ARCSCENE三维GIS虚拟现实可视化制作教程

ARCSCENE三维GIS虚拟现实可视化制作教程

在三维场景中浏览数据更加直观和真实,对于同样的数据,三维可视化将使数据能够提供一些平面图上无法直接获得的信息。可以很直观地对区域地形起伏的形态及沟、谷、鞍部等基本地形形态进行判读,比二维图形如等高线图更容易为大部分读图者所接受。

ArcScene 是ArcGIS 三维分析模块的一部分,通过在3D Analyst 菜单条中点击按钮打开。它具有管理3D GIS 数据、进行3D 分析、编辑3D 要素、创建3D 图层以及把二维数据生成3D 要素等功能。

一、要素立体显示

有时需要将要素数据在三维场景中以透视图显示出来进行观察和分析。要素数据与表面数据的不同之处在于,要素数据描述的是离散的对象如点对象、线对象、面对象(多边形)等。它们通常具有一定的几何形状和属性。常见的点要素有通信塔台、泉眼等在地图上通常表现为点状符号;线状要素更为常见,如道路、水系、管线等等;多边形要素如湖泊、行政区及大比例尺地形图上的居民地等。

在三维场景中显示要素的先决条件是要素必须被以某种方式赋予高程值或其本身具有高程信息。因此,要素的三维显示主要有两种方式:1)具有三维几何的要素,在其属性中存储有高程值,可以直接使用其要素几何中或属性中的高程值,实现三维显示;2)对于缺少高程值的要素,可以通过叠加或突出两种方式在三维场景中显示。所谓叠加,即将要素所在区域的表面模型的值作为要素的高程值,如将所在区域栅格表面的值作为一幅遥感影像的高程值,可以对其做立体显示;突出则是指根据要素的某个属性或任意值突出要素,如要想在三维场景中显示建筑物要素,可以使用其高度或楼层数这样的属性来将其突出显示(图1)。

图1 建筑物二维图形按高度突出

另外,有时研究分析可能需要使用要素的非高程属性值作为三维Z值,在场景中显示要素。最常见的是在社会、经济领域的应用。如对某省行政范围内每个市县的经济总量值作为Z 值进行三维立体显示(图2),可直观地观察和分析全省总体的情况。

图2某地区各个城镇人口数突出显示

由前所述,添加到三维场景中的数据并不一定会自动以三维方式显示。具有三维几何

的要素及TIN表面将自动以三维方式进行绘制时,会放置在一个平坦的三维平面上,若要以三维方式查看它们,需首先定义其Z 值。

ArcGIS 的三维分析功能在要素属性对话框中提供了要素图层在三维场景中的三种显示方式:1)使用属性设置图层的基准高程;2)在表面上叠加要素图层设置基准高程;3)突出要素。还可以结合多种显示方式,如先使用表面设置基准高程,然后在表面上再突出显示要素。在城市景观三维显示中,以表面设置基准高程,然后在表面上突出显示要素建筑物,可以更加自然真实显示城市景观。

1. 通过属性设置基准高程显示要素图层

在要素属性对话框(Properties)中,选择基准高程选项卡(Base Heights),设置以常量或表达式作为基准高程,填写或点击Calculate 按钮生成提供Z 值的字段或表达式即可,见图3。

之后,二维要素将以所设定属性或表达式的值为Z 值在三维场景中显示,图4是以等高线的高程属性作为基准高程显示的等高线三维透视图。

图3设置要素图层的基准高程

图4等高线要素的三维显示

2.使用表面设置基准高程显示要素图层

在设置基准高程时选择由表面获取要素图层的高程,点击Obtain heights for layers fro me surface 选择所需表面即可(图5)。要素将会以表面所提供的高程在场景中显示。

图5 使用表面设置要素的基准高程

3. 要素的突出显示

在图层属性对话框的突出(Extrusion)标签中,选中对图层中的要素进行突出复选框(图6)。

图6 突出表达式生成器二、设置场景属性

在实现要素或表面的三维可视化时,需要注意以下一些问题,包括:

1.添加到场景中的图层必须具有坐标系统才能正确显示;

2.为更好地表示地表高低起伏的形态,有时需要进行垂直拉伸,以免地形显示地过于陡峭或平坦;

