函数的单调性、凹凸性与极值

合集下载

函数的单调性及凹凸性

函数的单调性及凹凸性

x 的增大而增大,即 f (x) 是单调增加的

f (x) 0
当曲线弧是凸时,切线的斜率随着 x 的 增大而减小,即 f (x) 是单调减少的

f (x) 0
高等数学应用教程
3.1.3 函数的凹凸性
讨论函数 f (x) 凹凸性的问题时, 可先求出使 f (x) 0 的点及 f (x) 不存在的点,这些点把 f (x) 的定
高等数学应用教程
3.1 函数的单调性与凹凸性
3.1 函数的单调性与凹凸性
上面图形的形状可以通过导数的知识加以 研究解决,为此先介绍拉格朗日中值定理
高等数学应用教程
3.1.1 拉格朗日中值定理
3.1.1 拉格朗日中值定理
拉格朗日中值定理几何意义
曲 线 y f (x) 上 至 少 有 一 点
M (, f ( )) 的切线的斜率 f () 等 于 线 段 AB 的 斜 率
义域划分为若干个区间,确定各个 区间上二阶导数 f (x) 的符号,即 可得出函数 f (x) 的凹凸区间及拐点.
高等数学应用教程 例4 解
列表讨论如下
3.1.3 函数的凹凸性
由表 3-2 可知,曲线在区间 (,0] 和 区间 [1, ) 上是凹的,在区间[0,1] 上 是凸的,拐点为点 (0,1) 和 (1,0) .
反之,也有类似结论,从而有以下函数单调性的判定定理
高等数学应用教程
3.1.2 函数的单调性
而 即
高等数学应用教程
例2 解
3.1.2 函数的单调性
这两点把定义域分成3个小区间,列表讨论如下
高等数学应用教程 例3 解
3.1.2 函数的单调性
高等数学应用教程
3.1.2 函数的单调性

4.4-5 函数的单调性,极最值,凹凸性,拐点

4.4-5 函数的单调性,极最值,凹凸性,拐点

例4 求下列函数的最值
(1) y 3 ( x 2 2 x ) 2 x 0,3 4( x 1) ( x ) 解 f 33 x 2 2 x 而 令f x) 0,得驻点 x 1, x 0,2是不可导点 ( 由于f (1) 1, f ( 2) 0, f (0) 0, f ( 3) 3 9
内的所有 x 0及f x不存在的点 找出 a, b f (一般有限个) :
x 1 , x 2 , , x k ;在f a , f x 1 , f x 2 , , f x k , f b 中 选取出最大最小 ,
即为f x 在a, b上的M, m.
若 f ( x0 ) f ( x0 ) f ( x0 ) 0,f
( 4)
( x0 ) 0, 则如何?
(1).若 f ( x0 ) f ( x0 ) f ( 2n1) ( x0 ) 0,f
则f ( x)在x0处取极值 .
( 2n)
( x0 ) 0,
x
f (x) f (x)

( , 1)
1
0
(1 , 2)


2 0 1
( 2 , )
y
2
(2 , ); 的单调减(单减)区间 为 (1 , 2).
的单调增(单增)区间为 ( , 1) ,
2 1
o
1 2
x
说明:
1) 单调区间的分界点除驻点外,也可是导数不存在的点.
例如,
y y 3 x2
f ( x0 ) f ( x) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 o ( x x0 ) 2 2!

