力学与导航定位技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学与导航定位技术

1 绪论

导航技术是现代科技中一个很重要的领域,而物理是导航技术理论与实践的技术学科。在这其中,力学理论占了一大部分。力学与导航技术息息相关,很多设计原理都是根据力学计算出来的,包括平衡,扫描,计算定位等等,都需要力学计算原理作为基础。在这里,我简单地介绍了一些导航技术方面知识和力学发展应用原理以及其中的联系与运用。

2 导航定位技术

定位与导航技术是涉及自动控制、计算机、微电子学、光学、力学以及数学等多学科的高技术,是实现飞行器特别是航天器飞行任务的关键技术,也是武器精确制导的核心技术,这对于提高航空器、航天器以及武器装备的机动性、反应速度和远程精确打击能力具有重要意义,在海、陆、空、天等现代高技术武器及武器平台中得到广泛的应用。

按照定位导航的方式可分成:卫星定位导航、自主式导航、组合导航以及无源导航。

2.1卫星导航

2.1.1 卫星导航简介

采用导航卫星对地面、海洋、空中和空间用户进行导航定位的技术。利用太阳、月球和其他自然天体导航已有数千年历史,由人造天体导航的设想虽然早在19世纪后半期就有人提出,但直到20世纪60年代才开始实现。1964年美国建成“子午仪”卫星导航系统,并交付海军使用,1967年开始民用。1973年又开始研制“导航星”全球定位系统。苏联也建立了类似的卫星导航系统。法国、日本、中国也开展了卫星导航的研究和试验工作。卫星导航综合了传统导航系统的优点,真正实现了各种天气条件下全球高精度被动式导航定位。特别是时间测距卫星导航系统,不但能提供全球和近地空间连续立体覆盖、高精度三维定位和测速,而且抗干扰能力强。

2.1.2卫星导航组成部分

卫星导航系统由导航卫星、地面台站和用户定位设备三个部分组成。

①导航卫星:卫星导航系统的空间部分,由多颗导航卫星构成空间导航网。

②地面台站:跟踪、测量和预报卫星轨道并对卫星上设备工作进行控制管理,通常包括跟踪站、遥测站、计算中心、注入站及时间统一系统等部分。跟踪站用于跟踪和测量卫星的位置坐标。遥测站接收卫星发来的遥测数据,以供地面监视和分析卫星上设备的工作情况。计算中心根据这些信息计算卫星的轨道,预报下一段时间内的轨道参数,确定需要传输给卫星的导航信息,并由注入站向卫星发送。

③用户定位设备:通常由接收机、定时器、数据预处理器、计算机和显示器等组成。它接收卫星发来的微弱信号,从中解调并译出卫星轨道参数和定时信息等,同时测出导航参数(距离、距离差和距离变化率等),再由计算机算出用户的位置坐标(二维坐标或三维坐标)和速度矢量分量。用户定位设备分为船载、机载、车载和单人背负等多种型式。

2.1.3卫星导航主要原理

卫星导航按测量导航参数的几何定位原理分为测角、时间测距、多普勒测速和组合法等系统,其中测角法和组合法因精度较低等原因没有实际应用。

①多普勒测速定位:“子午仪”卫星导航系统采取这种方法。用户定位设备根据从导航卫星上接收到的信号频率与卫星上发送的信号频率之间的多普勒频移测得多普勒频移曲线,根据这个曲线和卫星轨道参数即可算出用户的位置

②时间测距导航定位:“导航星”全球定位系统采用这种体制。用户接收设备精确测量由系统中不在同一平面的4颗卫星(为保证结果唯一,4颗卫星不能在同一平面)发来信号的传播时间,然后完成一组包括 4个方程式的模型数学运算,就可算出用户位置的三维坐标以及用户钟与系统时间的误差。

用户利用导航卫星所测得的自身地理位置坐标与其真实的地理位置坐标之差称定位误差,它是卫星导航系统最重要的性能指标。定位精度主要决定于轨道预报精度、导航参数测量精度及其几何放大系数和用户动态特性测量精度。轨道预报精度主要受地球引力场模型影响和其他轨道摄动力影响;导航参数测量精度主要受卫星和用户设备性能、信号在电离层、对流层折射和多路径等误差因素影响,它的几何放大系数由定位期间卫星与用户位置之间的几何关系图形决定;用户的动态特性测量精度是指用户在定位期间的航向、航速和天线高度测量精度。

2.1.4卫星导航系统介绍

2.1.4.1 GPS卫星导航

GPS是美国国防部为军事目的建立的,旨在彻底解决海上、空中和陆地运载工具的导航和定位问题,全部24颗导航卫星(21颗工作卫星和3颗备用卫星)系统已经建成。GPS采用码分多址(CDMA),定位精度通常15m左右,主要应用于单点导航定位与相对测地定位,具有全天候、定位迅速、精度高、可连续提供三维位置(纬度、经度和高度)、三维速度和时间信息等一系列优点,是实现全球导航定位的高新技术。通常GPS接收机接收到四颗卫星的信号就能够确定移动载体的方位,是当前移动目标导航定位的主流。1992年GPS正式向全世界开放,1994年在中国市场开始得到应用。GPS以精确位置与定时信息,已成为支持世界范围各种民用、科技和商业活动的一种资源。

2.1.4.2 GLONASS卫星导航系统

GLONASS是前苏联研制并为俄罗斯继续发展的全球卫星导航系统,其组成和功能与美国的GPS相类似,可用于陆、海、空等各类用户的定位、测速及精密定时等。目前已完成了24颗工作卫星加一颗备用卫星空间星座布局,每天24小时每时刻各地的用户可见5~8颗卫星。卫星识别采用频分多址(FDMA),24颗卫星各占一个频率,现已向全世界开放。

2.1.4.3 GALILEO卫星导航系统

欧洲为了满足本地区导航定位的需求,计划开发针对GPS和GLONASS的广域星基增强系统(EGNOS),包括地面设施和空间卫星,以提高GPS 和GLONASS系统的精度、完备性和可用性。同时,为了打破目前世界美、俄全球定位系统在这一领域的垄断,欧洲决定启伽利略计划,建立自主的民用全球卫定位系统(GALILEO)。EGNOS是欧洲GALILEO计划的第一阶段,也是GALILEO计划的基础。GALILEO系统将建成全球性的定位和导航系统,它由星座部分、有效载荷、地面监控系统以及区域控制部分组成。GALILEO系统将成为独立性、全球性、欧洲人控制的,以卫星为基础的民用导航和定位系统。其总的战略意图是:(1)建立一个高效的民用导航及定位系统;(2)使之具备欧洲乃至世界运输业可以信赖的高度安全性,并确保任何未来系统安全置于欧洲人的控制之下;(3)该系统的实

相关文档
最新文档