基因工程抗体研究进展及其临床应用

基因工程抗体研究进展及其临床应用
基因工程抗体研究进展及其临床应用

基因工程抗体研究进展及其临床应用

摘要:基因工程抗体是继多克隆抗体和单克隆抗体之后的第三代抗体,近年来随着生物工程技术的发展,许多基因工程抗体陆续问世,本文详细介绍了基因工程抗体的研究进展,概述了基因工程抗体在临床方面的明显优势和应用潜力。

关键词:基因工程抗体;研究进展;临床引用

Advances in Genetic Engineering Research and Clinical

Application of Antibody

Student majoring in Professional Veterinary Medicine Name DongChuanJun

Tutor Name MinLingJiang

Abstract:Genetic engineering antibody is the third generation antibody after polyclonal antibody and monoclonal antibody.In recent years,with the development of bio-engineering techniques,many genetically engineered antibodies have been presented to the public,and this article elaborates on research progress of the genetic engineering antibody,and its obvious advantages and potentials in clinical application.

Key words:Genetically engineered antibodies; Research; Clinical application.

引言转基因技术迅速发展,其应用和发展的领域日益夸大。但转基因技术的弊端日益凸现,引起众多关注的目光。就转基因技术本身而言,社会各界对它的态度各有异同。不同的国家不同的民族和不同的个体对转基因技术的态度大相径庭。如何看待转基因技术?如何去应用和发展转基因技术?这些都是我们亟待解决的问题。

1 基因工程抗体介绍

1.1 基因工程简介

基因工程抗体是借助DNA重组和蛋白质工程技术,在基因水平对免疫球蛋白分子进行切割、拼接、修饰和重新组装的一种新型抗体。所制备的抗体去除或减少了可引起副作用的无关结构,但保留天然抗体的特异性和主要生物学活性,并可赋予抗体分子以新的生物学活性的总称【1】。

由于目前制备的抗体均为鼠源性临床应用时,对人是异种抗原,重复注射可使人产生抗鼠抗体,从而减弱或失去疗效,并增加了超敏反应的发生,因此,在 80 年代早期,人们开始利用基因工程制备抗体,以降低鼠源抗体的免疫原性及其功能[2]。目前多采用人抗体的部分氨基酸序列代替某些鼠源性抗体的序列,经修饰制备基因工程抗体,称为第三代抗体[3]。

1.2 基因工程抗体种类

基因工程抗体主要包括嵌合抗体、人源化抗体、完全人源抗体、单链抗体、双特异性抗体等。

1.2.1 嵌合抗体

嵌合抗体(chimeric atibody)是最早制备成功的基因工程抗体。它是由鼠源性抗体的V区基因与人抗体的C区基因拼接为嵌合基因,然后插入载体,转染骨髓瘤组织表达的抗体分子【4】。因其减少了鼠源成分,从而降低了鼠源性抗体引起的不良反应,并有助于提高疗效。

1.2.2 人源性抗体

是将人抗体的CDR代之以鼠源性单克隆抗体的CDR,由此形成的抗体,鼠源性只占极少,称为人源化抗体。

1.2.3 完全人源化抗体

采用基因敲除术将小鼠Ig基因敲除,代之以人Ig基因,然后用Ag免疫小鼠,再经杂交瘤技术即可产生大量完全人源化抗体。

1.2.4 单链抗体

是将Ig的H链和L链的V区基因相连,转染大肠杆菌表达的抗体分子,又

称单链FV(single chain fragment of variable region,sFv)。SFv穿透力强,易于进入局部组织发挥作用。

1.2.5 双特异性抗体

将识别效应细胞的抗体和识别靶细胞的抗体联结在一起,制成双功能性抗体,称为双特异性抗体。如由识别肿瘤抗原的抗体和识别细胞毒性免疫效应细胞(CTL细胞、NK细胞、LAK细胞)表面分子的抗体(CD3抗体或CD16抗体)制成的双特异性抗体,有利于免疫效应细胞发挥抗肿瘤作用。

2 基因工程抗体的研究进展

2.1抗体工程的发展

最近,美FD强调:目前在临床试验中基因工程抗体约占生物制剂的30%。重组抗体的体积越来越小,或被重新构建成多价分子,或与其它分子相融合,如放射性核素、毒素、酶、脂质体和病毒【5】。重组技术的出现使筛选、人源化、抗体的生产得到革新,并取代杂交瘤技术,从而使以抗体为基础的药剂设计成为可能。

图1:抗体的发展

2.2目前基因工程抗体制备的主要方法

2.2.1人鼠嵌合抗体

主要是利用基因重组技术,把鼠抗体的重轻链可变区部分与人抗体重轻链恒定区的进行重组,减少鼠源结构,增加人源结构,而保持抗体与原抗原的特异性结合【6】。

1.首先把小鼠编码Ig重轻链的基因剔除。

2.制备表达人的Ig重轻链的转基因小鼠。

3.上二种小鼠回交,获得只表达人Ig重轻链的基因的小鼠。当用抗原免疫后,小鼠可产生完全人源抗体。

2.2.2 噬菌体抗体库技术

1.人的Ig重轻链可变区基因片段展示在噬菌体表面,组成抗体库。

2.过噬菌体把抗体的表型和基因型相偶联,易进行分子克隆和基因操作。

3.抗体库的来源影响筛选结果(免疫和正常人)。

4.高通量筛选与抗原结合的抗体,但亲和力低。

2.2.3 用人的骨髓瘤细胞直接制备全人抗体

由于骨髓瘤细胞稳定性高和融合率高,所以要建立好的人骨髓瘤细胞。

2.2.4 B细胞永生化技术

用EB病毒将人淋巴细胞永生化可产生分泌抗体的B细胞克隆【7】。这一技术较为成熟,但是存在抗体分泌不稳定的缺点,限制了其应用。或直接分离分泌抗体的B细胞,用PCR获得重轻连,构建全人抗体。

2.3抗体药物发展现状

1.FDA已批准上市的抗体药物。

2.SFDA(中国)已批准上市及临床研究的的抗体药物。

2.4工程抗体的未来发展与展望

2.4.1单克隆抗体的市场需求

图2:单抗体市场的预测与分析

3.基因工程抗体药物的应用

随着生物工程技术的发展,许多基因工程抗体陆续问世,并在医学领域的许多方面都具应用潜力,如病毒感染、肿瘤、自身免疫性疾病、同种异体移植物注射、哮喘、中风和青光眼治疗,尤其在诊断和治疗肿瘤性疾病及抗感染方面优势明显。