3.3 单调性与凹凸性

3.3  单调性与凹凸性
导数的正负,从而确定凹凸性。
例5、 判断曲线 f (x)
1 9
x2
解: f (x) 在定义域 Df (
2 11 f (x) 9 x 3 3 x2
3 x 的凹凸性及拐点。 , ) 内连续,
2 21 f (x) 9 9 3 x5
2 9
(1
1 )
3 x5
0
x
1
(x 0) (x 0)
以 x 1、x 0 划分定义域得:
例4、 确定函数 f (x) 2x3 9x2 12x 3 的单调区间。 解: f (x) 在定义域 Df ( , ) 内连续,
f (x) 6x2 18x 12 6(x 1)(x 2) 0 x1 1 x2 2 以 x1 1、x2 2划分定义域得:
Df ( ,1) 1 ( 1 ,2 ) 2 (2, ) f (x)
单调区间
定义: 若函数在某区间内单调增,称该区间为函数的单调增区间。


单调增区间、单调减区间统称为单调区间。
问题: 如何确定函数的单调区间
首要任务是确定函数单调性的分界点。
单调性分界点只可能产生于: 驻点 与不可导点处
方法: 用驻点及不可导点划分函数定义域, 在各个开区间内确定
导数的正负,从而确定单调区间。
(1) 当 f (x0 ) 0 时, x0 为 f (x) 的极小值点; (2) 当 f (x0 ) 0 时, x0 为 f (x) 的极大值点。
例3、 求函数 f (x) 3x x3 的极值。
解: 函数 f (x) 在其定义域 ( , ) 内连续,
f (x) 3 3x2 3(1 x)(1 x) 0 x1 f (x) 6x f ( 1) 6 0 f (1) 6 0

函数的单调性与凹凸性

函数的单调性与凹凸性

单调性与导数的关系
单调性是导数的一个应用,如果函数在某区间内单调递增或递减,则该函数的导 数在此区间内非负或非正。
导数的符号决定了函数的单调性,如果导数大于0,则函数单调递增;如果导数小于 0,则函数单调递减。
02 函数的凹凸性
凹函数与凸函数
凹函数
对于函数$f(x)$,如果在区间$I$上, 对于任意$x_1 < x_2$,都有$f(x_1) + f(x_2) > 2f[(x_1 + x_2)/2]$,则称 $f(x)$在区间$I$上为凹函数。
求解方法
通过导数判断函数的单调性,并结合端点值进行比较。
应用
在物理学、化学等领域中,常需要求解函数在开区间 上的最值问题,以解释某些现象或预测结果。
无界区间上的最值问题
定义
在无界区间上,函数可能没有最大值或最小 值。
求解方法
通过导数判断函数的增减性,并考虑无穷远处的情 况。
应用
在数学分析、实变函数等领域中,常需要研 究函数在无界区间上的最值问题,以深入理 解函数的性质和行为。
减函数
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称 $f(x)$为减函数。
ቤተ መጻሕፍቲ ባይዱ
单调性的判断方法
定义法
通过比较任意两点之间的函数值来确定函数的单调性。
导数法
利用导数来判断函数的单调性,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。
在分析力学系统的运动规律时,利用函数的 单调性和凹凸性,可以判断系统的稳定性和 运动状态。
电路分析
在电子和电路工程中,利用函数的单调性和 凹凸性,可以分析电路的工作状态和性能, 优化电路设计。

高等数学I(软件)D4_4单调性凹凸性极值与最值

高等数学I(软件)D4_4单调性凹凸性极值与最值

例3 确定函数 f (x) (x 5) 3 x2 的单调区间. 2
解 (1) 定义域 ,
(2) f (x) 3 x2 (x 5) 2 1 5 x 1 2 3 3x 3 3x
令 f ( x) 0 , 得 x1 1, 当 x2 0 时, f ( x)不存在,
(3) 列表:
1
因此
从而
证明 目录 上页 下页 返回 结束
* 证明 x tan x 0


(x) 1 sec2 x
tan2 x 0,
x
(0,
2
)
从而

x tan x 0,
x
(0 ,
2
)
例5 证明不等式 2 x 3 1 (x 1)
x
证明 令 f (x) 2 x (3 1)
x
f (x)
1 x
1 x2
1 x2
(x
x 1)
当 x 1 时, f (x) 0 , 即 f (x)在 [1, )上单增,
当 x 1 时, f (x) f (1) 0,
即 x 1时,2 x 3 1 x
例5 证明:方程 xex =2在(0,1)内有且仅有一个实根
证明 设f (x) xex -2,因f (x)在[0,1]上连续, 且f (0) 2 0, f (1) e 2 0.由零值定理,
o
x
y
y x3
o
x
机动 目录 上页 下页 返回 结束
确定函数单调区间的方法和步骤:
(1) 确定函数 y f ( x) 的定义域;
(2) 求 f (x), 找使 f (x) 0 的点(驻点)和 f (x) 不存在的点;
(3) 以(2)中所找点为分界点,将定义域分割成部分区间, 判断在每一区间上导数的符号,由定理得出结论。

