(完整版)《平面向量的坐标表示》ppt课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量a都有唯一一对实数x、y,使得 a xi yj. 有序实数对 (x, y)叫做向量a的坐标,记作 a (x, y).
.Baidu Nhomakorabea
向量的坐标等于原点到终点的向量的坐标减去 原点到起点的向量的坐标.
自我反思 目标检测
3 共线向量的坐标表示?
对非零向量a、 b,设 a (x1, y1), b (x2 , y2 ),
(3)A(4,0), B(0, 3).
uuur
uuur
(1) AB (2,4), BA (2,4);
uuur
uuur
(2) AB (1,1), BA (1,1);
uuur
uuur
(3) AB (4,3), BA (4,3).
运用知识 强化练习
uuur uuur 3.已知A,B两点坐标,求 AB,BA 的坐标及模.
x1y2 x2 y1 0 由此得到,对非零向量a、 b,设 a (x1, y1),b (x2, y2 ),
当 0 时,有
a ∥ b x1y2 x2 y1 0. (7.9)
巩固知识 典型例题
例4 设 a (1,3),b (2,,6)判断向量a、 b是否共线.
解 由于 3×2−1×6=0, 故由公式(7.9)知,a ∥ b , 即向量a、 b共线.
(3) 3 a-2 a=3 (1, −2)-2 (−2,3)=(3,−6)-(−4,6)=(7, −12).
运用知识 强化练习
已知向量a, b的坐标,求a+b、 a-b、−2 a+3 b的坐标. (1) a=(−2,3), b=(1,1); (2) a=(1,0), b=(−4,−3); (3) a=(−1,2), b=(3,0).
动脑思考 探索新知
设平面直角坐标系中,a (x1, y1),b (x2 , y2 ),则
a b (x1i y1 j) (x2i y2 j)
(x1 x2 )i ( y1 y2 ) j
所以
a b (x1 x2, y1 y2 )
类似可以得到
a b (x1 x2, y1 y2 )
略.
创设情境 兴趣导入
前面我们学习了公式(7.4),知道对于非零向量a、b,当
0 时,有
a ∥b a b
如何用向量的坐标来判断两个向量是否共线呢?
动脑思考 探索新知
设 a (x1, y1),b (x2, y2 ), 由 a b ,有 x1 x2 , y1 y2 , 于是 x1 y2 x2 y1 ,即
(x2 x1)i ( y2 y1) j.
y M(x,y)
j Oi
图7-18(1)
y
A
B 向量的坐标等
j
于原点到终点的
向量的坐标减去
x
O
i
原点到起点x 的向
量的坐标.
图7-18(2)
动脑思考 探索新知
由此看到,对任一个平面向量a,都存在着一对 有序实数 (x, y), 使得 a xi yj .有序实数对 (x, y)
图7-17
动脑思考 探索新知
设i, j分别为x轴、y轴的单位向量, uuuur
(1) 设点 M (x, y),则 OM xi + yj(如图7-18(1));
(2) 设点 A(x1, y1),B(x2, y2 ) (如图 7-18(2)),则
uuur uuur uuur AB OB OA (x2i + y2 j) (x1i + y1 j)
叫做向量a的坐标,记作 a (x, y).
巩固知识 典型例题
例1 如图7-19所示,用x轴与y轴上的单位向量i、j表示 向量a、b, 并写出它们的坐标.
解 因为
a=
uuuur OM
+uMuuAr
=5i+3j

所以
a (5,3),
可以看到,从原
点出发同的理向可量得,其坐b (4,3).
标在数值上与向量终
(7.6) (7.7)
a ( x1, y1)
(7.8)
巩固知识 典型例题
例3 设a=(1, −2), b=(−2,3),求下列向量的坐标:
(1) a+b , (2) -3 a,
(3) 3 a-2 b .
解 (1) a+b=(1, −2)+(−2,3)=(−1,1)
(2) −3 a=−3 (1, −2)=(−3,6)
点的坐标是相同的.
图7-19
巩固知识 典型例题
例2
已知点 P(2, 1),Q(3, 2)
,求
uuur uuur PQ,QP
的坐标.

uuur PQ (3, 2) (2, 1) (1,3),
uuur QP (2, 1) (3, 2) (1, 3).
运用知识 强化练习
uuur
1. 点A的坐标为(-2,3),写出向量OA 的坐标,并用i与j的线性
uuur
组合表示向量OA.
uuur
OA 2,3
=-2i 3 j.
2. 设向量 a 3i 4 j,写出向量e的坐标.
a 3, 4.
运用知识 强化练习
uuur uuur 已知A,B两点的坐标,求 AB,BA 的坐标.
(1) A(5,3), B(3, 1);
(2) A(1, 2), B(2,1);
(1) A (5,3), B (3,−1); (2) A (1,2), B (2,1); (3) A (4,0), B (0,−3).
略.
创设情境 兴趣导入
观察图7-20,向量OuuAur (5,3)
uuur OP (3,0)
uuuur uuur uuur OM OA OP (8,3)
图7-20 可以看到,两个向量和的坐标恰好是这两个向量对应坐标的和.
运用知识 强化练习
判断下列各组向量是否共线:
(1) a=(2,3), b=(1, 3 ); 2
(2) a=(1, −1) , b=(−2,2); (3) a=(2, 1) , b=(−1,2).
略.
自我反思 目标检测
1 向量坐标的概念?
2 任为意一i, 般y起轴地的点,单的设位平向向面量量直为的角j,坐坐则标标对系于表中从,示原x轴?点的出单发位的向任量意
第七章 平面向量
7.2 平面向量的坐标表示
创设情境 兴趣导入
设平面直角坐标系中,x轴的单位向量为i, y轴的单位向量为j,
uuur OA 为从原点出发的向量,点A的坐标为(2,3).则
uuuur
uuur
OM 2i,ON 3j.
由平行四边形法则知 uuur uuuur uuur OA OM ON 2i 3 j.
相关文档
最新文档