3.1基因工程抗体药物的临床应用

3.1.1 在肿瘤性疾病诊疗方面的应用

放射性标记抗体在肿瘤影像和治疗中很重要,并可有效进行药代动力学评估.以标记抗体注入人体内显示肿瘤部位抗原与抗体结合的放射浓集称放射免疫显像,由于基因工程抗体如单链抗体、Fab片段等分子量小、能很快清除、组织穿透力强,所以更适于放射免疫显像【8】。

恶性肿瘤的导向治疗,是通过重组技术将抗肿瘤相关抗原的抗体与多种分子融合,这些分子在抗体结合靶分子后可提供重要辅助功能.这些分子包括:放射性核素、细胞毒药物、毒素、小肽、蛋白、酶和用于基因治疗的病毒.对肿瘤治疗来说,设计的双特异性抗体可有效针对低水平的肿瘤相关抗原,并将细胞毒物质输送到肿瘤细胞.此外,抗体还可与携带药物的脂质体、各种PEG偶联,从而增强体内运输和药代动力学。作为免疫脂质体,转铁蛋白受体抗体可使药物通过血脑屏障到达大脑.抗体酶复合物作为前体药物也被用于基础肿瘤治疗。

3.1.2基因工程抗体的抗感染作用

预防和治疗感染性疾病常用的药物是疫苗和抗生素,但对于一些尚无有效预防及治疗手段的感染性疾病如 SARS、AIDS等,抗体治疗可做为首选方案。如在治疗AIDS 方面,利用抗体工程技术已成功地制备出HIV病毒整合菌的单链抗体ScAb2219,对HIV病毒感染的早期和晚期具有有效的抑制作用,并可望成为S基因治疗的有效手段。呼吸道合胞病毒 (RSV)易引起婴儿呼吸道疾病,如细支气管炎和肺炎,并可引起严重的并发症,目前已有人源化单克隆抗体Palivizumab经美国FDA批准上市,临床实验证明无毒、副反应,并可显著降低婴儿的住院率。我国率先建立了针对SARS的基因工程抗体库,这对于 SARS的预防、诊断和治疗都将起到重要作用和深远影响。对于中和其它病原分子,FDA已批准 Fab单体分子作为抗蛇毒药物;scFv片段和寡克隆复合物作为抗细菌毒素药物。

3.1.3 细胞内抗体

随着细胞信号转导和抗体工程技术的发展,诞生了细胞内抗体技术。这项技术是指在细胞内表达并被定位于亚细胞区室如胞核、胞浆或某些细胞器,与特定的靶分子作用从而发挥生物学功能的一类新的工程抗体。最典型的是 scFv,被称为内抗体。胞内抗体技术主要应用在抑制病毒复制特别是 HIV-1复制、肿瘤基因治疗方面,现已逐渐拓展到中枢神经系统疾病、移植排斥和自身免疫性疾病等领域。体外培养来源

于无关供体的角质形成细胞同种移植物用于严重的烧伤病人的治疗,往往会引起排斥反应,而MHCI类分子是引起移植排斥的重要抗原。Mhashikar等用编码抗 MHC I单链抗体的腺病毒转染角质形成细胞,结果显示明显降低了MHCI的表达,细胞内抗体介导的表型敲除是否有利于同种移植物的存活还需要进一步研究。

3.1.4 用于未来诊断的生物传感器和微矩阵技术

生物传感器和微阵列技术在不久以后将有可能成为主要的体外诊断技术.对于大量诊断试剂盒,抗体有高敏感性和高特异性.从最初的玻璃界面到现在的多种蛋白亲和界面,用于诊断的抗体微矩阵界面不断发展.随着体外机械人的出现,这一技术将进一步发展,并用于微生物污染、寄生虫和生物病原体的检测。

3.2基因工程抗体药物的应用领域

1.肿瘤导向治疗;

2.哮喘、银屑病、类风湿性关节炎、红斑狼疮、急性心梗、脓毒症、多发性硬化症及其他自身免疫性疾病;

3.心脑血管疾病;

4.感染性疾病;

5.“生物导弹”

4.基因工程技术的发展方向

针对基因工程抗体药物的应用,明确基因工程技术的发展方向,从而让基因工程抗体对我们更有利[9]。

1.开发针对神经系统、肿瘤、心血管系统、艾滋病及免疫缺陷等重大疾病的多肽、蛋白质和核酸等新生物技术产品;

2.选择一批市场前景好的生物技术产品及疫苗、诊断用单克隆抗体,开发重点是乙肝基因疫苗与单克隆抗体诊断试剂等;

3.开发靶向药物主要是开发抗肿瘤药物。目前治疗肿瘤药物确实存在一个所谓"敌我不分"的问题。在杀死癌细胞的同时,也杀死正常细胞。导向治疗就是针对这个问题提出来。所谓导向治疗就是利用抗体寻找靶标,如导弹的导航器,把药物准确引入病灶,而不伤及其他组织和细胞;

4.人源化的单克隆抗体的研究开发。抗体可以对抗各种病原体,亦可作为导向器,但目前的单克隆抗体,多为鼠源抗体,其本身也被异种生物体视为抗原,当被注入人体后会诱导产生抗体或激发免疫反应。目前国外已研究噬菌体抗体技术,嵌合抗体技术,基因工程抗体技术以解决人源化抗体问题;

5.血液替代品的研究与开发仍然占重要地位。血液制品是采用大批混合的人体血浆制成的,由于人血难免被各种病原体所污染,如艾滋病病毒及乙肝病毒等,通过输血

而使接受输血的人感染艾滋病或乙型肝炎的案例时有发生,因此利用基因工程开发血液替代品引人注目。

基因工程抗体的进展已使抗体制备技术进入了一个全新时代,尤其药物抗体库的进展,解决了人源抗体的研制,促进了各种性能优良抗体以及具有多种功能的抗体融合蛋白的开发,可以预见基因工程抗体的研制正在进入一个新的高峰。但是抗体的亲和力减弱,与完整抗体结构相比,功能明显就会降低。人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确的预测。所以我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因抗体的安全性【10】。

致谢:非常感谢闵令江老师在我大学的学习阶段教给自己基因工程这门学科。我从中学到了很多知识,认识了关于基因工程方面的一些问题,使自己从一无所知到现在基本认识了这门学科,在此我向老师表示我诚挚的谢意,感谢老师的诚挚教导。

【参考文献】

[1]楼士林,杨盛昌,龙敏南,等。基因工程[M]。北京:科学出版社,2002。

[2]李庆军,董艳桐,施冰。植物抗虫基因的研究进展[J]。林业科技,2002,27(2):22 26。

[3]Avivi I,Robinson S,Goldstone A.C1 inical use of rituximab in haematologica1 ma1ignancies[J].Br.J.Cancer 2003, 89:1389-1394.

[4]Cai X.,et a1.Proc.Nat1[J].Acad.Sci.,USA 1995,92:6537-6541.

