Matlab学习系列28.-灰色关联分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28. 灰色关联分析

一、灰色系统理论简介

若系统的内部信息是完全已知的,称为白色系统;若系统的内部信息是一无所知(一团漆黑),只能从它同外部的联系来观测研究,这种系统便是黑色系统;灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。

灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统为研究对象,其特点是:

(1)认为不确定量是灰数,用灰色数学来处理不确定量,使之量化,灰色系统理论只需要很少量的数据序列;

(2)观测到的数据序列看作随时间变化的灰色量或灰色过程,通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析;

(3)通过累加生成和累减生成逐步使灰色量白化,从而建立相应于微分方程解的模型,从而预测事物未来的发展趋势和未来状态。

二、灰色关联度分析

1. 要定量地研究两个事物间的关联程度,可以用相关系数和相似系数等,但这需要足够多的样本数或者要求数据服从一定概率分布。

在客观世界中,有许多因素之间的关系是灰色的,分不清哪些因素之间关系密切,哪些不密切,这样就难以找到主要矛盾和主要特性。

灰因素关联分析,目的是定量地表征诸因素之间的关联程度,从而揭示灰色系统的主要特性。关联分析是灰色系统分析和预测的基础。

关联分析源于几何直观,实质上是一种曲线间几何形状的分析比较,即几何形状越接近,则发展变化趋势越接近,关联程度越大。如下图所示:

x

t

曲线A 与B 比较平行,则认为A 与B 的关联程度大;曲线C 与A 随时间变化的方向很不一致,则认为A 与C 的关联程度较小;曲线A 与D 相差最大,则认为两者的关联程度最小。

2. 关联度分析是分析系统中各因素关联程度的方法

步骤:

(1) 计算关联系数

设参考序列为

0000{(1),(2),...,()}X x x x n =

比较序列为

{(1),(2),...,()}, 1,,i i i i X x x x n i m ==L

比较序列X i 对参考序列X 0在k 时刻的关联系数定义为:

0000min min ()() max max ()()()()() max max ()()s s s t s t

i i s s t

x t x t x t x t k x k x k x t x t ρηρ-+-=-+- 其中,0min min ()()s s t

x t x t -和0max max ()()s s t x t x t -分别称为两级最小差、两级最大差,[0,1]ρ∈称为分辨系数,ρ越大分辨率越大,一般采用0.5ρ=

对单位不一,初值不同的序列,在计算关联系数之前应首先进行初值化,即将该序列的所有数据分别除以第一数据,将变量化为无单位的相对数值。

注1:若数据是负向数据(越小越好),初值化时要取倒数,即用第一数据除以该所有数据;

注2:也可以数据均值化,所有数据都除以均值;也可以数据百分比化,所有数据都除以最大值;也可以数据归一化。

(2) 计算关联度

关联系数只表示了各个时刻参考序列和比较序列之间的关联程度,为了从总体上了解序列之间的关联程度,必须求出它们的时间平均值,即关联度:

1

1()n

i i k r k n η==∑ 注:若各指标有不同的权重,可以对i η进行加权平均,得到灰色

加权关联度。

例1对某健将级女子铅球运动员的跟踪调查,获得其1982 年至1986 年每年最好成绩及16项专项素质和身体素质的时间序列资料:

做灰色关联度分析,看哪些指标与铅球成绩关联度更高?从而进行更加有针对性的训练。

代码:

data=xlsread('data28_1.xlsx');

x=data(:,2:18);

%初始化数据

for i=1:15

x(:,i)=x(:,i)/x(1,i);

end

for i=16:17

x(:,i)=x(1,i)./x(:,i);

end

n=size(x,1); %序列元素个数

ck=x(:,1); %提取参考序列

bj=x(:,2:end); %提取比较序列

m=size(bj,2);

for j=1:m %每个比较序列与参考序列作差

t(:,j)=bj(:,j)-ck;

end

min2=min(min(abs(t))); %求两级最小差

max2=max(max(abs(t))); %求两级最大差

rho=0.5; %分辨系数

eta=(min2+rho*max2)./(abs(t)+rho*max2); %求关联系数

r=mean(eta) %求关联度

[rs,rind]=sort(r,'descend') %对关联度从大到小排序

运行结果:

r = 0.5881 0.6627 0.8536 0.7763 0.8549 0.5022 0.6592 0.5820 0.6831 0.6958 0.8955 0.7047 0.9334 0.8467 0.7454 0.7261

rs = 0.9334 0.8955 0.8549 0.8536 0.8467 0.7763 0.7454 0.7261 0.7047 0.6958 0.6831 0.6627 0.6592 0.5881 0.5820 0.5022

rind =

13 11 5 3 14 4 15 16 12 10 9 2 7 1 8 6

结果表明,影响铅球专项成绩的前8项主要因素依次为:全蹲x13,3kg滑步x11,高翻x5,4kg原地x3,挺举x14,立定跳远x4,

相关文档
最新文档