高中数学 第二讲 四 弦切角的性质课件 新人教A版选修4-1
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用弦切角定理进行计算、证明时,要特别注意弦切 角所夹弧所对的圆周角,有时与圆的直径所对的圆周角结 合运用,同时要注意根据题目的需要添加辅助线构造所需 要的弦切角.
1.如图,CD是⊙O的切线,T为切点,A是 TB 上的一点,若
∠TAB=100°,则∠BTD的度数为
()
A.20° B.40° C.60 ° D.80°
证明:(1)∠ACE=∠BCD; (2)BC2=BE·CD. [思路点拨] 利用弦切角定理.
[证明] (1)因为 AC = BD, 所以∠BCD=∠ABC. 又因为EC与圆相切于点C, 所以∠ACE=∠ABC. 所以∠ACE=∠BCD. (2)因为∠ECB=∠CDB,∠EBC=∠BCD, 所以△BDC∽△ECB. 故BBCE=CBDC, 即BC2=BE·CD.
证明乘积式成立,往往与相似三角形有关,若存在 切线,常要寻找弦切角,确定三角形相似的条件,有时 需要添加辅助线创造条件.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
四
弦切角的性质
弦切角定理
(1)文字语言叙述: 弦切角等于它 所夹的弧 所对的圆周角.
(2)图形语言叙述: 如图,AB与⊙O切于A点,则∠BAC= ∠D .
[说明] 弦切角的度数等于它所夹弧度数的一半,圆 周角的度数等于它所对的弧的度数的一半,圆心角的度数 等于它所对弧的度数.
弦切角定理 [例1] 如图,已知圆上的 AC = BD ,过C点的圆的切线与 BA的延长线交于E点.
(2)∵AM=BM, ∴∠A=∠B. ∵CD切⊙O于M点,∠CMA=∠B, ∴∠CMA=∠A. ∴AB∥CD.
3.如图,已知AB是⊙O的直径,直线CD与⊙O相切 于点C,AC平分∠DAB. (1)求证:AD⊥CD; (2)若AD=2,AC= 5,求AB的长. 解:(1)证明:如图,连接BC. ∵直线CD与⊙O相切于点C, ∴∠DCA=∠B. ∵AC平分∠DAB, ∴∠DAC=∠CAB. ∴∠ADC=∠ACB.
∵AB为⊙O的直径, ∴∠ACB=90°. ∴∠ADC=90°,即AD⊥CD. (2)∵∠DCA=∠B,∠DAC=∠CAB, ∴△ADC∽△ACB. ∴AADC=AACB, ∴AC2=AD·AB. ∵AD=2,AC= 5, ∴AB=52.
运用弦切角定理证明比例式或乘积式
[例2] 如图,PA,PB是⊙O的切线,点C在 AB 上,CD⊥
解析:如图,作四边形ABET,因为四边形ABET是圆内 接四边形, 所以∠E=180°-∠TAB=80°. 又CD是⊙O的切线,T为切点, 所以∠BTD=∠E=80°. 答案:D
2.如图,AB是⊙O的弦,CD是经过⊙O上的点M 的切线,求证: (1)如果AB∥CD,那么AM=MB; (2)如果AM=BM,那么AB∥CD. 证明:(1)∵CD切⊙O于M点, ∴∠CMA=∠B. ∵AB∥CD, ∴∠CMA=∠A. ∴∠A=∠B. ∴AM=MB.
AB,CE⊥PA,CF⊥PB,垂足分别为D,E,F. 求证:CD2=CE·CF.
[思路点拨]
连接CA,CB, ∠CAP=∠CBA, ∠CBP=∠CAB
―→
Rt△CAE∽Rt△CBD Rt△CBF∽Rt△CAD
→ CCDE=A,PB是⊙O的切线, ∴∠CAP=∠CBA,∠CBP=∠CAB. 又CD⊥AB,CE⊥PA,CF⊥PB, ∴Rt△CAE∽Rt△CBD, Rt△CBF∽Rt△CAD, ∴CCAB=CCDE,CCBA=CCDF. ∴CCDE=CCDF, 即CD2=CE·CF.