34 函数的单调性、凹凸性与极值

34 函数的单调性、凹凸性与极值

(2)求拐点的方法
方法: 设函数f ( x )在 x0的邻域内二阶可导, 且 f ′′( x0 ) = 0, 则有:
1) x0 两近旁f ′′( x )变号, 点( x0 , f ( x0 ))为拐点;
2) x0 两近旁f ′′( x )不变号, 点( x0 , f ( x0 ))不是拐点.
例9 求曲线 y = 3 x 4 − 4 x 3 + 1 的拐点及凹、凸的区间. 解 易见函数的定义域为 ( −∞ ,+∞ ),
定理4 (第一充分条件) 设函数 f ( x ) 在点 x0 的某个邻域内连续并且 可导(导数 f ′( x0 ) 也可以不存在), (1)如果在点 x0的左邻域内 f ′( x ) > 0; 在点 x0的右 邻域内 f ′( x ) < 0, 则 f ( x ) 在 x0 处取得极大值 f ( x0 ); (2)如果在点 x0的左邻域内 f ′( x ) < 0; 在点 x0的右 邻域内 f ′( x ) > 0, 则 f ( x ) 在 x0 处取得极小值 f ( x0 ); (3)如果在点 x0的邻域内, 在 x0处没有极值.
例3
2 3 y = x 讨论函数 的单调区间.
解 Q D : ( −∞ ,+∞ ).
y′ = 32 ( x ≠ 0), 3 x 当 x = 0 时, 导数不存在.
当 x < 0时,y′ < 0,
∴ 在 ( −∞ , 0]上单调减少;
当 x > 0时,y′ > 0,
∴ 在 [0, +∞ )上单调增加;
向上凸:图形 上任意弧段位 于所张弦的上 方
定义 设 f ( x ) 在区间 I 内连续,
x1 + x 2 f ( x1 ) + f ( x 2 ) ∀x1 , x2 ∈ I , 恒有 f ( )< , 2 2 则称 f ( x ) 在 I 上的图形是(向上)凹的. x1 + x 2 f ( x1 ) + f ( x 2 ) ∀x1 , x2 ∈ I , 恒有 f ( )> , 2 2

函数的单调性与凹凸性

函数的单调性与凹凸性

函数的单调性与凹凸性在数学中,函数的单调性和凹凸性是研究函数图像性质的重要方面。

本文将介绍函数的单调性和凹凸性的定义以及它们在解决实际问题中的应用。

一、函数的单调性函数的单调性是指函数在定义域上的取值随自变量的增大或减小而增大或减小的规律。

具体地,一个函数在区间上是单调递增的,即当x1 < x2时,f(x1) ≤ f(x2),则称函数在该区间上是递增的。

类似地,如果一个函数在区间上是单调递减的,即当x1 < x2时,f(x1) ≥ f(x2),则称函数在该区间上是递减的。

函数单调性的研究可以帮助我们确定函数的增减区间以及解决一些优化问题。

例如,在生产成本最小化的问题中,我们可以通过研究成本函数的单调性来确定最佳生产量。

二、函数的凹凸性函数的凹凸性是指函数图像在定义域上的弯曲程度。

具体地,如果一个函数在区间上任意两点间的连线位于函数图像的下方,则称函数在该区间上是凹的;如果函数图像上任意两点间的连线位于函数图像的上方,则称函数在该区间上是凸的。

