抗原多肽的设计、偶联策略

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抗原多肽的设计、偶联策略

抗体是生命科学研究中不可或缺的工具之一,应用范围包括蛋白质表达检测和鉴定、蛋白质加工、蛋白质在细胞内的定位、免疫中和反应、蛋白质同源结构域研究、蛋白质纯化以及疾病的免疫诊断和治疗。尽管抗体的制备过程不存在技术难点,但是抗原的选择以及所制备抗体的用途对能否获得一个优质高效的抗体至关重要。以下将对抗原多肽的设计、偶联策略等逐一介绍.

抗原设计

首先选择合适的多肽序列,明确最终产物的用途对选择序列非常重要。如果仅仅需要生产针对蛋白质某个区域的特异抗体,比如研究蛋白质N端的前提物,我们就需要设计N末端的多肽抗原。如果抗体的使用目的是识别修饰的氨基酸,如磷酸化的丝氨酸、苏氨酸或者酪氨酸,乙酰化赖氨酸等,就必须对多肽进行相应的修饰。如果抗体最终用来识别自然状态下的蛋白质,对抗原的设计就要求更高。一般情况下抗血清能够识别用来免疫的多肽序列,但是不一定识别蛋白质的折叠结构。蛋白质的抗原决定簇一般由6-12个氨基酸构成,呈连续性或者非连续性序列。连续性抗原决定簇由连续的氨基酸序列构成,而非连续抗原决定簇包括一组非连续氨基酸,这些氨基酸由于蛋白质的折叠而形成在空间上相互毗邻。针对连续性抗原决定簇的抗体能够识别没有被埋藏在蛋白质内部的序列,而非连续性抗原的抗体能否识别抗原决定簇取决于用于抗体生产的多肽是否存在二级结构。

氨基酸序列的亲水性、表露性、柔韧性决定了多肽的抗原性。许多水融性的自然状态下的蛋白质其亲水序列暴露在外测,而疏水性氨基酸序列包埋在内部。抗体结合蛋白质表面的抗原决定簇,另外抗原决定簇柔韧性比较高。蛋白质的C末端经常暴露在外测并且有较高的柔韧性,因此经常被用来作为抗体生产的抗原。但是如果C末端是跨膜蛋白质的膜内部分,该序列可能由于疏水性太强而不适合用来作为抗原。同C末端序列类似,蛋白质的N末端序列也经常暴露在蛋白质的表面,同样为首选抗原序列。

预测蛋白特性(例如亲水性、疏水性)及二级结构(例如α-螺旋,β-折叠,β-回旋)的一些算法有助于选择表露性较高,有抗原性的内部序列以用于抗体生成。常见预测性算法有如下三种,Hopp及Woods所描述的亲水性曲线给蛋白序列中的每一个氨基分配一个平均亲水性值,对于一系列的相邻氨基,平均亲水性的最高点通常就位于抗原决定簇或在其附近。Kyte 及 Doolittle 所提出的另一算法略有不同,它主要是衡量蛋白序列的亲水性及疏水性趋势,该算法对于预测某蛋白的外部及内部区域非常有用。蛋白的二级结构则可以通过CHOU/FASMAN 或 LIM 所提出的算法来预测。表露性或易接近区常常和螺旋区或延展的二级结构区相邻。并且,具有β-回旋或双性螺旋特性的序列区也具有较好的抗原特性。目前有许多商用软件包都使用了这些不同的算法,例如MacVectorTM,DNAStarTM及PC-GeneTM。要想预测准确,不能只使用一种算法。结合各种不同的预测方法来预测抗原性区域,可使成功率大大提高。

抗原性区域确定以后,接下来要确定多肽的长度。关于选定多肽长度有两种不同的观点。一种观点认为长的多肽(20-40个氨基酸)比较好,因为长的多肽无疑会增加抗原基的数量。另一种观点则认为小的多肽更有效,使用小的多肽能保障所产生抗体的位点特异性。但有一点是明确的,不管长度如何,所选多肽必须能够较容易地通过生化合成得到,并且能溶解到水溶性缓冲剂进行载体蛋白的耦联。由于受副反应的影响较大,高于二十个氨基酸的多肽通常很难进行高纯度合成,并且常常会含有缺失性序列。另一方面,太短的多肽(<10个氨基酸)则会产生识别特异性很强的抗体,以至于无法识别整体蛋白,或亲和性很低。因此综合考虑制备性抗原地多肽有效长度一般是10-20个氨基。这种长度的多肽序列会最大程度的减小生化合成困难,具有一定的水溶性,也会具有一定程度的二级结构。

抗原准备-耦联方法

化学合成的多肽抗原是小分子,本身很难具有好的抗原性,只能诱导动物产生很弱的免疫反应,因而与载体蛋白耦联是很重要的。载体蛋白含有很多抗原决定基,能够刺激T-帮助细胞,进而诱导B-细胞反应。用于与多肽耦联的载体蛋白有多种,其中最常用的是keyhole limpet hemacyanin (KLH), 牛血清白蛋白(bovine serum albumin,BSA), 卵清蛋白(ovalbumin,OVA)和牛甲状腺球蛋白(bovine thyroglobulin,THY)。KLH具有更高的抗原性,是最为常用的多肽耦联载体。BSA也常用来作为多肽载体,但由于BSA经常被用做检测试验的阻断剂而使得该方法生产的抗体在应用上存在着一定的局限性。

设计合成性多肽常常被忽略的一个方面是如何将多肽耦联到载体蛋白上。例如,N-端序列需要通过C-端氨基酸耦联,而C-端序列则需要通过N-端氨基酸耦联。内部序列则可以耦联到任何一端。内部序列耦联的另一考量则是将非共轭端酰基化或氨基化,因为原蛋白分子序列中不会含有带电荷的末端。最常用的耦联方法都是基于自由氨基(alph-氨基或 Lys)、sufhydryl (Cys)或羧基集团(Asp, Glu, 或 alpha-羧基)的存在。所有的耦联方法都应该是通过羧基或氨基端残基将多肽耦联到载体蛋白上。所选序列不能有多个残基都能参与所选耦联化学反应。如果多个反应位点存在,可以考虑将多肽序列缩短,或者选择所有反应位点都位于一端的多肽。对于内部序列通常会使用离所预测抗原位点较远的一端进行耦联,这样可以避免可能的屏蔽问题。

除非研究人员另做说明,我们通常使用EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride)或carbodiimide 方法将多肽和载体进行耦联。Carbodiimides能激活天冬酰胺酸及谷氨酸的侧链羧基集团及末端羧基集团,使之与主胺基发生耦联反应。激活的多肽与载体蛋白混合而产生最终的共轭体。如果载体蛋白先被激活,EDC方法则通过N-末端alpha-氨基,或者,如果序列中有赖氨酸的话,则可以通过赖氨酸的侧链氨基与载体蛋白耦联。m-Maleimidobenzoyl-N-hydroxysuccinimide 酯(MBS)是一种双性多肽耦联试剂,可以将多肽与载体蛋白通过半胱氨酸耦联。耦联发生在半胱氨酸的硫醇基。如果多肽序列中不包括半胱氨酸,可以将一个半胱氨酸加到多肽的N-端或C-端,以获得可控性更强的多肽与载体蛋白的耦联。为了合成方便,我们建议将半胱氨酸加到多肽的N-末端。戊二醛是一种双作用耦联试剂,可以将两个化

相关文档
最新文档