[5]Schi1lberg S., Fischer R., Emans N。Molecular farming of recombinant ant ibodies in plants[J].Cel 1 Mo1.Life Sci.2003, 60:433-445.

[6]Bouquin T.,Thomsen M.,Nie1sen L.K.,et

a 1.Human ant i— rhesus D IgG1 ant ibody produced in

transgenic plants[J].Transgenic Res.2002 ,

11:115-122.

[7]Wi seman G.A.,Leigh B., ErwinW.D., et a1.

Radiation dosimetry results for Zevalin

radioimmunotherapy of ritux。 imab 。refractory

non—Hodgkin lymphoma.Cancer 2002, 94:1 349—1 357.

[8]沈孝宇。转基因之争[M]。北京:化学工业出版社,2008。

[9] 李彪;鼠-人嵌合抗体的研制及应用[J];国外医学。放射医学核医学分册;1996年04期。

[10]黄华梁;基因工程抗体的研究[J];中国肿瘤生物治疗杂志。

4第四章 单克隆抗体与基因工程抗体制备技术

第四章单克隆抗体与基因工程抗体制备技术 本章考点 1.概念 2.杂交瘤技术基本原理 3.杂交瘤抗体的制备技术 4.基因工程抗体 由杂交瘤细胞产生的针对抗原分子上某一单个抗原决定簇的抗体,称为单克隆抗体。其理化性状高度均一、生物活性单一、与抗原结合的特异性强、且来源容易。 传统的方法是将抗原注入动物,由动物体内B细胞产生的抗体。由于多数天然的抗原分子具有多种抗原决定簇,每一种决定簇可激活具有相应抗原受体的B细胞产生针对某一抗原决定簇的抗体。因此,将抗原注入机体后,刺激多个B细胞克隆所产生的抗体是针对多种抗原决定簇的混合抗体,故称为多克隆抗体(PoAb)。 第一节杂交瘤技术基本原理 单克隆是指利用在细胞融合基础上的B细胞杂交瘤技术。 杂交瘤技术的基本原理是通过融合两种细胞而同时保持两者的主要特征。这两种细胞分别是经抗原免疫的小鼠脾细胞和小鼠骨髓瘤细胞。被特异性抗原免疫的小鼠脾细胞(B淋巴细胞)的主要特征是它的抗体分泌功能,但不能在体外连续培养,小鼠骨髓瘤细胞则可在培养条件下无限分裂、增殖,即具有所谓永生性。在选择培养基的作用下,只有B细胞与骨髓瘤细胞融合的杂交细胞才能具有持续培养的能力,形成同时具备抗体分泌功能和保持细胞永生性两种特征的细胞克隆。 一、B细胞杂交瘤技术 1.细胞的选择和融合:杂交瘤技术的目的是制备对抗原特异性的单克隆抗体,所以融合一方必须是经过抗原免疫的B细胞,通常选用被免疫动物的脾细胞,脾淋巴细胞的主要特征是抗体分泌功能。融合细胞另一方则要求在培养条件下的永生性,只有肿瘤细胞才是具备这一条件,所以选择同一体系的骨髓瘤细胞,因多发性骨髓瘤是B细胞系恶性肿瘤,其特点是稳定易培养、自身不分泌免疫球蛋白及细胞因子、融合率高、是次黄嘌呤磷酸核酸核糖转化酶(HGPRT)的缺陷株,是理想的脾细胞融合对象。 2.选择培养基的应用:细胞融合的选择培养基中有三种关键成分:次黄嘌呤(H)、氨甲蝶呤(A)、胸腺嘧啶核苷(T),所以取三者的字头称为HAT培养基。次黄嘌呤和胸腺嘧啶核苷是细胞DNA合成的途径;氨甲蝶呤(A)是叶酸的拮抗剂,可阻断瘤细胞利用正常途径合成DNA,而融合作用的瘤细胞是经毒性培养基选取出的缺乏HGPRT细胞株,不能在该培养基上生长,只有融合细胞具有亲代双方遗传性能,才能在HAT 培养基上长期存活与繁殖。 3.有限稀释与抗原特异性的选择:细胞融合是一个随机的过程,需在融合细胞抗体筛选的基础上进行特异性筛选。将融合细胞进行充分稀释,进行克隆化处理,再将阳性细胞进行再次克隆化,应用特异性抗原包被的ELISA找出针对目标抗原的抗体阳性细胞株进行增殖,再进行冰冻,体外培养或动物腹腔接种。

基因工程抗体

基因工程抗体及其进展 【摘要】着对分子生物学研究和抗体分子结构功能的深入研究,利用细胞工程和遗传工程对抗体分子进行改建并赋予其新的功能,进而开发了新的抗体应用领域,使单克隆抗体技术又向前发展了一步。基因工程抗体是按人类设计所重新组装的新型抗体分子,可保留或增加天然抗体的特异性和主要生物学活性,去除或减少无关结构,从而可克服单克隆抗体在临床应用方面的缺陷。细胞工程产生的鼠源单克隆抗体及基因工程产生的人源单克隆抗体。抗体产生的技术革命为抗体治疗开辟了广阔的前景。 【关键字词】基因工程抗体人源化抗体小分子抗体广阔的前景 基因工程抗体以其独特的优点(免疫原性低、可按人的意愿加以改造等) 正逐渐取代动物源性单抗。随着基因工程和蛋白质工程等生物技术在抗体研制领域的广泛应用, 适应不同需要的基因工程抗体的种类日趋多样化, 构建日趋合理化, 在体内的生物学效应也日臻完善, 使之较天然单抗的治疗效果更好, 范围更广, 并在初步临床试用中展示了光辉的前景。分子生物学技术的发展,推动了免疫球蛋白遗传学的研究。抗体的研究从原来的血清学方法、氨基酸水平分析发展到大免疫球蛋白基因结构、表达及调控DNA水平的研究,揭示了抗体多样性、等位基因排斥现象、抗体的分泌型和膜结合型形式、H链类别转换以及亲和力成熟机制等多种生物学现象。自1975年Milstein和k?hler等人研制出单克隆抗体以来,抗体技术得到了广泛的应用和发展,但在生物研究和临床疾病的治疗中却遇到了一定的困难。异源性鼠抗体在人体内诱生免疫应答,产生抗小鼠抗体;人单克隆杂交瘤制备困难,生产量少,稳定性差;获得特异性类别抗体比较困难。随着对抗体基因的研究和DNA分子重组技术的应用,通过基因改造获得特异性抗体成为可能。1989年Huse等首次构建了抗体基因库,从而使抗体的研究从细胞水平进入到分子水平,并推动了第3代抗体—基因工程抗体技术的发展。至此,抗体的产生技术经历了三个阶段:经典免疫方法产生的异源多克隆抗体;细胞工程产生的鼠源单克隆抗体及基因工程产生的人源单克隆抗体。抗体产生的技术革命为抗体治疗开辟了广阔的前景。 1、基因工程抗体概述及分类 基因工程抗体又称重组抗体, 是指利用重组DNA 及蛋白质工程技术对编码抗体的基因按不同需要进行加工改造和重新装配, 经转染适当的受体细胞所表达的抗体分子。目前报道的基因工程抗体很多, 分类方法不一, 大体可以分为三类。 1.1 完整的抗体分子该类抗体类似于天然抗体分子, 但经改造后更接近于人的免疫球蛋白, 可在一定程度上降低HAMA。 1.1.1. 嵌合抗体(ch imeric an t ibody) 由在基因水平上连接的小鼠抗体V 区及人抗 体C 区组成。这种抗体含75%~ 80% 人抗体, 20% 鼠抗体, 保留了原来鼠源单抗的特异性, 但对人体仍具一定的免疫原性。 1.1.2. 人源化抗体(human ized an t ibody)又称重构型抗体、改型抗体( reshaped an t ibody)或CDR 移植抗体(CDR graf t ing an t ibody) : 通过置换三个发夹状环的鼠抗体超变区(又称互补决定区, CDR) , 使构成抗原结合部位的轻重链各3 个CDR 区是鼠源的, 其余

