牵引电机MATLAB仿真

牵引电机MATLAB仿真
牵引电机MATLAB仿真

牵引电机试验线路及原理简介

电力机车牵引电机试验台的原理线路图如图5-1所示:图中1、2是被、陪试电机,由LJ 作同轴连接。感应调压器GT 和整流器ZL 构成“线路发电机”提供试验电机端电压U ;SY 是一个专用的相控整流器,称为“升压机”,用于提高陪试机支路电压,使其作为发电机运行,提供负载试验电流,其两端电压为U s 。LF 1、LF 2分别是电机1和电机2的串激绕组;H 1、H 2分别是电机1和电机2的换向绕组。

图5-1 试验线路图 现将线路的工作原理简述如下:

当调节升压机相控角α使得E s =0时,电机1、2都是在电网电压U 下空载运行的电动机,由电源输送空载电源I 0及I '0(如图虚线所示方向),由于1和2两电机机械耦合,其转速相同,而且激磁绕组串于同一支路,激磁电流相等,因此,两电机的电势E 1和E 2相等,且小于电网电压U 。

当调节升压机相控角α使得E s 与E 2同向且二者之和大于U ,则Es 在机电2及1的输入送了电流I',这时在电机2的支路中总电流为

2I I I '-'= 而在电机D 的支路中总电流为

1I I I '+'= I 1与I 2的电流方向如图中所示,按照图中所示的极性,I 1的方向与E 1方向相反,1作为电动机运转;I 2的方向与E 2方向相相同,电机2作为发电机运转。因此,决定该电机负载(制动力)的大小的电流I 2为

()222R U

E E I S -+=

式中,R 2为电机2的电枢、换向极及补偿绕组的电阻。

如上所述,此线路的升压机SY 的作用可归结为:

如没有升压机,则作为负载电机(陪试机)的电机2就不可能作为发电机运转。

当升压机E S 过低时,可能使E S +E 2≤U ,这时电机1与2就是处于空载状态

下的串激电动机,它们将处于飞速状态,因此,在试验过程中,过分调大升压机的相控角α是不允许的。

试验起动过程是:先调高线路机输出电压(不超过试验电机的30%),使机组成并联电动机运行,然后调节升压机增加负载电流,再调节线路机电压、再调节升压机调整负载电流,直到需要的试验值为止。

升压机的相控角α愈小,则E S 与I 2(发电机抽动电流)愈大,于是被试电动机1将在更大负载条件下支行 因此,要调节被试电动机1的负载,只要改变升压YS 的α即可,而这种调节是非常简便的。

另外,如试验线路的电源电压是由一个可以调节的电源来供馈,则电机在起动时可以不用外加变阻器,只需调节此发电机的激磁即可在低压下起动。

至于升压机YS 的容量、电压及电流的参数,可由下述方式确定。

电机1及2的回路中,可写出下面的平衡方程式,即

()21111LF LF R R R I E U +++=

及222R I E E U S -+=

由此得 ()21112212LF LF S R R R I R I E E E +++=-+ (5-1)

式中,R 1——电动机1的电枢、换向极和补偿绕组的电阻;

R LF 1——电动机1的激磁绕组电阻(包括固定分路电阻);

R LF 2——电动机2的激磁绕组电阻(包括固定分路电阻);

在此,假定电机1和2的各绕组电阻均相等;在同一的激磁电流下两电机产生的磁通相等,因而此两电机的电势应相等,即E 1=E 2。式(5-1)可改写为

()111222LF S R R I R I E ++=

所以 ()111122LF S R I R I I U +++= (5-2)

由此,从电压的关系来看,升压机是起补偿被试电动机1及陪试电机2的绕组电压降的作用。为使说明简化,假设两电机的激磁损耗及机械损耗可以略去不计,亦即略去I 0及I '0,则I 1=I 2。于是式(5-2)变为

()1112LF S R R I U += (5-3)

通常在连续定额状态下,牵引电动机绕组中的电压降约为额定端电压U N 的5%;同时应考虑到被试电机要作短时期的过载试验,此时最大电流值I 1max =2I N ,即为小时额定电流的二倍;因此,升压机的电压应为U S =2(2×0.05U N )=0.2U N 即为被试电机额定电杆的20%。

显然,升压机YS 的电流也应与被试电机1的电流配合起来考虑,即应该与被试电机的连续额定电流接近,并且也应该容许在短时过载电流I 1max =2I N 的情况下持续1~2分钟,以便检查被试电机的换向情况。

综上所述,升压机SY 的连续定额下应具有P SN =2×0.05U N ×I N =0.1P N ,即约为牵引电动机额定功率之10%,而在短时过载状态下应能发挥P Smax =2×(2×0.05)U N ×2I N =0.4P N ,即约为牵引电动机额定功率之40%,由(5-3)我们也可得到