3.为全面地了解区域地形地貌特征,可以进行动画旋转;

4.为增加场景真实感,需要设置合适的背景颜色;

5.根据不同分析需求,设置不同的场景光照条件,包括入射方位角,入射高度角及表面阴影对比度;

6.为提高运行效率,需要尽可能地减小场景范围,去除一些不需要的信息。以下就ArcS cene中常用的场景设置内容做一详细介绍。

1. 场景坐标系统

如果场景中要显示的数据都处于相同的坐标系统之下,则直接将数据添加显示即可,不需考虑图层的叠加是否正确。如果各个图层存在不同的坐标系统,则须进行适当的转换以确保ArcScene能够正确显示它们。通常,当在一个空的场景中加入某图层时,该图层的坐标系统就决定了场景的坐标系统。在这之后可以根据应用需求再对场景的坐标系统进行更改。当随后加入其它图层到场景中时,ArcScene 将会自动将图层的坐标系统转换使与场景的坐标系统一致。若新加入图层没有坐标系统,将不能正确显示,此时可人为地确定数据的坐标系统。

如果数据本身没有任何坐标系统的信息,ArcScene 将会检查图层的坐标值,看其X 值是否落在-180 度到180 度之间,Y值是否在-90 度到90 度之间。如果满足上述条件,则ArcScene 将该数据认为是经纬度坐标数据。否则,将认为该数据为平面坐标数据。

(1)查询当前场景坐标系统

打开场景的属性对话框(图7)。选择其中的坐标系统(Coordinate System)选项卡,将显示当前使用的坐标系统的详细信息。(图8)

图7 打开场景的属性对话框

(2)在图8 所示的场景属性对话框中,双击预定义(Predefined),选择预定义坐标系统,之后,所有加载到场景中的数据都将使用该坐标系统进行显示。

图8 将显示当前使用的坐标系统的详细信息

需要注意的是,改变场景的坐标系统,并不会改变图层源数据其坐标系统,只是以场景坐标系统对其进行显示。

2. 垂直拉伸

垂直拉伸一般用于强调表面的细微变化。在进行表面的三维显示时,如果表面的水平范围远大于其垂直变化,则表面的三维显示效果可能不太明显,此时,可以进行垂直拉伸以利于观察分析。另外,当表面垂直变化过于剧烈不便于分析应用时也可以进行垂直拉伸,不过垂直拉伸系数应设置为分数。垂直拉伸对场景内所有图层都产生作用,如果要对单个图层做垂直拉伸,可以通过改变图层的高程转换系数来实现。

打开场景属性对话框,在General 选项卡中选择垂直拉伸(Vertical Exag geration)系数(图9),或者点击Calculate From Extent 按钮,系统将根据场景范围与高程变化范围自动计算垂直拉伸系数。图10 为原始表面与设置拉伸系数为2 时的显示效果的对比。

图9 垂直拉伸(Vertical Exag geration)系数

图10 原始表面与拉伸后的表面

3. 使用动画旋转

通过对场景进行旋转观察,可以获得表面总体概况。ArcScene 可以使场景围绕其中心旋转,旋转速度与察看角度可以人为调整,并可在旋转的同时进行缩放。

欲使用动化旋转,需要先对该功能进行激活。打开场景属性对话框后,在General 选

项卡中选中Enable Animated Rotation 选项即可激活动画旋转功能(图11)

激活之后,可以使用场景漫游工具(Navigate)将场景左右拖动之后,即可开始进行旋转,旋转的速度决定于鼠标释放前的速度,在旋转的过程中也可以通过键盘的Page Up键和Page Down 键进行调节速度。点击场景即可停止其转动。

图11 激活动画旋转功能

图12 设置场景的光照

4. 设置场景背景颜色

同样地,打开场景属性对话框,在General 选项卡中,选择背景色(Background),同时还可以将所选颜色设置为场景默认背景色(选中Use as default in all new scenes 复选框)。

5. 改变场景的光照

通过设置光源的方位角、高度角及对比度可以调整场景的照明情况。在场景属性对话

框的Illumination 选项卡中,可以通过手动输入方位角(Azimuth)和高度角(Altitude)或通过鼠标滑动改变这两个参数。另外,同时在此还可设置对比度。以上操作见图12 所示。