基因工程药物发展进程

基因工程药物发展进程 药剂3班张楠 07106330 学习了药学分子生物学后,我对基因工程药物产生了浓厚的兴趣,通过生物化学和分子生物学的学习以及课下翻阅相关资料,让我对基因工程药物有了新的认识: 1 基因工程药物 基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。在医学和兽医学中应用正逐步推广。 以乙型病毒性肝炎(以下简称乙肝)疫苗为例,像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。利用基因剪切技术,用一种"基因剪刀"将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,所谓表达载体,是因为它可以把这段DNA的功能发挥出来;再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。 目前有很多基因工程对人类的贡献典例。长期以来,医学工作者在防治乙肝方面做了大量工作,但曾一度陷于困境。乙肝病毒(HBV)主要由两部分组成,内部为DNA,外部有一层外壳蛋白质,称为HBSAg。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)]的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。与上述的血源乙肝疫苗相比,基因工程生产的乙肝疫苗,取材方便,利用的是资源丰富的大肠杆菌或酵母菌,它们有极强的繁殖能力,并借助于高科技手段,可以大规模生产出质量好、纯度高、免疫原性好、价格便宜的药物。在小孩出生后,按计划实施新生儿到六个月龄内先后注射三次乙肝疫苗的免疫程序,就可获得终身免疫,免受乙型肝炎之害。正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。这是基因工程药物对人类的贡献典例之一。 基因工程药物另一个重要应用就是干扰素的生产。当人或动物受到某种病毒感染时,体内会产生一种物质,它会阻止或干扰人体再次受到病毒感染,故人们把此种物质称为干扰素(Interfero,简称IFN),是1957年英国科学家多萨克斯(Lossaacs)和林德曼(Lindenmann)在研究流感病毒干扰现象时发现的。干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准治疗丙型病毒性肝炎的药物只有它。但是,通常情况下人体内干扰素基因处于"睡眠"状态,因而血中一般测不到干扰素。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会"苏醒",开始产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg干扰素,需要人血8000ml,其成本高得惊人。据计算:要获取1磅(453g)纯干扰素,其成本高达200亿美元。使大多数病人没有使用干扰素的能力。1980

基因工程药物发展的历史及启示

基因工程药物发展的历史及启示 吴岚晓1,郭坤元1,秦 煜2 (11第一军医大学珠江医院血液科,广东广州510282;21第一军医大学南方医院创伤骨科,广东广州510282) 摘要:基因工程诞生20余年,运用于医药行业,研制和开发基因工程药物,已取得长足进展。迄今为止,已有近100 个基因工程新药上市,并有数百种正在研制和开发中。可以预计,基因工程药物的发展具有无比强大的生命力。 就基因工程药物发展史进行概述,会从中得到许多启示。 关键词:基因工程;药物;科学;技术 中图分类号:R-02 文献标识码:A 文章编号:1002-0772(2002)12-0011-03 Developing History and the E nlightenment of G enetic E ngineering Drug W U L an-xiao,GUO Kun-yuan,QIN Y u (1.Depart ment of Hem atology,Zhujiang Hospital,First Military Medical U niversity,Guangz hou510282,China;2. N anf ang Hospital,First Military U niversity,Guangz hou510282,China) Abstract:G enetic engineering has made remarkable development in the area of drug production and research since it ap2 peared twenty years ago.More than100new geneitc engineering drugs have been used in clinic,and more drug-projects are undergoing.It can be predicted that genetic engineering drug will make more and more influence in people’s life.A perspective view about genetic engineering drug developing history was made in this article and some philosophic opinions inspired from it were discussed. K ey Words:genetic engineering;drug;science;technology 1 基因工程原理和技术 基因工程是在分子水平上人工改造生物遗传性,创造世间新的生物物种技术,亦称DNA重组或分子克隆,包括基因和载体的制备、切割和连接,重组DNA的转移、表达及产物分离等。基因的制备方法有,多聚酶链反应、互补文库、基因组文库、染色体DNA的酶切分离、酶合成法和化学合成法等,迄今为止,已制备人胰岛素、人尿激酶、人生长激素、人α-干扰素及生长因子等多种药物的基因。载体是能将外源性目的基因运输至宿主细胞的小分子DNA,目前大抵有细菌质粒、嗜菌体DNA及病毒DNA构建人工载体,如pBR322、Charon系列、Cos2 mid、反转录病毒、腺病毒及其相关病毒的DNA,此外,尚有酵母人工染色体DNA,及哺乳动物人工染色体DNA等。载体和含目的基因的DNA分别经限制性内切酶切割后,两者混合通过连接酶连接构成重组DNA,经转化、转导、转染、激光打孔、微注射或基因枪等技术,可转移至宿主内,获得基因工程细胞,后者经培养和表达,即可产生相应的基因工程药物。近年来还发现不用载体也不重组,将编码完整的DNA片段或mRNA直接注射内实现完全表达,表明非重组DNA和mRNA可被细胞直接吸收和表达,既简化了基因操作程序,也修正了基因工程基本概念,又促进了基因工程药物的发展,同时还为基因治疗提供了新理论和新途径。 2 基因工程药物发展的历史 应用基因工程技术,研制和开发的药物称为基因工程药物。它是通过重组DNA技术将治疗疾病的蛋白质、肽类激素、酶、核酸和其他药物基因转移至宿主细胞进行繁殖和表达,最终获得相应药物。包括蛋白质类生物大分子、初级代谢产物,如苯丙氨酸及丝氨酸等以及次生代谢产物抗生素等。自20世纪70年代初基因工程药物诞生以来,基因工程药物发展十分迅速。 ? 1 1 ? 医学与哲学2002年12月第23卷第12期总第259期