()1122LF N

SN SN SN R R I I U P +== (5-4) 由上式可以看出:升压机的容量由电动机1和发电机2的电损耗来决定。 至于该两电机1与2的铁耗(磁损耗)及机械损耗则由电网电源供给,此道理从图5-1中很易说明:当开断电源电压U 时,升压机SY 产生电势E S 产生电势,在电机1与2的回路中流过的电流相等,此时两电机由于磁通方向相同而电流方向相反,于是电机1与2产生大小相等方向相反的两个力矩,使电机无法驱动起来,只有电网供给电源后,才能使电机1的力矩大于电机2的力矩(因为I 1>I 2),使电机转动,故升压机仅供给两电机的电损耗,而此两电机的定值损耗(即铁损耗与机械损耗)必须由电网供给。

考虑到上述的诸种假定,以及实际上电机1与2的特性不可能完全相等,因此在选择升压机SY 的功率时,要适当地提高一些。 ZK1'ZK2'ZK9ZK10

图5-2电机试验台主接线图

如上所述,带有升压机的反馈试验线路具有下列优点:

只要改变升压机的相控角,就能简单平滑地调节被试电动机的负载。 试验时所消耗的能量,仅为直接负载法所耗能量的20%左右。

各种损耗可以直接由线路电源和升压机的输出功率来确定,因此能很方便地确定牵引电动机的效率。

在试验时,可以装上转换开关ZK ,来对调被试电机的位置,使两个同型电机都能在电动机状态下被试,而不必在试验台上移动,如图5-2所示。

§5-1 晶闸管直流调速系统参数和环节特性的测定

一、实验目的

(1)熟悉晶闸管直流调速系统的组成及其基本结构

(2)掌握晶闸管直流调速系统参数及反馈环节测定方法

二、实验原理

晶闸管直流直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。

在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小α即可改变控制角,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图5-1所示。

f

图5-1 晶闸管直流调速实验系统原理图

三、实验内容

(1)测定晶闸管直流调速系统主电路总电阻值R。

(2)测定晶闸管直流调速系统主电路电感值L。

(3)测定直流电机-直流发电机-测速发电机组的飞轮惯量GD2。

(4)测定晶闸管直流调速系统主电路电磁时间常数Td。

(5)测定直流电动机电势常数C e和转矩常数C M。

(6)测定晶闸管直流调速系统机电时间常数T M。

(7)测定晶闸管触发及整流装置特性U d=f(U ct)。

(8)测定测速发电机特性U TG=f(n)。

四、实验仿真

晶闸管直流调速实验系统的原理如图5-1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图5-2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分建模与参数设置过程。

图5-2 晶闸管开环调速系统的仿真模型

1.系统的建模和模型参数设置

系统的建模包括主电路的建模和控制电路的建模两部分。

(1)主电路的建模和参数设置

由图5-2可见,开环直流调速系统的主电路由三相对称交流电压器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体讨论,所以将触发器归到主电路进行建模。

①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压模块,并用模块标题名称修改方法将模块标签改为“A相”、“B相”、“C相”,然后从连接器模块组中选取“Ground”元件和“Bus Bar”元件,按图5-1主电路图进行连接。

为了得到三相对称交流电压源,其参数设置方法及参数设置如下:

双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V(可根据实际修改),初相位设置成0°,频率50Hz (可根据实际修改),其他为默认值,如图5-3所示。B、C相交流电源参数设置方法与A相基本相同,除了将初相位设置成互差120°外,其他参数与A相相同。由此可得到三相对称交流电源。

②晶闸管整流桥的建模和参数设置。首先从电力电子模块组中选取“Universal Bridge”模块,并将模块标签改为“晶闸管整流桥”,然后双击模块图标,打开SCR整流桥设置对话框,参数设置如图5-4所示。当采用三相整流桥时,桥臂数取3,A、B、C三相交流电源接到整流桥的输入端,电力电子元件选择晶闸。参数设置的原则如下,如果是针对某个具体的变流装置进行参数设置,对话框中的R S、C S、R ON、L ON、V f应取该装置中晶闸管元件的实际值,如果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行住址。若仿真结果理想,就可认可这些参数。这一参数设置原则对其他五一节的

参数设置也是适用的。

图5-3 A相电源参数设置图5-4 SCR整流桥参数设置

③平波电抗器的建模和参数设置。首先从元件模块组中选取“Series RLC Branch”模块,并将模块标签改为“平波电抗器”,然后打开平波电抗器参数设置对话框,参数设置如图5-5所示,平波电抗器的电感值是通过仿真实验比较后得到的优化参数。

④直流电动机的建模和参数设置。首先从电动机系统模块组中选取“DC Machine”模块,并将模块标签改为“直流电动机”。直流电动机的励磁绕组“F+-F-”接直流恒定励磁电源,励磁电源可从电源模块组中选取直流电压源模块,并将电压参数设置为220V,电枢绕组“A+-A-”经平波电抗器接晶闸管整流桥的输出,电动机经TL端口接恒转矩负载,直流电动机的输出参数有转速n、电枢电流I a、励磁电流I f、电磁转矩T e,通过“示波器”模块观察仿真输出图形。