6. 改变场景范围

设置合适的场景范围,可以消除一些无关信息,增加绘图时的性能。默认情况下,场

景的范围为场景中所有图层的范围。可以根据应用需求改变场景的范围,使之与某个图层的范围一致,或通过X、Y 坐标的最大最小值来指定。

打开场景属性对话框后,选择Extent 选项卡,在此设置场景范围(图13)。如前所述可以两种方式进行设置:1)在Layers 下拉列表中选择某一图层(图a);2)点击自定义(Custom),输入最大最小X、Y 坐标,从而确定场景范围(图b)。

a b

图13 设置设置场景范围的两种方式

三、飞行动画

通过使用动画,可以使场景栩栩如生,能够通过视角、场景属性、地理位置以及时间

的变化来观察对象。例如,可以创建一个动画来观察运动着的卫星在它们的轨道上是如何相互作用的,也可以用动画来模拟地球的自转及随之的光照变化。

1. 如何制作动画

在ArcScene 中提供了制作动画的工具条Animation。默认情况下,它没有添加到ArcSc ene 的视图中,可以通过在工具栏上点击右键,在弹出的快捷菜单中选择Animation 项打开它。能够制作数据动画、视角动画和场景动画。动画是由一条或多条轨迹组成,轨迹控制着对象属性的动态改变,例如,场景背景颜色的变化,图层视觉的变化或者观察点的位置的变化。轨迹是由一系列帧组成,而每一帧是某一特定时间的对象属性的快照,是动画中最基本的元素。在ArcScene 中可以通过以下几种方法生成三维动画:

(1)通过创建一系列帧组成轨迹来形成动画:

在动画工具条中提供了创建帧的工具。可以通过改变场景的属性(例如场景的背景颜色、光照角度等)、图层的属性(图层的透明度、比例尺等)以及观察点的位置来创建不同的帧。然后用创建的一组帧组成轨迹演示动画。动画功能会自动平滑两帧之间的过程。如,可以改变场景的背景颜色由白变黑,同时改变场景中光照的角度来制作一个场景由白天到黑夜的动画。

实现过程如下:

1)设置动画第一帧的场景属性;

2)点击Animation 下拉菜单,选择Create Keyframe 命令(图14);

图15 选择帧类型

图14 创建帧工具

3)在Type 栏中选择帧类型为Scene,由不同场景构成动画的帧(图9.65);

4)点击New 按钮,创建一个动画,此时弹出Animation Track 对话框(图9.66),键入动画名称;

5)点击Create抓取一个新的帧;

6)再次改变场景属性,之后点击Create,抓取第二帧,根据需要抓取全部所需的帧。

7)抓取完全部的帧之后,点击Close,关闭创建帧对话框;

8)点击Open animation controls 按钮,弹出动画控制工具条(图17);

9)点击;Play 按钮,预览动画。

(2)通过录制导航动作或飞行创建动画:

点击动画控制器上(Animation Controls,图17)的录制按钮开始录制,在场景中通过导航工具进行操作或通过飞行工具进行飞行,操作结束后点击录制按钮停止录制。这个工具类似录相器,将场景中的导航操作或飞行动作的过程录制下来形成动画。

图16 命名动画

图17 动画控制工具条

(3)通过捕捉不同视角,并自动平滑视角间过程创建动画:

通过导航工具将场景调整到某一合适的视角,用动画工具条上的捕捉视角命令捕捉此视角,然后将场景调整到另一个合适的视角,再次用捕捉命令捕捉视角,依次可捕捉多个视角。动画功能会自动平滑两视角间的过程,形成一个完整的动画过程。

(4)通过改变一组图层的可视化形成动画效果:

通过动画制作工具条中的创建组合动画命令,选择图层控制一组图层使他们按照顺序逐个显示通过效果调整实现动画效果。例如,可以用一组显示洪水淹没过程的图层生成洪水演进的动画效果。

实现过程如下:

1)在场景中添加相关图层,并按照动画设计的播放顺序从上到下依次调整图层顺序;。

2)点击Animation 下拉菜单下的Create Group Animation 命令(图18),弹出创建图层动画对话框(图19);

图18Create Group Animation 命令

图19 创建图层动画对话框

3)在Base name for tracks 栏中键入动画名称;