我国基因工程药物的发展现状

我国基因工程药物的发展现状 以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术在近几十年来的发展中受到了全球科技界和企业界的普遍关注,有许多专家认为21世纪将是生命科学的世纪。现代生物技术之所以能受到各界的重视,一方面是由于现代生物技术发展迅速,用途广泛,生物技术的应用范围已遍及医药、农业、食品、能源、环保等各个领域;另一方面是由于现代生物技术可以解决人类发展所面临的许多难题,如人口膨胀、粮食短缺、资源枯竭、环境污染等。人们越来越认识到了生物技术在全球经济进程中的重要性和必要性。由于生物技术是以生物(动物、植物、微生物、培养细胞等)为基本资源,因此其原料具有再生性,同时生物系统生产产品产生的污染物少,对环境的破坏性很小或几乎没有,重组微生物甚至还可以消除环境中的污染物。 基因工程(genetic engineering )又称基因拼接技术和DNA重组技术。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体 细胞内复制、转录、翻译表达的操作。 基因工程制药的出现是因为,许多药品的生产是从生物组织中提取的,受材料来源限制产量有限,其价格往往十分昂贵。微生物生长迅速,容易控制,适于大规模工业化生产。若利用基因工程将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物, 不但能解决产量问题,还能大大降低生产成本。

一、产业现状及地位 1989年,中国批准了第一个在中国生产的基因工程药物一一重组人干扰素,标志着中国生产的基因工程药物实现了零的突破。重组人干扰素是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个中国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,中国基因工程制药产业从无到有,不断发展壮大。1998年,中国基因工程制药产业销售额已达到了7.2 亿元人民币。截止1998年底,中国已批准上市的基因工程药物和疫苗产品共计15种。国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,中国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,中国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%预计2000年中国基因工程药物销售额将达到22.8亿元人民币。 基因工程在制药业中具有广阔的发展前景,中国的基因制药行业 已经初具规模,但与世界发达国家存在差距,主要表现在具有自主知识产权的产品较少,产业规模小、经济效益低。基因制药产业面临着历史性的机遇,主要表现在政府支持、资源丰富、基因信息公开、国际交流

基因工程药物的设计研究进展和应用前景

基因工程药物研究与应用新进展 郭小周 生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。 摘要:自20 世纪70 年代基因工程诞生以来,以DNA重组技术为核心的现代生物技术一直是人们研究的热点,本文主要介绍了基因药物的定义、获得途径、一些前沿技术以及基因药物的应用与发展前景。 关键词:生物技术药物基因工程药物基因发展前景 1. 引言 近年来1953年Waston和Crick发现遗传物质DNA的双螺旋结构,给整个生物学乃至整个人类社会带来了一场革命。此后,一系列有关遗传信息即基因研究的成果很快的向应用和开发拓展。1972年,美国斯坦福大学P.Berg博士研究小组使用EcorRⅠ,第一次在体外获得了包括SV40 DNA和λ噬菌体DNA的重组DNA分子。1973年,S.Cohen等将两中分别编码卡那霉素和四环素的抗性基因相连,构建出重组的DNA分子,然后转化大肠杆菌,获得了既抗卡那霉素又抗四环素的转化子菌落,这是第一次成功的基因克隆实验,标志着基因工程的诞生。1977年Boyer首次获得生长激素抑制因

子的克隆,1982年第一个基因工程重组产品——人胰岛素被批准应用,进入市场。迄今为止,已有50多种基因工程药物上市,近千种处于研发状态。基因工程药物已经形成一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益,由于基因药物的出现,可以大大改善人类的生命质量,对于一些重大疾病的治疗将会有新的突破。 2 基因工程 2.1 基因 基因是脱氧核糖核酸(DNA)分子上的一个特定片段。不同基因的遗传信息,存在于各自片段上的碱基排列顺序之中。基因通过转录出的信使使核糖核酸(mRNA),知道合成特定的蛋白质,使基因得以表达。 2.2 基因工程 基因工程是利用重组DNA技术,在体外对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出需要的基因产物。 3 基因药物 基因工程药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞) ,使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。 基因工程药物的本质是蛋白质,生产基因工程药物的方法是:将目的基因连接在载体上,然后将导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中的到表达,最后将表达的目的蛋白质提纯做成制剂,从而成为蛋白类药或疫苗。若目的基因直接在人体组织靶细胞表达,就称为基因治疗。 利用基因工程技术生产药品的优点在于:大量生产过去难以获得的生理活性物质和

抗体药物的研究现状和发展趋势

一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以

基因工程药物的综述

基因工程药物的研究及进展 摘要:20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。本文以基因工程药物的发展为导向,简要的介绍了国内外基因工程药物的发展概况、研究现状、研究方向、发展方向。 关键词:基因工程,药物,现状,发展 1 基因工程药物的发展概况 20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。 基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白,但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺乳动物的细胞代替细菌,生产第二代基因工程药物。但由于哺乳动物细胞培养条件相对苛刻,生产的药物成本居高不下。第一、二代基因药物的研制和生产已经成熟。从第一个反义核酸药物Vitrovene于1998年和1999相继在美国和欧洲上市以来,发展迅速。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入NN-~L动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。携带外源基因并能稳定遗传的这种动物,我们称之为转基因动物。由于从哺乳动物乳汁中获取的基因药物产量高、易提纯,因此利用乳腺分泌出的乳汁生产药物的转基因动物称为“动物乳腺生物反应器”。90年代中后期,国际上用转基因牛、羊和猪等家畜生产贵重药用蛋白的成功实例已有几十种,一些由转基因动物乳汁中分离的药物正用于临床试验,但还没有一例药品成功上市。 2 基因工程药物的研究现状 2.1国外基因工程药物研究现状 随着1971年第一家生物制药公司Cetus公司在美国的成立,1973年重组DNA技术的出现,生物医药即已显示出巨大的应用价值和商业前景。1976年,世界第一家应用重组DNA 技术开发新药的公司Genentech建立,l982年第一个基因重组药物——基因重组人胰岛素在美国投放市场以来,生物医药产业以一种前所未有的速度迅猛发展。如在基因重组制药产业中做出过卓越贡献的Genentech和Amgen公司,早期的几个“重型炸弹”的基因重组

