【CN110070548A】一种深度学习训练样本优化方法【专利】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 (43)申请公布日 (21)申请号 201910324389.8
(22)申请日 2019.04.22
(71)申请人 杨勇
地址 330036 江西省南昌市经开区双港东
大街169号
(72)发明人 杨勇 黄淑英
(74)专利代理机构 北京汇信合知识产权代理有
限公司 11335
代理人 戴凤仪
(51)Int.Cl.
G06T 7/11(2017.01)
G06K 9/62(2006.01)
G06T 5/00(2006.01)
G06T 7/13(2017.01)
G06T 7/136(2017.01)
(54)发明名称
一种深度学习训练样本优化方法
(57)摘要
本发明公开了一种深度学习训练样本优化
方法,包括以下步骤:绘制出原始图像的轮廓元
素标注信息、将原始图像的轮廓元素标注信息进
行剥离、生成单一轮廓元素原始子图像和重叠轮
廓元素原始子图像、图像增强处理、边缘检测处
理,得到边缘单一轮廓元素原始子图像和边缘重
叠轮廓元素原始子图像以及池化处理和图像分
割处理;本发明通过进行图像增强处理可以保证
原始图像具有较高的图像质量,为后序优化处理
提高稳定的基础,通过对图像增强处理后图像分
别进行边缘检测处理,能消除深度学习训练样本
的原始图像中的样本元素边界误差,可以提高图
像质量以及训练样本的生成效率,有效缩短深度
学习训练样本的训练时间。权利要求书2页 说明书4页 附图1页CN 110070548 A 2019.07.30
C N 110070548
A
权 利 要 求 书1/2页CN 110070548 A
1.一种深度学习训练样本优化方法,其特征在于,包括以下步骤:
步骤一:获取两组相同的深度学习训练样本的原始图像,然后将其中一组深度学习训练样本的原始图像利用findContours函数寻找出原始图像中的轮廓,然后根据寻找出的原始图像中的轮廓,利用drawContours函数绘制出原始图像的轮廓元素标注信息;
步骤二:将原始图像的轮廓元素标注信息进行剥离,剥离出原始图像的单一轮廓元素标注信息和原始图像的重叠轮廓元素标注信息;
步骤三:根据训练样本的原始图像的单一轮廓元素标注信息和训练样本的原始图像的重叠轮廓元素标注信息,进行逆向处理,生成基于原始图像的轮廓元素标注信息的单一轮廓元素原始子图像和重叠轮廓元素原始子图像;
步骤四:对单一轮廓元素原始子图像和重叠轮廓元素原始子图像分别进行图像增强处理;
步骤五:对图像增强处理后的单一轮廓元素原始子图像和重叠轮廓元素原始子图像分别进行边缘检测处理,标识出单一轮廓元素原始子图像和重叠轮廓元素原始子图像中亮度变化明显的像素点,分别得到边缘单一轮廓元素原始子图像和边缘重叠轮廓元素原始子图像;
步骤六:对边缘单一轮廓元素原始子图像进行池化处理,对边缘重叠轮廓元素原始子图像进行图像分割处理,分别得到优化后的边缘单一轮廓元素原始子图像和优化后的单一轮廓元素原始子图像边缘重叠轮廓元素原始子图像。
2.根据权利要求1所述的一种深度学习训练样本优化方法,其特征在于:所述步骤一中利用findContours函数寻找出原始图像中的轮廓具体过程为:首先输入一组深度学习训练样本的原始图像,加载原始图像转化为二值化图像,再利用函数创建出二值图像,然后检测二值图像轮廓,然后输出二值图像轮廓的拓扑信息。
3.根据权利要求1所述的一种深度学习训练样本优化方法,其特征在于:所述步骤四中图像增强处理包括对单一轮廓元素原始子图像和重叠轮廓元素原始子图像进行基于小波阈值的图像降噪处理、增广处理和锐化处理。
4.根据权利要求3所述的一种深度学习训练样本优化方法,其特征在于:所述步骤四中基于小波阈值的图像降噪处理具体过程为:先将单一轮廓元素原始子图像和重叠轮廓元素原始子图像分别进行分层处理,分为高频图层和低频图层,再分别对高频图层和低频图层基于小波变换的降噪处理,然后选择阈值以及进行阈值量化,最后利用多尺度二维小波重构高频图层和低频图层的图象信号。
5.根据权利要求3所述的一种深度学习训练样本优化方法,其特征在于:所述步骤四中增广处理包括进行高斯模糊、改变亮度和对比度、仿射变换、透视变和动态模糊处理、图像变换、图像裁剪、色彩抖动以及噪声扰动处理。
6.根据权利要求3所述的一种深度学习训练样本优化方法,其特征在于:所述步骤四中锐化处理时,分别对输入的单一轮廓元素原始子图像和重叠轮廓元素原始子图像的各个波段采用高通滤波的方式进行锐化。
7.根据权利要求1所述的一种深度学习训练样本优化方法,其特征在于:所述步骤六中边缘单一轮廓元素原始子图像的池化处理时,首先定义池化窗口的大小,然后选边缘单一轮廓元素原始子图像区域中的最大值作为该区域池化后的值,然后对边缘单一轮廓元素原
2