光伏发电及电化学储能研究现状

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏发电及化学储能研究现状简介

一、光伏发电

光伏发电是根据光生伏打效应原理,利用太阳电池将太阳光能直接转化为电能。光伏发电系统主要由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。

1、光伏电池的分类

(1)单晶硅光伏电池

单晶硅光伏电池是开发较早、转换率最高和产量较大的一种光伏电池。目前单晶硅光伏电池转换效率在我国已经平均达到14.5%至15.5%,而实验室记录的最高转换效率超过了24.7%。这种光伏电池一般以高纯的单晶硅硅棒为原料,纯度要求99.9999%。

单晶硅光伏电池又分为普通单晶硅光伏电池和背接触式单晶硅光伏电池,背接触硅太阳电池是指电池的发射区电极和基区电极均位于电池背面的一种硅太阳电池。背接触电池有很多优点:①效率高。由于降低或完全消除了正面栅线电极的遮光损失,从而提高了电池效率,有报道称某新型背接触单晶硅光伏电池效率高达21%。②易组装。采用全新的组件封装模式进行共面连接,既减小了电池片间的间隔,提

高了封装密度,又简化了制作工艺,降低了封装难度。③更美观。电池的正面均一、美观,满足了消费者的审美要求。

图1 单晶硅电池

(2)多晶硅光伏电池

多晶硅光伏电池是以多晶硅材料为基体的光伏电池。由于多晶硅材料多以浇铸代替了单晶硅的拉制过程,因而生产时间缩短,制造成本大幅度降低。再加之单晶硅硅棒呈圆柱状,用此制作的光伏电池也是圆片,因而组成光伏组件后平面利用率较低。与单晶硅光伏电池相比,多晶硅光伏电池就显得具有一定竞争优势。目前实验室最高光电转换效率为20.3%,商业化批量生产效率为14%至14.5%。

图2 多晶硅电池

(3)非晶硅光伏电池

非晶硅光伏电池是用非晶态硅为原料制成的一种新型薄膜电池。非晶态硅是一种不定形晶体结构的半导体。用它制作的光伏电池只有1微米厚度,相当于单晶硅光伏电池的1/300。它的工艺制造过程与单晶硅和多晶硅相比大大简化, 硅材料消耗少, 单位电耗也降低了很多。目前实验室最高光电转换效率为12.8%,商业化批量生产效率为6%至9%。

虽然非晶薄膜光伏电池的效率比单晶硅和多晶硅要低很多,但由于其经济性,如果不考虑其占地面积的因素,则其相同电力规模的造价要低于单晶硅和多晶硅。

图3 非晶硅电池

(4)铜铟硒光伏电池

铜铟硒光伏电池是以铜、铟、硒三元化合物半导体为基本材料,在玻璃或其它廉价衬底上沉积制成的半导体薄膜。由于铜铟硒电池光吸收性能好,所以膜厚只有单晶硅光伏电池的大l/100。

(5)砷化镓光伏电池

砷化镓光伏电池是一种Ⅲ-V族化合物半导体光伏电池。与硅光伏电池相比, 砷化镓光伏电池光电转换效率高,硅光伏电池理论效率为23% ,而单结砷化镓光伏电池的转换效率已经达到27%;可制成薄膜和超薄型太阳电池,同样吸收95%的太阳光, 砷化镓光伏电池只需5-10μm的厚度,而硅光伏电池则需大于150μm。

(6)碲化镉光伏电池

碲化镉是一种化合物半导体,其带隙最适合于光电能量转换。用这种半导体做成的光伏电池有很高的理论转换效率,目前, 已实际获得的最高转换效率达到16.5%。碲化镉光伏电池通常在玻璃衬底上制造,玻璃上第一层为透明电极,其后的薄层分别为硫化镉、碲化镉和背电极,其背电极可以是碳桨料,也可以是金属薄层。碲化镉的沉积技术方法很多,如电化学沉积法、近空间升华法、近距离蒸气转运法、物理气相沉积法、丝网印刷法和喷涂法等。碲化镉层的厚度

通常为1.5-3um,而碲化镉对于光的吸收有1.5um的厚度也就足够了。

(7)聚合物光伏电池

聚合物光伏电池是利用不同氧化还原型聚合物的不同氧化还原电势, 在导电材料表面进行多层复合, 制成类似无机P-N结的单向导电装置。

(8)聚光电池

聚光电池包括高倍聚光、低倍聚光电池,技术还在发展完善过程中。聚光电池对电池方向的定位要求极高,如果聚光电池方向与标准方向偏差1%,则其转换效率要降低90%。

图4 聚光电池

所参观的国家风光储输示范工程,在已投运的40MW 的光伏发电中,多晶硅光伏组件占37MW,单晶硅光伏组件占1MW,非晶薄膜光伏组件占1MW,背接触式光伏组件占0.5MW,高倍聚光电池组件占0.05MW,进口背接触式光伏组件占0.5MW。

2、光伏发电阵列布置方式

(1)最佳倾角固定式

固定倾角式安装是组件以一定的倾角固定在地面上,整个发电过程组件处于静态,该安装方式简单易行,成本低。但太阳处于动态运动过程,在一天中太阳光与太阳能电池板相互位置时刻都在发生变化,光线与电池板相互垂直的时间很短。研究表明,太阳能电池板发电能力与接收垂直光强成正比,每天有35%以上的能量被无形的浪费掉。另外,为了防止大风、大雪等恶劣天气可能损坏太阳能电池板的支架,一般将基础和支架的安全系数设计的很高。

(2)单轴跟踪式

顾名思义,即只有一个旋转轴,来改变电池板的位置角度,来达到太阳光线垂直于电池面板光射强度的最大化,从而提高光伏转化率。

单轴跟踪根据转轴的方位可以分为:水平单轴跟踪,倾斜单轴跟踪,竖直单轴跟踪。如果按照运动机构动力执行件类型,以及传动系统类型又可以分为:电动推杆单体结构类型,电动推杆联动结构类型,回转减速器单体结构类型,回转减速器联动结构。

a、水平单轴

单轴跟踪由电池板支撑系统,转轴梁,动力驱动系统,电动控制系统,中央监控系统等组成。水平跟踪适合在纬度低于30度的地区内使用,可以提高20%-30% 的发电量。

图5 水平单轴跟踪式

b、斜单轴

斜单轴跟踪以及垂直单轴跟踪适合在纬度高于40的区域使用,可以提高25%-35%的发电量。

图6 斜单轴跟踪式

(3)双轴跟踪式

顾名思义,是指具备两个方向的旋转轴。这样电池板可以在太阳的方位角,以及高度角上同时跟踪太阳。从而达到电池板保持垂直于太阳光线。双轴结构

相关文档
最新文档