间重复堆砌而成,晶体结构的这一性质 称为周期性。
2.对称性( Symmetry )
晶体的外形、结构及性质在不同方向和位置有规 律地重复出现,这种现象称为晶py )
晶体的物理性质,常随方向不同而有量的差异。 晶体所具有的这种性质,称为各向异性。
尽管由于生长条件的不同,会使同一晶体外型产 生一定的差异。但是对同一种晶体,相应两个晶面 之间的夹角却总是恒定的。即:每一种晶体不论其 外形如何,总具有一套特征性的夹角。
例如,对于石英晶体,在下图中所示的 mm 两面 间的夹角总是60º0' , mR 两面间的夹角总是38º13' , mr 两面间的夹角总是38º13' 。
11
4.最小内能性
由同一种化学成分构成的物质,在不同的条件下 可以呈现不同的物相,其相应的结合能或系统的内 能也必不相同。
但是,在相同的热力学条件下,在具有相同化学 成分物质的各种物态——气体、液体、非晶体、晶 体中,以晶体的内能最小,这个结论称为晶体的最 小内能性。
对于固体物质,由于晶体内能比非晶体内能小, 所以非晶体具有自发地向晶体转变的趋势;反之, 晶体不可能自发地转变为其它的物态形式。
即,晶体是一种稳定的物态形式。
12
5.晶格振动( Lattice Vibration )
晶体中的原子总是围绕其平衡位置作振动,且相 互联系。晶体中原子的这种集体振动,称为晶格振 动。
晶格振动不仅对晶体的热学性质有直接的重要影 响,而且对晶体的其它一些物理性质,例如光学性 质、电学性质、超导电性、结构相变等起到重要影 响,甚至决定性的作用。
由许多小单晶(晶粒)构成的晶体,称为多晶体。 多晶体仅在各晶粒内原子才有序排列,不同晶粒内 的原子排列是不同的。
5
晶面的大小和形状受晶体生长条件的影响,它们 不是晶体品种的特征因素。
例如,岩盐(氯化钠)晶体的外形可以是立方体 或八面体,也可能是立方和八面的混合体,如图所 示。
(a)立方体 (b)八面体
基元在晶体中的位置,可以用基元中的任一点代 表,此代表点称为基点或称为格点。
晶体的结构和特性决定了它在现代科学技术上有 着及其广泛的应用,因此,固体物理学以晶体作为 主要的研究对象。
上节 目录 下节3
§1.1 晶体的基本性质
一、晶体的特征
虽然不同的晶体具有各自不同的特性,但是,在 不同的晶体之间仍存在着某些共同的特征,这主要 表现在以下几个方面。
1.长程有序
具有一定熔点的固体,称为晶体。 实验表明:在晶体中尺寸为微米量级的小晶粒内 部,原子的排列是有序的。在晶体内部呈现的这种 原子的有序排列,称为长程有序。
固体物理学
1
目录
晶体的结构 晶体的结合 晶格振动和晶体的热学性质 晶体中的缺陷 金属电子论 能带理论与能带结构
2
第1章 晶体的结构
固体物质是由大量的原子、分子或离子按照一定 方式排列而成的,这种微观粒子的排列方式称为固 体的微结构。
按照微结构的有序程度,固体分为晶体、准晶体 和非晶体三类。其中,晶体的研究已经非常成熟, 而非晶体和准晶体则是固体研究的新领域。