电动机的参数设置步骤如下,双击直流电动图标,打开直流电动机的参数设置对话框,直流电动机的参数设置如图5-6所示。参数设置的原则与晶闸管整流桥相同。

图5-5 平波电抗器参数设置图5-6 直流电动机参数设置

⑤同步脉冲触发器的建模和参数设置。同步脉冲触发器包括同步电源和6脉冲触发器两部分。

至此,根据图5-1主电路的连接关系,可建立起主电路的仿真模型,如图5-2所示。图中触发器开关信号为“0”时,开放触发器,开关信号为“1”时,封锁触发器。

(2)控制电路的建模和参数设置

晶闸管直流调速系统的控制电路只有一个给定环节,它可从输入源模块组中选取“Constant”模块,并将模块标签改为“给定信号”,然后双击该模块图标,打开参数设置对话框,将参数设置为50rad/s。实际调速时,给定信号是在一定范围内变化的,读者可通过仿真实践,确定给定信号允许的变化范围。

将主电路和控制电路的仿真模型按照晶闸管直流调速系统电气原理图的连接关系进行模型连接,即可得到图5-2所示的晶闸直流调速系统仿真模型。

2.系统的仿真参数设置

在MATLAB的模型窗口打开“Simulation”菜单,进行“Simulation Parameters”设置,如图5-7所示。

图5-7 仿真参数设置

单击“Simulation parameters”菜单后,得到仿真参数设置对话框,参数设置如图5-8所示,住真中所选择的算法为ode23s。由于实际系统的多样性,不同的系统需要采用不同的仿真算法,到底采用哪一种算法,可通过仿真实践进行比较选择。仿真“Start time”一般设为0,“Stop time”根据实际需要而定。

图5-8 仿真参数设置对话框及参数设置

3.系统的仿真、仿真结果的输出及结果分析

当建模和参数设置完成后,即可开始进行仿真。在MATLAB的模型窗口打开“Simulation”菜单,单击“Start”命令后,系统开始仿真,仿真结束后可输出结果。单击“示波器”命令后,通过“示波器”模块观察仿真输出图形,如图5-9所示,其中图5-9(a)、(b)、(c)、(d)分别表示直流电动机的电磁转矩

Te曲线、电枢电流I a曲线、角频率ω曲线和角频率与电枢电流I a的关系曲线。

(a)直流电动机电磁转矩T e关曲线

(b) 直流电动机电枢电流I a曲线

(c)直流电动机角频率ω曲线

(d) 直流电动机角频率ω与电枢电流I a关系曲线

图5-9 晶闸管直流调速系统的输出波形

根据图5-2的仿真模型,系统有两种输出方式:当采用“示波器”模块观察仿真输出结果时,只要在系统模型图上双击“示波器”图标即可;然后对其输出图形进行编辑。最终可得编辑后的输出图形,如图5-10所示。

图5-10 编辑后的晶闸管直流调速系统的电流曲线和转速曲线图5-10显示的分别是晶闸管直流高速系统的电流曲线和转速曲线。可以看出,这个结果和实际电动机运行的结果相似,系统的建模与仿真是成功的。

在晶闸管直流调速系统建模与仿真结束之际,对建模与参数设置的一些原则和方法归纳如下:

①系统建模时,将其分成主电路和控制电路两部分分别进行。

②在进行参数设置时,晶闸管整流桥、平波电抗器、直流电动机等装置(固有环节)的参数设置原则如下,如果针对某个具体的装置进行参数设置,则对话框中的有关参数应该装置的实际值;如果是不针对某个具体的装置进行参数设置,则对话框中的有关参数应取该装置的实际值;如果是不针对某个具体装置的一般情况,可先取这些装置的参数默认值进行仿真。若仿真结果理想,可认可这些设置的参数;若仿真结果不理想,则通过结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。

③给定信号的变化范围、调节器的参数和反馈检测环节的反馈系数(闭环系统中使用)等可调参数的设置,其一般方法是通过仿真实验,不断进行参数人优化。具体方法是分别设置这些参数的一个较大和较小值进行仿真,弄清它们对系统性能影响的趋势,据此逐步将参数进行优化。

④仿真时间根据实际需要定,以能够仿真出完整的波形为前提。

⑤由于实验系统的多样性,没有一种住址算法是万能的。不同的系统需要采用不同的仿真算法,到底采用哪一种算法更好,这需要通过仿真实践,从仿真能否进行、仿真的速度、仿真的精度等方面进行比较选择。

上述内容具有一般指导意义,在讨论后面各种系统时,遇到类似问题就不再细述了。

五、预习与思考

(1)阅读电力电子技术教材中有关晶闸管直流调速系统的内容,弄清同步脉冲触发器的工作原理。

(2)学习教材中有关晶闸管直流调速系统各参数的测定方法。

(3)直流电动机有哪几种调速方案?各有哪些特点?