4)设置起止时间;

5)根据需要条调整图层出现的方式(Transitions);

6)利用动画控制工具条对生成的动画进行预览。

(5)通过导入路径的方法生成动画:

选择场景中存在的矢量要素,用动画工具条中的沿路径飞行命令制作沿路径飞行的动画效果,此时可以设置飞行时的一些参数来控制飞行过程中的视觉效果。或用图层沿路径移动命令制作某一图层沿路径移动的动画轨迹。此种方法一般用来制作场景行走动画。

实现过程如下:

1)选择场景中的矢量要素;

2)点击Animation 下拉菜单下的Camera Flyby from path 命令(图20),弹出沿路径飞行动画对话框(图21);

图20 导入路径生成动画工具

图21 沿路径飞行动画对话框

3)在Vertical offset 栏中键入视高(视点距离地面的垂直距离),建议视高选择3-10;4)在Path destination 选项栏中设置路径目的地;

有三种方式:沿指定路径同时移动摄像机和目标地物、沿指定路径围绕目标地物移动摄像机、目标地物沿指定路径围绕摄像机移动。

5)点击Import 输入路径。

6)预览动画,方法同前。

以上是ArcGIS 中五种基本的动

2. 编辑和管理动画属性

对其进行组合搭配,达到最好的表达效果。

动画的帧或轨迹创建完成之后,可以用动画管理器编辑和管理组成动画的帧和轨迹。另外,通过它也能改变帧的时间属性,并可预览动画播放效果。

(1)启动动画管理器。单击Animation 下拉菜单中的Animation Manager 项(图22)。

图22打开动画管理器

(2)打开的动画管理器如图23 所示。

图23动画管理器

3.保存动画

在ArcScene 中制作的动画可以存储在当前的场景文档中,即保存在SXD 文档中;也能存储成独立的ArcScene 动画文件(*.asa)用来与其他的场景文档共享;同时也能将动画导出成一个AVI 文件,被第三方的软件调用。

(1)将动画存储为独立的ArcScene 动画文件。

步骤如下:1)在Animation 下拉菜单下选择Save Animation File 项(图24);

图24 存储动画文件

2)在弹出的对话框中指定存储路径及文件名即可(图25)。

图25 存储动画文件对话框

(2)将动画导出为AVI 文件。

步骤如下:

3)点击Animation 菜单下的Export to Video 项(图26);

图26 导出动画文件

4)在弹出的导出对话框中指定保存路径及文件名即可(图27)。

图27 导出动画文件对话框

4. 使用Fly工具进行飞行

此外,ArcScene 工具条提供了飞行(Fly)工具,使用它可以实现对场景的飞行浏览。选择该工具后,鼠标将变为一只小鸟的形状,单击之后,鼠标会再次变形。此时,可以通过鼠标的移动控制飞行方向与速度。再次单击鼠标,则可从当前视点沿鼠标所指方向向下方向飞行,途中,点击左键加快飞行速度,右键减速。

三维可视化机房智能监控系统

三维可视化机房智能监控系统 随着计算机技术的迅速发展,数字交换技术的日新月异,计算机通信已经深入到社会生活并对社会经济的发展起着决定性的作用,而在这其中计算机机房数据中心作为载体更是整体生态链中的重中之重。尤其是近年来,云技术的突飞猛进,计算机机房数据中心所承受的压力越来越大:机房计算机系统的数量与日俱增,其环境设备也日益增多,机房环境设备(如供配电系统、UPS 电源、空调、消防系统、保安系统等),由于各类设备各自独立,如果没有统一的监控系统进行管理,主要是依靠值班人员的定时巡检来进行系统监控,由于值班人员知识面和安全管理的问题,值班人员不可能详细地检查每套系统,所以存在较大的安全生产隐患。 为满足工作需要,提高机房维护和管理的安全性,北京金视和科技股份有限公司建立一套“可视化、智能化、远程化”的监控系统,为机房高效的管理和安全运营提供有力的保证。 三维可视化机房智能监控系统对机房实现远程集中监控管理,实时动态呈现设备告警信息及设备参数,快速定位出故障设备,使维护和管理从人工被动看守的方式向计算机集中控制和管理的模式转变。突破性的三维仿真技术是智能可视化数据中心建设的一个重要的组成部分,机房设备具有数量大、种类多、价值高、使用周期长、使用地点分散、缺少实时性管理、管理难度大等特点。全三维可视化监控平台,形象化的虚拟场景和真实数据相结合,增强机房设备、设施数据的直观可视性、提高其利用率。 系统特点 三维虚拟可视化平台 在现有资源管理系统数据库的基础上,以三维虚拟现实的形式展现数据中心的运行情况。实现可视化管理和服务器设备物理位置的精确定位。三维虚拟现实方式对机房楼层、设备区、设备安装部署情况及动力环境等附属设施的直观展示,实时展现监控和报警数据。可实现360度视角调整。 IT资产可视化管理 在三维环境中通过鼠标点击实现楼层、机房、机房子区域、机柜、设备的分级直接浏览。实现机房可用性动态统计,包括空间可用性、用电量分布、温湿度分布情况和机房承重分布情况统计。当上架设备物理位置发生变化时,设备位置根据数据库变化自动变更。用户也可通过维护工具自行调整。

