sift和meanshift原理和算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SIFT算法由D.G.Lowe 1999年提出,2004年完善总结,论文发表在2004年的IJCV上:

David G. Lowe, "Distinctive image features from scale-invariant keypoints,"International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。

SIFT方法一经推出就在图像处理界引起巨大反响,其方法效果良好、实现便捷,很快风靡世界。很多图像检测、识别的应用里都能找到sift方法的身影

SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。算法的主要特点为:

a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。

b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配[23]。

c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。

d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。

e) 可扩展性,可以很方便的与其他形式的特征向量进行联合。

SIFT算法主要步骤:

1)检测尺度空间极值点

2)精确定位极值点

3)为每个关键点指定方向参数

4)关键点描述子的生成

SIFT算法详细

尺度空间理论目的是模拟图像数据的多尺度特征。高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为:

L(x,y,e) = G(x,y,e)*I(x,y)

其中G(x,y,e)是尺度可变高斯函数,

G(x,y,e) = [1/2*pi*e2] * exp[ -(x2 + y2)/2e2]

(x,y)是空间坐标, e是尺度坐标。

为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。

D(x,y,e) = ((G(x,y,ke) - G(x,y,e)) * I(x,y) =

L(x,y,ke) - L(x,y,e)

DOG算子计算简单,是尺度归一化的LoG算子的近似。

Gaussian卷积是有尺寸大小的,使用同一尺寸的滤波器对两幅包含有不同尺寸的同一物体的图像求局部最值将有可能出现一方求得最值而另一方却没有的情况,但是容易知道假如物体的尺寸都一致的话它们的局部最值将会相同。SIFT 的精妙之处在于采用图像金字塔的方法解决这一问题,我们可以把两幅图像想象成是连续的,分别以它们作为底面作四棱锥,就像金字塔,那么每一个截面与原图像相似,那么两个金字塔中必然会有包含大小一致的物体的无穷个截面,但应用只能是离散的,所以我们只能构造有限层,层数越多当然越好,但处理时间会相应增加,层数太少不行,因为向下采样的截面中可能找不到尺寸大小一致的两个物体的图像。有了图像金字塔就可以对每一层求出局部最值,但是这样的稳定点数目将会十分可观,所以需要使用某种方法抑制去除一部分点,但又使得同一尺度下的稳定点得以保存

图像金字塔的构建:图像金字塔共O组,每组有S层,下一组的图像由上一组图像降采样得到。

图1 Two octaves of a Gaussian scale-space image pyramid with s =2 intervals. The first image in the second octave is created by down sampling the second to last image in the previous

图2 The difference of two adjacent intervals in the Gaussian scale-space

pyramid create an interval in the difference-of-Gaussian pyramid (shown in green).

空间极值点检测

为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图3所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。

构建尺度空间需确定的参数

e -尺度空间坐标

O -octave坐标

S - sub-level 坐标

注:octaves 的索引可能是负的。第一组索引常常设为0或者-1,当设为-1的时候,图像在计算高斯尺度空间前先扩大一倍。

空间坐标x是组octave的函数,设是0组的空间坐标,注:在Lowe的文章中,Lowe使用了如下的参数:

在组o=-1,图像用双线性插值扩大一倍(对于扩大的图像)。

精确确定极值点位置

通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度),同时去除低对比度的关键点和不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应),以增强匹配稳定性、提高抗噪声能力。

边缘响应的去除

一个定义不好的高斯差分算子的极值在横跨边缘的地方有较大的主曲率,而在垂直边缘的方向有较小的主曲率。主曲率通过一个2x2 的Hessian矩阵H求出: 导数由采样点相邻差估计得到。

D的主曲率和H的特征值成正比,令为最大特征值

关键点方向分配

利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备旋转不变性。

在实际计算时,我们在以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度方向。梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。直方图的峰值则代表了该关键点处邻域梯度的主方向,即作为该关键点的方向。图4是采用7个柱时使用梯度直方图为关键点确定主方向的示例。

图4 由梯度方向直方图确定主梯度方向

相关文档
最新文档