六、实验总结

(1)作出实验所得的各种曲线,计算有关参数。

(2)由K S=f(U g)特性,分析晶闸管装置的非线性现象。

三相异步电动机Matlab仿真

中国石油大学胜利学院综合课程设计总结报告 题目:三相异步电机直接启动特性实验模型 学生姓名:潘伟鹏 系别:机械与电气工程系 专业年级: 2012级电气工程专业专升本2班 指导教师:王铭

2013年 6 月 27日

一、设计任务与要求 普通异步电动机直接起动电流达到额定电流的6--7倍,起动转矩能达到额定转矩的1.25倍以上。过高的温度、过快的加热速度、过大的温度梯度和电磁力,产生了极大的破坏力,缩短了定子线圈和转子铜条的使用寿命。但在电网条件和工艺条件允许的情况下,异步电动机也可以直接启动。本次课程设计通过MATLAB软件建模模拟三相异步电动机直接启动时的各个元器件上的电量变化。 参考: 电力系统matlab仿真类书籍 电机类教材 二、方案设计与论证 三相异步电动机直接起动就是利用开关或接触器将电动机的定子绕组直接接到具有额定电压的电网上。 由《电机学》知三相异步电动机的电磁转矩M与直流电动机的电磁转矩有相似的表达形式。它们都与电机结构(表现为转矩常数)和每级下磁通有关,只不过在三相异步电动机中不再是通过电枢的全部电流,而是点数电流的有功分量。三相异步电机电磁转矩的表达式为: (1-1)式中——转矩常数 ——每级下磁通 ——转子功率因数 式(1-1)表明,转子通入电流后,与气隙磁场相互作用产生电磁力,因此,反映了电机中电流、磁场和作用力之间符合左手定则的物理关系,故称为机械特性的物理表达式。该表达式在分析电磁转矩与磁通、电流之间的关系时非常方便。 从三相异步电动机的转子等值电路可知, (1-2) (1-3)将式(1-2)、(1-3)代入(1-1)得:

直流电动机的MATLAB仿真..

第一章课程设计内容及要求 1. 直流电动机的机械特性仿真; 2. 直流电动机的直接起动仿真; 3. 直流电动机电枢串联电阻启动仿真; 4. 直流电动机能耗制动仿真; 5.直流电动机反接制动仿真; 6. 直流电动机改变电枢电压调速仿真; 7. 直流电动机改变励磁电流调速仿真。 要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析

第二章直流电动机的电力拖动仿真绘制 1)直流电动机的机械特性仿真 clear; U_N=220;P_N=22;I_N=115; n_N=1500;R_a=;R_f=628; Ia_N=I_N-U_N/R_f; C_EPhi_N=(U_N-R_a*Ia_N)/n_N; C_TPhi_N=*C_EPhi_N; Ia=0;Ia_N; n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia; Te=C_TPhi_N*Ia; P1=U_N*Ia+U_N*U_N/R_f; T2_N=9550*P_N/n_N; figure(1); plot(Te,n,'.-'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); ylim([0,1800]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm');

hold on; R_c=0; for coef=1:;; U=U_N*coef; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); s_y=1650*coef; text(50,s_y,str); end figure(3); n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); hold on; U=U_N;R_c=; for R_c=0::; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(R_c+R_a),'\Omega'); s_y=400*(4-R_c*; text(120,s_y,str);

直流电机模糊控制系统的MATLAB-Simulink仿真研究毕业设计

XXXX届毕业设计说明书 直流电机模糊控制系统 的MATLAB/Simulink仿真研究 院、部:电气与信息工程学院 学生姓名:XXX 指导教师:XXXX职称教授 职称 专业:XXXXXXXXXXXXX 班级:XXXXXXXXX 完成时间:20XX.X.X

摘要 在当今控制技术的发展当中,模糊控制技术的发展走在了前列,成为了当今世界上最先进的控制技术之一。模糊控制技术很好的将模糊数学理论应用于控制领域当中, 更加真切地模拟出了人脑的思维方式和判断能力, 以及对产品生产的过程进行筛选和对产品质量上的控制, 从而发展出了基于模糊控制技术的智能化的新技术,为当今控制技术的发展提供了广阔空间。 在本文当中,主要介绍了基于模糊控制理论的直流电机模糊控制系统的原理,以及直流电机模糊控制系统的优点和缺点,并通过使用MATLAB语言中SIMULINK 模块和模糊控制工具箱对直流电机模糊控制系统进行仿真,把控制直流电机调速的实际情况转换成模糊控制规则,再使用这些规则,对过程经过模糊推理和模糊决策所得到的控制量,从而实现在MATLAB语言中SIMULINK模块和模糊控制工具箱对直流电机模糊控制系统的建模与仿真。对仿真结果予以分析,对直流电机模糊控制系统的仿真进行总结。 关键词:MATLAB;SIMULINK;模糊控制;直流电机;电机调速