基因工程抗体类药物的发展

基因工程抗体类药物的发展 XXX (师范学院生科学院 08级2班) 摘要:基因工程抗体药物的发展经历了鼠源单克隆抗体(McAb) 、人2鼠嵌合抗体、人源化抗体和全人抗体等阶段。目前临床治疗中人抗鼠抗体反应的出现使鼠源性单克隆抗体的应用受到了极大的限制。为降低其免疫原性, 人们利用基因工程技术对鼠源抗体进行改造, 以减少其鼠源成分。简要概述了目前研究比较多的几种基因工程抗体及其临床应用。 关键词:基因工程抗体,嵌合抗体,抗体人源化。 Abstract: genetic engineering antibody drugs development has experienced rat source monoclonal antibodies (McAb), 2 chimeric antibody, RenYuan of rat antibody and all-round antibody stage. Currently clinical treatment middleman resistance rat antibody response appearance of rat source sex of monoclonal antibodies applications received great restrictions. To reduce its immunogenicity, people use genetic engineering technology to rat antibody modification, in order to reduce its rat source composition. Briefly summarizes the current research more several genetic engineering antibody and its clinical application. Keywords: genetic engineering antibody, chimeric antibody, antibody RenYuan glycosylated. 单克隆抗体技术自1975年问世至今,已被广泛地应用于疾病的诊断及治疗中,但是,目前应用的单克隆抗体绝大数是鼠源性的,临床重复给药时机体会产生免疫反应。应用于临床的理想抗体应该是人源性的,而人-人杂交瘤技术目前进展缓慢,即使研制成功,仍存在杂交瘤细胞体外传代不稳定,产量不高及抗体亲合力低等缺陷。迄今为止,解决这一问题最理想的途径就是研制基因工程抗体。基因工程抗体的研究兴起于20世纪80年代早期,这一技术是将对免疫球蛋白(immunogloblin,简称Ig)基因结构与功能的认识与DNA重组技术有机结合,在基因水平上对Ig分子进行重组后导入受体细胞表达出来的,继多克隆血清和单克隆抗体之后,基因工程抗体也被称为第三代抗体。 1.基因工程抗体概述: 基因工程抗体, 即应用基因工程技术将抗体的基因重组并克隆到表达载体中, 在适当的宿主中表达并折叠成有功能的一种抗体分子。基因工程抗体具有分子小、免疫原性低、可塑性强及成本低等优点。此技术的基本原理是[1], 首先从杂交瘤或免疫脾细胞、外周血淋巴细胞等中提取mRNA, 逆转录成cDNA, 再经PCR 分别扩增出抗体的重链及轻链基因, 按一定的方式将两者连接克隆到表达载体中, 并在适当的细胞( 如大肠杆菌、CHO 细胞、酵母细胞、植物细胞及昆虫细胞等) 中表达并折叠成有功能的抗体分子, 筛选出高表达的细胞株, 再用亲和层析等手段纯化抗体片段。基因工程抗体技术的着眼点在于尽量减少鼠源成分, 保留原有抗体的亲和力和特异性。借助于基因工程技术, 既可以对完整抗体, 又可以对抗体片段进行改造。 抗体是“Y”字型的四肽链结构[2], 由2 条相同的重链(H 链)和2 条相同的轻链( L 链) 借助二硫键连接而成。分析不同的免疫球蛋白的重链和轻链氨基酸序列时发现, 在多肽链N 端, 占轻链的约1 /2( 含107~130 个氨基酸残基) 或重链的约1 /4( 含107~130 个氨基酸

中国基因工程药物研究进展

尚珂 胡鹤 胡又佳 中国基因工程药物研究进展 有关作者: 尚珂博士,女,1980年生,现就职于上海医药工业研究院,创新药物与制药工艺国家重点实验室(筹),任助理研究员。2001年毕业于中国药科大学,2006年获上海医工院微生物与生化药学博士学位。主要研究方向:链霉菌基因工程;重大抗生素品种产生菌的基因工程改造。我国生物技术药物工业总产值至2006年为400~500亿元,仍然保持了高速的增长,新批准的进行临床研究和注册的基因工程药物及新剂型有17个,但其中大部分属于新剂型。创新药物的研究更多地体现在科研领域,尤其是在基因重组蛋白方面,无论是研究的创新性还是品种的多样性都体现了我国在基因工程药物研究领域所取得的长足进步。近年来有越来越多的研究结果发表在国外SCI收录的杂志上,引起了国际上广泛的关注。 1重组蛋白 1.1 活性多肽 1.1.1 志贺毒素抑制多肽 志贺毒素是痢疾志贺菌的主要毒力因子,是一种烈性蛋白质毒素。以制备的重组志贺毒素B亚单位(StxB)为靶标,利用噬菌体展示亲和淘选技术的4轮筛选,从随机十二肽库中筛选到与StxB结合的一批噬菌体克隆,对特异结合活性较高的27个噬菌体克隆的表面展示肽进行序列测定,克隆展示肽出现频率最高的A6噬菌体,在体外与志贺毒素孵育进行动物试验,动物存活率达33.3%,表明毒素的毒性得到部分抑制,A6短肽可能发展成为志贺毒素的拮抗剂[1]。 1.1.2 降钙素 降钙素是甲状腺滤泡旁细胞产生的一种多肽类激素,它是体内钙平衡和骨代谢的调节因子,鲑降钙素已经在临床上用于骨质疏松症,但需要反复多次的注射,且与人降钙素的同源性仅为50%,易产生抗体。将人降钙素在成肌细胞中进行表达,能持续表达人降钙素的细胞进行微囊包埋后仍能持续分泌重组人降钙素到培养液中,这为利用包埋的重组成肌细胞释放人降钙素以及进一步采用移植细胞来治疗绝经后骨质疏松提供了可能[2]。 降钙素基因相关肽(Calcitonin gene-related peptide,CGRP)是从甲状腺髓样癌细胞中克隆发现的一种神经肽,由降钙素基因初级转录产物选择性剪接产生,属于降钙素(Calcitonin,CT) 超家族。CGRP 有两种分子异构肽:αCGRP和βCGRP。采用大肠杆菌偏爱的密码子人工合成hαCGRP 基因,构建了原核融合表达载体,对融合蛋白成功地进行了表达和纯化,Western免疫印迹验证该蛋白具有αCGRP 抗原性,为下一步hαCGRP 纯品的获得及动物实验的研究奠定了基础[3]。 1.1.3 葡萄糖依赖性促胰岛素多肽 GIP,即葡萄糖依赖性促胰岛素多肽或抑胃肽(glucose-dependent insulinotropic polypeptide or gastric inhibitory peptide)是由42个氨基酸组成的胃肠调节肽,具有广泛的临床应用价值。人工合成具有大肠杆菌偏爱密码子的编码GIP成熟肽的cDNA序列,利用pET32a(+)系统 进行原核表达。诱导表达的rhGIP占细胞总蛋白质的35%,纯化后的