凹凸性常常与函数的极值点相关。

对于一个凸函数,在定义域上任意两点连线的斜率都大于函数图像上相应的切线斜率,而对于一个凹函数,则相反。

因此,研究函数的凹凸性能够帮助我们找到函数的极值点。

三、在实际问题中,函数的单调性与凹凸性常常同时存在,并能够相互影响。

例如,对于一个单调递增的函数,在单调区间上的任意两点都能够形成一个凸函数的子区间。

同样地,对于一个单调递减的函数,在单调区间上的任意两点都能够形成一个凹函数的子区间。

函数的单调性和凹凸性的研究除了能够帮助我们解决实际问题外,还能够提供对函数图像性质的深入理解。

通过观察函数图像的单调性和凹凸性,我们能够得到更直观的信息,比如函数的整体趋势、局部极值点等。

总结:函数的单调性和凹凸性是研究函数图像性质的重要方面。

函数的单调性描述了函数值随自变量增减变化的规律,而函数的凹凸性则描述了函数图像的弯曲程度。

函数的单调性和凹凸性不仅能够解决实际问题,还能够提供对函数图像性质的深入理解。

3.3函数的单调性、凹凸性与极值

3.3函数的单调性、凹凸性与极值
y y
o
x
o
x
22
2.4 导数的应用(118)
如图中曲线弧AB是单增的曲线. 但从A
B
到 C 的曲线是向上凸的; 从 C 到 B 的
曲线是向下凸的. C 恰好是上凸和下凸 的分界点, 我们称为拐点.
A
• C
显然, 曲线的弯曲方向和弯曲方向(上凸和下凸)的分界点 对我们研究函数的性态是十分重要的. 这就是下面讨论的凸
x0
2.4 导数的应用(118)
16
当 xk
1 1 ( 2k ) 2
时, f ( x k ) 1
4 1 ( 2k ) 2
0
1 当 xk 时, 2 k
f ( xk ) 1 0
注意 k 可以任意大,故在 x0 0 点的任何邻 域内,f ( x ) 都不单调递增.
f ( x ) 2 33 x , ( x 0)
y 3 x2
当x 0时, 导数不存在.
当 x 0时,f ( x ) 0, 在(,0]上单调减少; 当0 x 时, f ( x ) 0, 在[0,)上单调增加;
单调区间为 ( ,0], [0, ).
2.4 导数的应用(118)
15
思考题解答
不能断定.
1 2 x 2 x sin , x 0 x 例 f ( x) 0, x0
1 lim f (0) x0(1 2 x sin ) 1 0 x
1 1 但 f ( x ) 1 4 x sin 2 cos , x x
小结与思考题1
单调性的判别是拉格朗日中值定理的重要应用.
定理中的区间换成其它有限或无限区间,结论 仍然成立. 利用函数的单调性可以确定某些方程实根的个 数和证明不等式.

函数的单调性与极值、最值

函数的单调性与极值、最值

THANKS FOR WATCHING
感谢您的观看
金融问题
在投资组合理论中,凹凸性可以用来描述投资组合的风险和回报之间的关系。投资者可以根据自己的风 险承受能力和投资目标,选择合适的投资组合策略。
05 函数的拐点
函数拐点定义
函数拐点是指函数图像上凹凸 性发生变化的点,即函数的一 阶导数在该点为零或不存在的 点。
在数学上,函数拐点的定义是 函数在某点的二阶导数为零的 点,即$f''(x)=0$。
最值的求法
代数法
通过求导数、找驻点、判断单调性等方法来求解 最值。
无穷区间法
利用极限的思想,将函数在无穷区间上的最值转 化为有限区间上的最值。
几何法
通过函数图像,直观地观察函数的最大值和最小 值。
最值在实际问题中的应用
01
优化问题
在生产、运输、分配等实际问题 中,常常需要通过求解最值来达 到最优解。
定义法
通过比较任意两点之间的函数值来判断函数的单调性。如 果任意两点之间的函数值都满足增减性条件,则函数在该 区间内单调。
图像法
通过观察函数的图像来判断函数的单调性。如果在图像上 随着$x$的增大,$y$的值也增大(或减小),则函数在该 区间内单调递增(或递减)。
Hale Waihona Puke 单调性在实际问题中的应用单调性与最值
单调性与优化问题
在解决优化问题时,可以利用函数的单调性来找到最优解。例如,在求解最大值或最小值 问题时,可以利用函数的单调性来确定搜索区间,从而缩小搜索范围,提高求解效率。
02 函数的极值
函数极值的定义
极值点
函数在某点的值比其邻近点的值大或小的点。
极大值
函数在某点的值比其左侧邻近点的值大,比 其右侧邻近点的值小。