ABSTRACT Among today’s control technology development, one of the leading enterprises in the development of fuzzy control technology, fuzzy control technology has become one of the most advanced control technology in the world today, it will be a very good fuzzy control technology of fuzzy mathematics theory is applied in control field, the more realistically simulate the human brain’s way of thinking and judgment ability, as well as to the production process of screening and the control on the quality of product, which was developed based on fuzzy intelligent control technology of the new technology, for the development of modern control technology provides a broad expansion of space. in this article, mainly introduced the dc motor based on fuzzy control theory, the principle of fuzzy control system, as well as the advantages and disadvantages of the fuzzy control system for dc motor, and by using the SIMULINK module and the fuzzy control toolbox in MATLAB language for the calculation of the fuzzy control system of dc motor, the control of the actual situation of the dc motor speed control is converted into fuzzy control rules, and then use these rules, the process through fuzzy reasoning and fuzzy decision of control, thus to achieve the SIMULINK module and the fuzzy control toolbox in MATLAB language modeling and simulation of fuzzy control system of a dc motor. And the analysis to the results of simulation and simulation of fuzzy control system of dc motor. Keywordsmatlab;Simulink;fuzzy control;dc motor;motor speed control

异步电动机机械特性的MATLAB仿真

辽宁工业大学 实验室开放课题设计(论文) 题目:异步电动机机械特性的MATLAB仿真》 院(系):电气工程学院 专业班级:自动化 131 学号: 0 ` 学生姓名:徐峰 指导教师:赵丽丽

起止时间:

摘要 异步电动机以其结构简单、运行可靠、效率较高、成本较低等特点,在日常生活中得到广泛的使用。目前,电动机控制系统在追求更高的控制精度的基础上变得越来越复杂,而仿真是对其进行研究的一个重要手段。MATLAB是一个高级的数学分析和运算软件,可用动作系统的建模和仿真。在分析三相异步电动机物理和数学模型的基础上,应用MATLAB软件简历了相对应的仿真模型;在加入相同的三相电压和转矩的条件下,使用实际电机参数,与MALAB给定的电机模型进行了对比仿真。 第一章对异步电机的实验要求做出了相关的描述,第二章对MATLAB仿真软件做了一定的介绍,第三章是对异步电动机的机械特性、启动、制动和正反转进行理论分析和仿真模拟以及仿真结果的分析。 经分析后,表明模型的搭建是合理的。因此,本设计将结合MATLAB的特点,对三相异步电机进行建模和仿真,并通过实际的电动机参数,对建立的模型进行了验证。 关键词:异步电机、数学模型、MATLAB仿真、三相异步电动机

目录 第1章实验任务及要求 (1) 第2章 MATLAB及SIMULINK的介绍 (2) MATLAB介绍 (2) S IMULINK模块的介绍 (3) 第3章仿真实验 (4) 三相异步电动机的机械特性 (4) 三相异步电动机起动的仿真 (6) 三相异步电动机制动仿真 (8) 三相异步电动机正反转仿真 (10) 第4章总结 (12) 参考文献 (13) 附录 (14)

基于Matlab的直流电机速度控制

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函 数 为 ()()0001 .0)15.0)(1.001.0(01 .02+++= +++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得: V=R*i+L +e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e=

由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩,:负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系 统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳态误差。积分环节作用的强弱取决于积分时间常数Ti,Ti增大, 系统超调量变小,响应速度变慢; 微分环节:主要作用是提高系统的响应速度,同时减少系统超调量,抵消系统惯性环节的相位滞后不良作用,使系统稳定性明显改善。 Td偏大或偏小,都会使超调量增大,调整时间加长。由于该环节所产 生的控制量与信号变化速率有关,故对于信号无变化或变化缓慢的系 统微分环节不起作用。 三、设计步骤 方法1: 搭建simulink模块,利用经验调节法整定PID参数,使整个系统满足调节时间小于2秒,超调小于5%,稳态误差小于1%。 1、搭建的simulink模块图如下:

电机设计matlab程序

%电机设计程序 clear all format short e m1=3;p=2;f=50 %1.额定功率 PN=*10^3 ; %2.额定电压(单位V,三角形接法) UN=380;UN0=380; %3.功电流(单位A) IKW=PN/(m1*UN0) %4.效率eta按照技术条件的规定eta= eta= ; %5.功率因数cos(phi) =,按照技术条件的规定cos(phi)= phi=acos; cos(phi); %6.极对数p=2 p=2; %7.定转子槽数:每极每相槽数取整数。参考类似规格电机取q1=3,则Z1=2m1pq1,再查表10-8选Z2=32,并采用转子斜槽。 q1=3; Z1=2*m1*p*q1 Z2=32 ; %8.定转子每极槽数 Zp1=Z1/(2*p) Zp2=Z2/(2*p) %9.确定电机的主要尺寸;一般可参考类似电机的主要尺寸来确定Di1和lef.现按10-2中的 KE1=*log(PN/1000)*p+ P1=KE1*PN/(eta*cos(phi)) alphap1=;KNm1=;Kdp1=;A1=25000; Bdelta1=;n1=1450; V=(alphap1*KNm1*Kdp1))*(1/(A1*Bdelta1 ))*(P1/n1) D1=; %铁心的有效长度 Di1=; lef =V/((Di1)^2) %气隙的确定 %参考类似产品或由经验公式(10-10a),得 lt=;

delta = lef=lt + 2*delta D2=Di1-2*delta %转子内径先按转轴直径决定(以后再校验转子轭部磁密) Di2= ; %11.极距 tau tau =pi*Di1/(2*p) %12.定子齿距t1 t1=(pi*Di1/Z1) %转子齿距t2 t2=(pi*D2/Z2) bsk=; %15.设计定子绕组 Nphi11=eta*cos(phi)*pi*Di1*A1/(m1*IKW) %取并联支路a1=1,由式(10-15),可得每槽导体数 a1=1; Ns1=47 %16.每相串联导体数Nphi1 Nphi1=Ns1*Z1/(m1*a1) %每相串联匝数N1 N1=Nphi1/2 %17.绕组线规设计 %初选定子电密J11=5.0A/mm^2,由式(10-16),计算导线并绕根数和每根导线面积的乘积。 J11=; %其中定子电流初步估计值 I11=IKW/(eta*cos(phi)) Nt1Ac11=I11/(a1*J11)

经典-同步电机模型的MATLAB仿真h

安徽工业大学工商学院课程设计(论文)同步电机模型的MATLAB仿真 学生姓名:李春笋 学号:111842161 专业班级:气1142 指导教师:范国伟 2013年12月20日

摘要 采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。 The Simulation Platform of Synchronous Machine by MATLAB Abstract: The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance. Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK

matlab电机实例

unction [sys,x0,str,ts,simStateCompliance] = BLDC_S(t,x,u,flag) %-----------------------------------------------------------------------

% 状态变量:X(1)=ia;X(2)=ib;X(3)=ic;X(4)=SETA;X(5)=OMEGA; % 输入量:u(1)=Ud; u(2)=TL; % 输出量:n, Tem, ia, ib, ic; %------------------------------------------------------------------------ %-----------------电动机参数--------------------------------------------- R = 0.23;L = 0.00498; M = -0.00005478; J = 0.025; P0=2; % 极对数 RR = diag([R R R]); LL = diag([L-M,L-M,L-M]); S = [2,-1,-1; -1,2,-1; -1,-1,2]/3; %----------------------------------------------------------------------- %SFUNTMPL General M-file S-function template % With M-file S-functions, you can define you own ordinary differential % equations (ODEs), discrete system equations, and/or just about % any type of algorithm to be used within a Simulink block diagram. % % The general form of an M-File S-function syntax is: % [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] = SFUNC(T,X,U,FLAG,P1,...,Pn) % % What is returned by SFUNC at a given point in time, T, depends on the % value of the FLAG, the current state vector, X, and the current % input vector, U. % % FLAG RESULT DESCRIPTION % ----- ------ -------------------------------------------- % 0 [SIZES,X0,STR,TS] Initialization, return system sizes in SYS, % initial state in X0, state ordering strings % in STR, and sample times in TS. % 1 DX Return continuous state derivatives in SYS. % 2 DS Update discrete states SYS = X(n+1) % 3 Y Return outputs in SYS. % 4 TNEXT Return next time hit for variable step sample % time in SYS. % 5 Reserved for future (root finding). % 9 [] Termination, perform any cleanup SYS=[]. % % The state vectors, X and X0 consists of continuous states followed % by discrete states. % % Optional parameters, P1,...,Pn can be provided to the S-function and % used during any FLAG operation. % % When SFUNC is called with FLAG = 0, the following information % should be returned: % % SYS(1) = Number of continuous states. % SYS(2) = Number of discrete states. % SYS(3) = Number of outputs. % SYS(4) = Number of inputs. % Any of the first four elements in SYS can be specified % as -1 indicating that they are dynamically sized. The % actual length for all other flags will be equal to the % length of the input, U. % SYS(5) = Reserved for root finding. Must be zero. % SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function % has direct feedthrough if U is used during the FLAG=3 % call. Setting this to 0 is akin to making a promise that % U will not be used during FLAG=3. If you break the promise % then unpredictable results will occur. % SYS(7) = Number of sample times. This is the number of rows in TS. % % X0 = Initial state conditions or [] if no states. %