基因工程在医药工业中的的应用

基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用 摘要: 作为生物工程技术的核心,及新工程的发展与应用,在医学方面有着非同凡响的影响。本文首先回顾了基因工程的发展简史,然后在基因工程制药,抗病毒疫苗,疾病治疗及基因诊病等方面综述了基因工程在医学中的应用。基因工程将给医药方面带来更美好的前景。关键词关键词关键词关键词: 基因工程医学应用1 前言前言前言前言:分子生物学主要是从分子水平上阐述生命现象和本质的科学,是现代生命科学的“共同语言”。分子生物学又是生命科学中进展迅速的前沿学科,它的理论和技术已经渗透到其他基础生物学科的各个领域,它的主要核心内容是通过生物的物质基础---核酸、蛋白、酶等生物大分子的结构、功能及其相互作用的运动规律的研究来阐明生命分子基础,从而探讨生命的奥秘。这门课与基因工程关系很大,主要讲了核酸、蛋白、酶等生物大分子的结构、功能以及它们之间的相互作用。近年来,随着生物技术的飞速发展,分子生物学在较多领域得以应用。其中在核酸,基因方面医学中的发展迅猛。基因工程在制药,抗病菌疫苗发展前景较广,在疾病治疗及诊断对人们生活影响较大。本文将对基因工程的发展及其在医学中的应用作简单的阐述。2 基因工程的发展基因工程的发展基因工程的发展基因工程的发展基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学方法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。1857年至1864年,孟德尔通过豌豆杂交试验,提出了生物体的性状是由遗传基因子控制的。1909年,丹麦生物学家约翰生首先提出基因一词代替孟德尔的遗传因子。1910年至1915年,美国遗传学家摩尔根通过果蝇实验,首次将代表某一性状的基因同特定的染色体联系起来,创建了基因学说。直到1944年,美国微生物学家埃弗里等通过细菌转化研究,证明基因的载体是DNA 而不是蛋白质,从而确立了遗传的物质基础。1953年,美国的遗传学家华生和英国的生物学家克里克揭示了DNA分子双螺旋模型和半保留复制机理,解决了积阴德自我复制和传递问题。开辟了分子生物学的研究时代。之后,1958年克里克确立了中心法则。1961年雅各和莫诺德提出的操纵子学说以及说有64种密码子的破译,成功的揭示了遗传信息的流向和表达问题,为基因工程的发展奠定了坚实的基础。DNA分子的切除与连接,基因的转化技术,还有诸如核酸分子杂交,凝胶电泳,DNA序列结构分析等分子生物学试验方法的进步为基因的创立和发展奠定了强有力的技术基础。1972年,美国斯坦福大学的P.Berg构建了世界上第一个重组分子,发展了DNA重组技术,并因此获得了1980年的诺贝尔学奖。1983年,美国斯坦福大学的S.Chen等人也成功的进行了另一个体外DNA重组试验并发现了细菌间性状的转移。这是基因工程发展史上第一次成功实现重组转化成功的例子,基因工程从此诞生了。基因工程问世近30年,不论是基因理论研究领域,还是在生产实践中的应用,均已取得了惊人的成绩。给国民经济的发展和人类社会的发展带来了深远而广泛的影响。3 基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用运用基因工程技术对基因的转导和整合来获取新的抗体,及新药的制取及研究都具有较高效益;基因技术在诊断疾病及刑事案件的侦破方面发挥着不可小觑的力量,因此基因工程在药学发展有着深远影响。 3.1 基因工程制药基因工程制药基因工程制药基因工程制药基因工程制药开创了制药工业的新纪元,解决了过去不能生产或者不能经济生产的药物问题。现在,人类已经可以按照需要,通过基因工程生产出大量廉价优质的新药物和诊断试剂,诸如人生长激素、人的胰岛素、尿激酶、红细胞生成素、白细胞介素、干扰素、细胞集落刺激因子、表皮生长因子等。令人振奋的是,具有高度特异性和针对性的基因工程蛋白质多肽药物的问世,不仅改变了制药工业的产品结构,而且为治疗各种疾病如糖尿病、肾衰竭、肿瘤、侏儒症等提供了有效的药物。 3.2 基因工程抗病毒疫苗基因工程抗

基因工程论文

动物基因工程课程论文 题目: 姓名: 学院: 专业: 班级: 学号: 任课教师: 二〇一一年五月八日 基因工程抗体研究进展及其临床应用 摘要:基因工程抗体是继多克隆抗体和单克隆抗体之后的第三代抗体,近年来随着生物工程技术的发展,许多基因工程抗体陆续问世,本文详细介绍了基因工程抗体的研究进展,概述了基因工

程抗体在临床方面的明显优势和应用潜力。 关键词:基因工程抗体;研究进展;临床引用 Advances in Genetic Engineering Research and Clinical Application of Antibody Student majoring in Professional Veterinary Medicine Name DongChuanJun Tutor Name MinLingJiang Abstract:Genetic engineering antibody is the third generation antibody after polyclonal antibody and monoclonal antibody.In recent years,with the development of bio-engineering techniques,many genetically engineered antibodies have been presented to the public,and

this article elaborates on research progress of the genetic engineering antibody,and its obvious advantages and potentials in clinical application. Key words:Genetically engineered antibodies; Research; Clinical application. 转基因技术迅速发展,其应用和发展的领域日益夸大。但转基因技术的弊端日益凸现,引起众多关注的目光。就转基因技术本身而言,社会各界对它的态度各有异同。不同的国家不同的民族和不同的个体对转基因技术的态度大相径庭。如何看待转基因技术?如何去应用和发展转基因技术?这些都是我们亟待解决的问题。 1 基因工程抗体介绍 1.1 基因工程简介 基因工程抗体是借助DNA重组和蛋白质工程技术,在基因水平对免疫球蛋白分子进行切割、拼接、修饰和重新组装的一种新型抗体。所制备的抗体去除或减少了可引