13函数的单调性、凹凸性、极值2

13函数的单调性、凹凸性、极值2

1 3
x f ′′( x) f ( x)
(−∞, 4) +
凹的
4 不存在 (4, 2)
(4, +∞) −
凸的
凸区间为(4, +∞);凹区间为 (−∞, 4) 拐点是(4, 2)
二、函数的最大值与最小值
设函数f ( x)在 D 上有定义, x0 ∈ D 。任意x ∈ D , 恒有 f ( x0 ) > f ( x),则称 f ( x0 )为 f ( x) 在 D 上的最大值; 恒有 f ( x0 ) < f ( x),则称 f ( x0 )为 f ( x) 在 D 上的最小值。 步骤: (1)求驻点和不可导点; (2)求区间端点、驻点及不可导点的函数值,比较 大小,哪个大哪个就是最大值,哪个小哪个就 是最小值。
f ( x)在 x = 15 处取得最小值, f (15) = 380
例4 某房地产公司有50套公寓要出租,当租金定为每月 180元时,公寓可全部租出去。当月租金每增加10元时, 就有一套公寓租不出去,而租出去的房子每月需花费20 元的整修维护费。试问房租定位多少可获得最大收入? x − 180 ) 解:设房租为每月 x 元,则租出去的房子为50 − ( 10 每月的总收入为 x − 180 x R( x) = ( x − 20)(50 − )= ( x − 20)(68 − ), 10 10 x x 1 由 R′( x) = (68 − ) + ( x − 20)(− ) = 70 − , 10 10 5 解方程 R′( x) = 0 ,得唯一驻点 x = 350 。所以每月每套 租金为350元时收入最大。 最大收入为R (350) = 10890 (元)。
( x2 , f ( x2 ))

Chapter05.4-6函数极值、单调性、凹凸性、作图

Chapter05.4-6函数极值、单调性、凹凸性、作图
在x0 = 0的情形! 定理(第II判别法) 设f (x)在x0二阶可导, 且f '(x0) = 0, 则 f "(x0) < 0时, f (x0) 为极大值; f "(x0) > 0时, f (x0) 为极小值. 当f (x0) = 0时, 判别法失效! 注意前提条件f (x0) = 0, 即x0是驻点!
f (x1)
O x1 x1+(1)x2 x2 x
曲线(函数图形)的凸性依函数的凸性相应定义!
二、等价定义
定理 设函数 f 在区间I上定义, 则下面3条等价: (i) f 为I上的凸函数; (ii) x1< x2 < x3I :
y
f (x)
f ( x2 ) f ( x1 ) f ( x3 ) f ( x2 ) ; x2 x1 x3 x2
若f (x) 0, 且仅有限个点处f (x) = 0, 则f (x)严格单调增加. 函数单调区间求法
1) 求函数的驻点和不可导点;
2) 用上述点把函数定义域分成若干子区间; 3) 在子区间上讨论导函数的符号, 确定函数单调性. 例1 求函数f (x) = x2/3(x–5)的单调区间.
问题 f 在a, b处必定单侧连续吗?
定理4 设f (x)是区间I上的凸函数,则x1< x2I,有
f ( x1 ) f ( x2 ) f ( x1 ) f ( x2 ) x2 x1
推论 设f (x)是(a, b)内的凸函数, 则 f(x)和f+(x)在(a, b)内递增.
二、函数的极值和最值
1. 函数极值判别法
Fermat引理 可导的极值点一定是驻点! 极值也可能在不可导点取得,因此极值点一定包含在