基于MATLAB三相异步电动机调压调速系统设计

基于MATLAB三相异步电动机调压调速系统设计

————————————————————————————————作者:————————————————————————————————日期:

电气工程及其自动化专业方向课程设 计 一、设计任务 1、了解并熟悉双闭环三相异步电机调压调速原理及组成。 2、学习 SIMULINK,熟悉相关的模块功能。 3、进一步理解交流调压系统中电流环和转速环的作用。 二、设计要求 1、利用SIMULINK建立闭环调速系统仿真模型。 2、调试完成调压模块仿真、开环系统仿真、闭环系统仿真。 三、实验设备 1、计算机一台 2、MATLAB仿真软件 四、实验原理 调压调速即通过调节通入异步电动机的三相交流电压大小来调节转子转速的方法。理论依据来自异步电动机的机械特性方程式: 其中,p为电机的极对数; w1为定子电源角速度; U1为定子电源相电压; R2’为折算到定子侧的每相转子电阻; R1为每相定子电阻; L11为每相定子漏感; L12为折算到定子侧的每相转子漏感; S为转差率。

图1 异步电动机在不同电压的机械特性 由电机原理可知,当转差率s 基本保持不变时,电动机的电磁转矩与定子电压的平方成正比。因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。 1、调压电路 改变加在定子上的电压是通过交流调压器实现的。目前广泛采用的交流调压器由晶闸管等器件组成。它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。这里采用三相全波星型联接的调压电路。 图2 调压电路原理图 U U U T T T T T R R R N T

中小型异步电动机的MATLAB计算程序

中小型异步电动机的MATLAB计算程序%%%%%%%%%%%%%%%%%%%%%%%%%第一部分额定数据和主要尺寸%%%%%%%%%%%%%%%%%%%%%%%%% myflag1 = 1; %myflag1 myflag1=1是三角形接法,myflag1=0是星 形接法 myflag2 = 0; %myflag2 myflag2=1是双层槽绝缘占面 积,myflag2=0是单层槽绝缘占面积 myflag3 = 1; %myflag3 myflag3=1是无径向通风道的铁心长 度,myflag3=0是定转子径向通风道不交错,其它是通 风道交错 myflag4 = 1; %myflag4 myflag4=1是无径向通风道的净铁心长 度,myflag4=0是有径向通风道的净铁心长度 myflag5 = 2; %myflag5 myflag5=1是双层线圈,myflag5=2是单层 线圈 myflag6 = 0; %myflag6 myflag6=1是平底槽,myflag6=0是圆底槽myflag7 = 0; %myflag7 myflag7=1是平底槽,myflag7=0是圆底槽myflag8 = 1; %myflag8 myflag8=1是圆底槽,myflag8=0是半开口 平底槽,其它为开口平底槽 myflag9 = 1; %myflag9 myflag9=1是半开口槽和半闭开口 槽,myflag9=0是开口槽 myflag10 = 1; %myflag10 myflag10=1是单层线圈,myflag10=0是双 层线圈 myflag11 = 1; %myflag11 myflag11=1是无径向通风道,myflag11=0 是有径向通风道 myflag12 = 3; %myflag12 myflag12=1是双层叠绕组,myflag12=2单 层同心式,myflag12=3单层同心式(分组的)、交叉 式,myflag12=4 单层链式 myflag13 = 1; %myflag13 myfalg13=1是无径向通风道,myflag13=0 是径向通风道

基于某MATLAB的直流电机双闭环调速系统的设计与仿真

《机电控制系统分析与设计》课程大作业之一基于MATLAB 的直流电机双闭环调速系统的设计与仿真 1 计算电流和转速反馈系数 2 按工程设计法,详细写出电流环的动态校正过程和设计结果 根据设计的一般原则“先环后外环”,从环开始,逐步向外扩展。在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。 电流调节器设计分为以下几个步骤: a 电流环结构图的简化 1)忽略反电动势的动态影响 在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即D E≈0。

这时,电流环如下图所示。 2) 等效成单位负反馈系统 如果把给定滤波和反馈滤波两个环节都等效地移到环,同时把给定信号改成U *i (s ) /b ,则电流环便等效成单位负反馈系统。 3) 小惯性环节近似处理 由于T s 和 T 0i 一般都比T l 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为 T ∑i = T s + T oi 简化的近似条件为 oi s ci 1 31T T ≤ ω

电流环结构图最终简化成图。 b 电流调节器结构的选择 1) 典型系统的选择: 从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。 从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I 型系统 2) 电流调节器选择 电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI 型的电流调节器,其传递函数可以写成 s s K s W i i i ACR ) 1()(ττ+=