基因工程药物的研究进展

基因工程药物的研究进展 摘要:于什么是基因工程药物,基因工程药物的研究进展,基因工程药物的研究热点及发展方向,我国基因工程药物研究现状,新型基因工程药物,用于临床的基因工程药物,基因工程药物的安全性及其伦理问题的讨论。 关键词;基因工程药物;发展方向;临床应用;安全性 随着时间和科技的发展,基因工程药物早已被人们所熟知,然而大部分人群只知道有这样的药物却不知道它具体是什么样的,有怎样的功能,怎样的疗效。现在科学又是怎样来看待基因药物的,基因工程药物又有怎样的发展,它能否被人们所接受。以下是对这些问题的讨论。 1 基因工程药物及现状 1.1 什么是基因工程药物 所谓基因工程药物就是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作最后将该基因放入可以大量生产的受体细胞中去(包括细菌、酵母菌、动物或动物细胞、植物或植物细胞),在受体细胞不断繁殖,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。 1.2 基因工程药物现状 据不完全统计,欧美诸国目前已经上市的基因工程药物近100种,还有约300种药物正在临床试验阶段,处于研究和开发中的品种约2000个。值得注意的是,近两年基因药物上市的周期明显缩短。与一般药物研究开发相比,基因工程药物研究投入大。在美国,这种药物的研究经费是工业研究平均投入的近10倍,且呈逐年增加的趋势。一些大的跨国公司为垄断市场而冒险涉足,如美国强生公司为开发一个重组人红细胞生成素(EPO)产品,投资≥20亿美元,获利也十分丰厚。 2 基因工程的研究进展 2.1 基因工程药物的发展概况 20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺动物的细胞代替细菌,生产第二代基因工程药物。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入到哺乳动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。 2.2 基因工程药物的开发方法 现有研制和生产基因工程药物的方法,是利用DNA重组技术生产蛋白质,对于蛋白新药的发现仍然局限于常规药物的发现模式,一个基因工程新药的产生是依靠对天然蛋白因子的结构改造后得到,只有那些人体内较高表达的蛋白质才较大可能地被发现和生产。

基因工程抗体

基因工程抗体 生命科学学院 09动物医学 学号:2009082554 姓名:张孝辉指导老师:郑新添 【摘要】:基因工程抗体以其独特的优点(免疫原性低、可按人的意愿加以改造等)正逐渐取代动物源性单抗。随着基因工程和蛋白质工程等生物技术在抗体研制领域的广泛应用, 适应不同需要的基因工程抗体的种类日趋多样化, 构建日趋合理化, 在体内的生物学效应也日臻完善, 使之较天然单抗的治疗效果更好, 范围更广, 并在初步临床试用中展示了光辉的前景。 【关键词】:基因工程抗体; 生物技术 【前言】:单抗作为一种有效的新型生物制剂促进了基础医学、临床医学、生物学、农学等众多生命学科的发展, 尤其在疾病的预防、诊断及治疗方面的作用日益重要。然而作为体内的应用, 啮齿类动物单抗的高免疫原性, 使所有病人均发生不同程度的人抗鼠抗体反应(HAMA), 削弱了治疗的有效性, 并对清除抗体的器官产生毒性损害, 因此其应用严重受限。为了创造出更理想的治疗用抗体分子, 将制备单抗的细胞工程技术与生产重组分子的基因工程技术和蛋白质工程技术相结合, 产生了基因工程抗体。短短的几年研究使得这个领域的发展日新月异, 目前已成为抗体应用研究的热点。但随着研究的深入进展, 也暴露出许多问题。目前在以单抗为基础的临床治疗研究中, 面临五个最重要的问题及技术挑战: (1)使基因工程抗体具有与亲本抗体相一致的亲和力及特异性; (2)克服人抗动物单抗及人抗任何与单抗相交联的细胞毒性物质的免疫反应; (3)制备合适的细胞毒性物质; (4)符合体内药物动力学及生物分布特性; (5)高产量, 低成本。本文综述了近几年国内外学者为攻克这几个难题在基因工程抗体领域所做的努力及研究进展。 1.基因工程抗体概述 基因工程抗体又称重组抗体, 是指利用重组DNA 及蛋白质工程技术对编码抗体的基因按不同需要进行加工改造和重新装配, 经转染适当的受体细胞所表达的抗体分子。目前报道的基因工程抗体很多, 分类方法不一, 大体可以分为三类。 1.1完整的抗体分子

抗体技术研究进展(+1+)++人源抗体技术

第33卷第5期暨南大学学报(自然科学版) Vol.33No.52012年10月 Journal of Jinan University (Natural Science ) Oct.2012 [收稿日期]2012-03-26 [基金项目]国家自然科学基金项目(81202449);广东省科技计划项目(201213010300016)[作者简介]向军俭(1952-),男,教授,研究方向:抗体技术与应用 抗体技术研究进展(1):人源抗体技术 向军俭,童吉宇,王 宏 (广东省分子免疫与抗体工程重点实验室;暨南大学抗体工程研究中心,广东广州510632) [摘 要]100年来,抗体的发现为人类疾病诊断、治疗和有害物质的分析检测发挥了巨大的作用.特别是1975年 发明了单克隆抗体技术以及1986年发明基因工程抗体技术,为研制特异性高、大量均一并大量生产抗体成为了现实,也使嵌合抗体、全人源抗体造福人类并产生巨大的经济效益.为了克服鼠源性单抗可诱发人抗鼠抗体(HA-MA ),通过嵌合抗体、改构抗体、小分子抗体等技术和改良抗体与抗原结合的特异性,已成为抗体技术研究的主要发展方向,本文主要就抗体人源化及抗体分子小型化,抗体功能复合化两个部分的进展进行综述.[关键词]抗体; 人源化抗体; 基因工程抗体; 抗体库技术; 小分子抗体 [中图分类号]R392.11 [文献标志码]A [文章编号]1000-9965(2012)05-0524-07 Recent advances in antibody technique (1):Humanized antibody technique XIANG Jun-jian ,TONG Ji-yu ,WANG Hong (Guangdong province Key laboratory of Molecule Immunology and Antibody Engineering ,Jinan University ,Guangzhou 510632,China ) [Abstract ]In the past 100years ,antibody has played a significant role in human disease diagnosis and treatment and the analysis of detrimental substances.Especially ,the inventions of both monoclonal antibody technique in 1975and genetic engineering technique in 1986,on one hand ,have made it possi-ble for producing abundant antibodies of high specificity and homogeneity ,on the other hand ,help chim-eric antibody and fully human antibody bring benefit to human beings.To overcome the problem that mu-rine monoclonal antibody may induce HAMA ,technologies such as chimeric antibody ,reshaping antibod-y ,small-molecule antibody and improvements of the specificity between antibody and antigen have be-come the main trend when developing antibody technique.This review gives an overview on antibody hu-manization ,small-molecule antibody and composite function of antibody.[Key words ]antibody ;humanization antibody ;genetic engineering antibody ; antibody library technique ;small-molecule antibody 19世纪末抗体首次被发现,其后很长一段时间内人们都以抗原免疫动物获得抗血清(多克隆抗 体).1975年, K hler 和Milstein 建立了B 淋巴细胞杂交瘤技术,为大量生产均一、特异性强的单克隆抗体提供了技术支持并使免疫学发生一场革命,有力 地促进诊断与治疗性抗体的发展.然而由于单克隆 抗体大部分为鼠源性抗体,在临床治疗中可在人体 内可诱发人抗鼠抗体(HAMA )[1] ,限制了单克隆抗体在临床治疗中的应用.随着基因工程技术的发展和对各类抗体结构和氨基酸序列、及其变异种属和

相关文档
最新文档