§3.4 函数的单调性与凹凸性

§3.4 函数的单调性与凹凸性

为铅直渐近线
导数的应用
又因

为斜渐近线.
( x 3) 2 y 4( x 1)
5) 求特殊点
( x 3)( x 1) y 4( x 1) 2 2 y ( x 1)3
导数的应用
6)绘图
(极大)
无 定 义
(极小)
铅直渐近线 斜渐近线 特殊点
1
( x 3) 2 y 4( x 1)
的单调区间.
导数的应用
2.函数的极值
定义:
在其中当 (1) 时,
则称


的极大点 ,
为函数的极大值 ;
(2)
则称 称

的极小点 , 为函数的极小值 .
极大点与极小点统称为极值点 .
导数的应用
3. 函数极值的判定 定理3.4.2 (极值第一充分条件) 设 f (x) 在 x0 处连续, 在 x0 的某去心 δ 邻域内可导, (1) 如果当 如果当 (2) 如果当 如果当 (3) 如果 在
导数的应用
§3.4 函数的单调性与凹凸性
3.4.1 函数的单调性与极值 3.4.2 函数凹凸性及其判定 内容小结与作业
导数的应用
3.4.1 函数的单调性与极值
1. 函数的单调性判定
y B D
A
O
C
x
对曲线段

,其各点处的切线斜率为正,曲
线是上升的;对曲线段 为负,曲线是下降的.
,其各点处的切线斜率
f ( x) 0.
导数的应用 \\5.4.2 函数凹凸性及其判定
例9
求曲线
的凹凸区间和拐点.
例10 求曲线
的凹凸区间和拐点.
导数的应用

函数单调性和曲线凹凸性

函数单调性和曲线凹凸性
解: f ' (x)=3x212x+9 = 3(x1)(x3) 以x1=1, x2=3为界将f (x)的定义域(,+)分成三 个部分区间(, 1), (1, 3), (3, +).
当 x<1 时: f (x)>0,
所以f (x)单调增加;
当1<x<3时: f (x)<0, 所以f (x)单调减少;
1 特别地取 t 则得 2
x1 x2 f ( x1 ) f ( x2 ) y=f (x)凹 f 2 2
例6. 利用上式证明 x>0, y>0 且 xy 时,有
1 n x y n ( x y ), 其中n>1. 2 2
证:令 f ( t )= tn. ( t > 0 )
n
f ''( t )=n(n1) t n2 > 0. 故t > 0时 f (t)的曲线为凹的.
取 x > 0, y > 0 得
( t > 0)
1 n x y n ( x y ) 2 2
n
§3-5 函数的极值与最大值最小值
一、函数的极值及其求法 y 0
y= f ( x )
(2)若x(a,b)有f (x) <0.则y=f (x)在[a,b]上单调减少; 证: x1, x2 [a,b] 且x1< x2. 由于 [x1, x2 ] [a, b],
在(x1, x2 )内可导.
故f ( x ) C ( [x1, x2 ] ), 且
根据Lagrange中值定理,得出
Байду номын сангаас
这里点(0, 0)称曲线 y=x3 的拐点.