基于MATLAB同步发电机突然短路设计

第1章绪论 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。随着电力工业的发展,电力系统的规模越来越大。在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。而在众多的仿真工具中,MATLAB以其优越的运算能力、方便和完善的绘图功能脱颖而出。 1.1设计目的 让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。 1.2设计任务 1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。 2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。 1.3设计要求 1.要求每个学生独立完成设计任务。 2.针对每个仿真要给出详细的结果分析。 3.完成实训任务书。 4.要求提交成果:报告书一份。

第2章MATLAB语言的概述 2.1 MATLAB简介 MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。Simulink的作用是在程序块间的互联基础上建立起一个系统。每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。然后用 ODE计算程序通过数值积分来模拟系统。MATLAN含有大量的 ODE计算程序,有固定步长的,有可变步长的为求解复杂的系统提供了方便。MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块SimPowerSystem 来完成的。 由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。MATLAB 的出现给电力系统仿真带来了新的方法和手段。通过MATLAB 的 SimPowerSystem的模块对电力系统中的应用进行仿真,从而说明其在电力系统仿真中的运用电力系统的仿真可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,通过故障仿真得出了相关的电压稳定性方面的结论,从而证明了这种仿真的正确性和在分析应用中的可行性。 2.2 Simulink简介

双闭环直流电动机调速系统设计及MATLAB仿真

目录 1、引言 (2) 二、初始条件: (2) 三、设计要求: (3) 四、设计基本思路 (3) 五、系统原理框图 (3) 六、双闭环调速系统的动态结构图 (4) 七、参数计算 (5) 1. 有关参数的计算 (5) 2. 电流环的设计 (6) 3. 转速环的设计 (8) 七、双闭环直流不可逆调速系统线路图 (10) 1.系统主电路图 (10) 2.触发电路 (11) 3.控制电路 (15) 4. 转速调节器ASR设计 (16) 5. 电流调节器ACR设计 (16) 6. 限幅电路的设计 (17) 八、系统仿真 (17) 1. 使用普通限幅器进行仿真 (17) 2. 积分输出加限幅环节仿真 (19) 3. 使用积分带限幅的PI调节器仿真 (21) 九、总结 (24)

一、设计目的 1.联系实际,对晶闸管-电动机直流调速系统进行综合性设计,加深对所学 《自动控制系统》课程的认识和理解,并掌握分析系统的方法。 2.熟悉自动控制系统中元部件及系统参数的计算方法。 3.培养灵活运用所学自动控制理论分析和解决实际系统中出现的各种问题 的能力。 4.设计出符合要求的转速、电流双闭环直流调速系统,并通过设计正确掌 握工程设计的方法。 5.掌握应用计算机对系统进行仿真的方法。 二、初始条件: 1.技术数据 (1)直流电机铭牌参数:P N =90KW, U N =440V, I N =220A, n N=1500r/min,电枢电阻Ra=0.088Ω,允许过载倍数λ=1.5; (2)晶闸管整流触发装置:Rrec=0.032Ω,Ks=45-48。 (3)系统主电路总电阻:R=0.12Ω (4)电磁时间常数:T1=0.012s (5)机电时间常数:Tm =0.1s (6)电流反馈滤波时间常数:Toi=0.0025s,转速率波时间常数:Ton=0.014s. (7)额定转速时的给定电压:Unm =10V (8)调节器饱和输出电压:10V 2.技术指标 (1)该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作; (2)系统静特性良好,无静差(静差率s≤2); (3)动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s; (4)调速系统中设置有过电压、过电流等保护,并且有制动措施。

【matlab编程代做】步进电机控制器设计

步进电机控制器设计报告 1.绪言 在本次EDA课程设计中,我们组选择了做一个步进电机驱动程序的课题。对于步进电机我们以前并未接触过,它的工作原理是什么,它是如何工作的,我们应该如何控制它的转停,这都是我们迫切需要了解的。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机及驱动电源是互相联系的整体。步进电机驱动电源框图如图1所示。变频信号源产生频率可调的脉冲信号,调节步进电机的速度。脉冲分配器则根据要求把脉冲信号按一定的逻辑关系加到脉冲放大器上,使步进电机按确定的运行方式工作。 感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG 为感应子式步进电机代号)、57BYG、86BYG 、110BYG 、(国际标准),而像70BYG 、90BYG 、130BYG 等均为国内标准。 1.1 驱动控制系统组成 使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统。 1.1.1 脉冲信号的产生 脉冲信号一般由单片机或CPU 产生,一般脉冲信号的占空比为0.3-0.4 左右,电机转速越高,占空比则越大。 1.1.2 信号分配 感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8 度;二相八拍为,步距角为0.9 度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8 度;四相八拍为 AB-B-BC-C-CD-D-AB,(步距角为0.9 度)。

毕业设计(论文)-同步电机模型的MATLAB仿真

毕业设计(论文)题目同步电机模型的 MATLAB仿真

同步电机模型的MATLAB仿真 摘要 采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。

The Simulation Platform of Synchronous Machine by MATLAB Abstract: The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance. Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK

相关文档
最新文档