4.1 函数的单调性极值及凹凸性拐点

4.1 函数的单调性极值及凹凸性拐点

x4
b x 5 x 6
x
y
y
o
x0
x
o
x0
x
定义 设函数 f ( x)在区间(a,b)内有定义 , x0是 (a,b)内的一个点 ,
如果存在着点 x0的一个邻域 ,对于这邻域内的 任何点 x,除了点 x0外, f ( x) f ( x0 )均成立 ,就称 f ( x0 )是函数 f ( x)的一个极大值 ;
如果存在着点 x0的一个邻域 ,对于这邻域内的 任何点 x,除了点 x0外, f ( x) f ( x0 )均成立 ,就称 f ( x0 )是函数 f ( x)的一个极小值 .
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
2.函数极值的求法
定理1(必要条件) 设 f(x )在 点 x 0 处 具 有 导 数 , 且 在 x 0 处 取 得 极 值 , 那 末 必 定 f'(x 0 ) 0 . 定义 使导数 (即 为 方 f零 (x)程 0的 的点 实 )叫根 做函 f(x)的 数驻 . 点 注意: 可导函f(数 x)的极值点必定点 是, 它 但函数的驻点是 却极 不值 一 . 点 定
例4 求曲y 线 3 x的拐 . 点

当x0时, y
1
2
x3
,
y 4x53,
3
9
x0是不,可 y,y均 导不 点 . 存在
但 (,在 0 ) 内 ,y 0 ,曲线(在 ,0]上是凹 ; 的 在 (0 ,)内 ,y 0 ,曲线[0,在 )上是凸 . 的
点 (0,0)是曲 y3线 x的拐 . 点
2.单调区间求法
问题:如上例,函数在定义区间上不是单调的, 但在各个部分区间上单调.
定义:若函数在其定义域的某个区间内是单调 的,则该区间称为函数的单调区间.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1 , 1) , (2 3 , 1 3) , (2 3 , 1 3)
84 3
84 3
因为
1 84
3 3
1
1 84
3 3
1
2 3 1 2 3 1
所以三个拐点共线.
三、函数的极值及其求法
定义:
在其中当
时,
(1)
则称 为 的极大点 ,
称 为函数的极大值 ;
(2)
则称 为 的极小点 ,
称 为函数的极小值 . 极大点与极小点统称为极值点 .
f (x2)
f (x1 x2)
2
f
(
x1
2
x2)(x2
x1
2
x2)
f
(2
2!
)(
x2
x1
2
x2)2
两式相加
f (x1)
f
(
x2
)
2
f
(x1
2
x2)
1 2!
(
x2
2
x1
)2
[
f
(1)
f (2 )]
当 f (x) 0时,
f
( x1
) 2
f
(
x2
)
f (x1 x2 ),
2
说明 (1) 成立; (2) 证毕
的一个拐点.
例8. 求曲线
的凹凸区间及拐点.
解: 1) 求 y
y 12x3 12x2,
36x(x 32)
2)
求拐点可疑点坐标
令 y 0 得 x1 0 ,
x2
2 3
,
对应
y1
(0,1)
1,
y(232
, 12121717)
3) 列表判别
2 3
x (,0)
0
(0, 32)
2 3
(
2 3
,
)
y 0 0
(A) f (1) f (0) f (1) f (0) (B) f (1) f (1) f (0) f (0) (C) f (1) f (0) f (1) f (0) (D) f (1) f (0) f (1) f (0) 提示: 利用 f (x) 单调增加 , 及
f (1) f (0) f ( ) (0 1)
x x2 1) 2
y
(2 2x) (x2 1)2 (1 2x x2 ) 2(x2 1) 2x (x2 1)4
2(
x3
3x2 (x2
3x 1)3
1)
2(
x
1)(x
2 (x2
3)( 1)3
x
2
3)
令 y 0 得
x1 1 , x2 2 3 , x3 2 3
从而三个拐点为
例如
y
f (x) 2x3 9x2 12x 3
2
为极大点 , 为极小点 ,
是极大值 是极小值
1 o 12 x
注意: 1) 函数的极值是函数的局部性质.
2) 对常见函数, 极值可能出现在导数为 0 或
y
不存在的点.
x1 , x4 为极大点
x 2 , x5 为极小点
x3 不是极值点
o a x1 x2 x3 x4 x5 b x
y

1

11 27

故该曲线在 (,0) 及 (32 , ) 上向上凹, 在(0, 32)上 向上凸 , 点 ( 0 , 1 ) 及 (32 , 1217) 均为拐点.
P155 例9
习题. 求曲线
的拐点.
2
5
解:
y
1 3
x
3,
y
2 9
x
3
x (,0) 0 (0, )
y
不存在
y凹
0

因此点 ( 0 , 0 ) 为曲线
2 1
的单调减区间为(1, 2).
o 12 x
说明: 1) 单调区间的分界点除驻点外,也可是导数不存在的点.
例如,
y y 3 x2
2) 如果函数在某驻点两边导数同号, 则不改变函数的单调性 . 例如,
o
x
y
y x3
o
x
P151 例4 例5
习题. 证明
时, 成立不等式
证: 令 f (x) sin x 2 ,
在 I 内单调递增. 证毕
例3. 确定函数
的单调区间.
解: f (x) 6x2 18x 12 6(x 1)(x 2)
令 f (x) 0 , 得 x 1, x 2
x (,1) 1 (1, 2) 2 (2, )
f (x)
0 0
f (x)
2
1
y

的单调增区间为 (, 1), (2, );
的拐点 .
内容小结
1. 可导函数单调性判别
f (x) 0, x I f (x) 0, x I
2.曲线凹凸与拐点的判别
f (x) 0, x I
在 I 上单调递增 在 I 上单调递减
+
f (x) 0, x I

拐点 — 连续曲线上有切线的凹凸分界点
思考与练习
1. 设在 [0,1] 上 f (x) 0, 则 f (0), f (1), f (1) f (0) 或 f (0) f (1) 的大小顺序是 ( B )
第四节
第三章
函数的单调性凹凸性与极值
一、函数单调性的判定法 二、曲线的凹凸与拐点 三、函数的极值及其求法
一、 函数单调性的判定法
定理 1. 设函数
在开区间 I 内可导, 若
( f (x) 0), 则
证: 无妨设
在 I 内单调递增 (递减) . 任取
由拉格朗日中值定理得
0

这说明
P150 例1 例2
P153 例6 例7
习题. 判断曲线
的凹凸性.
y
解: y 4x3,
故曲线

上是向上凹的. o x
说明:
1) 若在某点二阶导数为 0 , 在其两侧二阶导数不变号, 则曲线的凹凸性不变 .
2) 根据拐点的定义及上述定理, 可得拐点的判别法如下:
若曲线
或不存在,
但 f (x) 在 x0两侧异号, 则点(x0 , f (x0 )) 是曲线
定理 4 (极值第一判别法)
设函数 f (x)在 x0 的某邻域内连续, 且在空心邻域 内有导数, 当x由小到大通过 x0 时,
xx22
xxx
定理2.(凹凸判定法) 设函数 在区间I 上有二阶导数
(1) 在 I 内
则 在 I 内图形是凹的 ;
(2) 在 I 内 证:
则 在 I 内图形是凸的 .
利用一阶泰勒公式可得
f (x1)
f
(x1 x2)
2
f
(
x1
2
x2
)(
x1
x1 x2 2
)
f
(1)
2!
(
x1
x1
2
x2)2
2. 曲线
y 1 ex2 的凹区间是
(
1 2
,
1 2
)
;
凸区间是
( ,
1 2
)

(
1 2
,
)
;
拐点为
(
1 2,1来自e1 2)
.
提示: y 2ex2 (1 2 x2 )
备用题
1.求证曲线
y
x 1 x2 1
有位于一直线的三个拐点.
证明:y
(
x
2
1) (x
(x 1)2 2 1)2
x
1 2 (x2
x

f
( x)
x
cos x x2
sin
x
cos x x2
(x
tan
x)
0
tan x x
1
因此
从而
二、曲线的凹凸与拐点
定义 . 设函数 在区间 I 上连续 ,
(1) 若恒有 图形是凹的;
则称
B
(2) 若恒有
则称
图形A是凸的 .
yyy
连续曲线上有切线的凹凸分界点
称为拐点 .
ooo
xx11
xx11xx22 22
相关文档
最新文档