三维可视化智能物联网管理平台设计

三维可视化智能物联网 管理平台设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

三维可视化智能物联网管理平台 技术方案 二〇一二年八月

目录

一、概述 项目背景 物联网是指通过信息传感设备,按照约定的协议,把需要联网的物品与网络连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪监控和管理的一种网络,它是在网络基础上的延伸和扩展应用。物联网是被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。有业内专家认为物联网一方面可以提高经济效益,大大节约成本,另一方面可以为全球经济的复苏提供技术动力。 目前,美国、加拿大、欧盟、日本、韩国等都在投入巨资深入研究探索物联网,并启动了以物联网为基础的“智慧地球”、“U-Japan”、“U-Korea”、“物联网行动计划”等国家性区域战略规划。 我国把发展物联网已经提到国家的战略高度,它不但是信息技术发展到一定阶段的升级需要,同时也是实现国家产业结构调整,推动产业转型升级的一次重要契机。2010年9月,《国务院关于加快培育和发展战略性新兴产业的决定》发布,新一代信息技术、节能环保、新能源等七个产业被列为中国的战略性新兴产业,将在今后加快推进,其中物联网技术作为新一代信息技术的重要组成部分,更是在近一年里受到政府、企业和科研机构的大力支持。 当前,世界各国的物联网基本都处于技术研究与试验阶段,物联网相关技术研究还处于起步发展阶段,在物联网基础研究和技术开发等方面还面临许多挑战。物联网涉及到的关键技术领域很多,包括RFID识别技术、泛在传感技术与纳米嵌入技术、IPV6地址技术以及等。从软件的角度来看,物联网软件技术研究方面也是处于起步阶段,尤其是基础软件的研究均处于探索阶段。 面对物联网所带来的大数据量、数据时效性高、安全与隐私性要求高等挑战,人们也在不断地探索亲的解决办法。在物联网系统中,由于传感器节点及采样数据的异构性,基础软件显得尤为重要。物联网基础软件不仅屏蔽了各类传感器硬件及数据的差异,实现了物联网节点及数据的统一处理,而且实现了海量物联网节点之间的协同工作,从而大大简化了物联网应用程序的开发。我们以动态位置感知类应用为例,相关的传感器可以包括GPS传感器、RFID传感器、手机定位传感器等,这些不同类型的传感器通过基础应用接入程序,可以被统一的后台物联网数据库系统管理。

三维可视化智能物联网管理平台设计

三维可视化智能物联网管理平台 技术方案 二〇一二年八月

目录 一、概述 (3) 1.1项目背景 (3) 1.2建设系统的意义 (4) 1.3设计依据和参考资料 (5) 二、系统特点 (5) 三、设计原则 (6) 3.1可靠性 (6) 3.2先进性与合理性 (6) 3.3开发性 (6) 3.4可扩展性 (6) 四、系统总体构架 (6) 4.1系统整体框图 (6) 4.2系统研究内容 (7) 五、系统组成 (8) 5.1软件组成 (8) 5.2 硬件组成 (9) 5.3 软件功能 (10) 5.4 开发环境 (14) 5.5 系统报价 (14)

一、概述 1.1项目背景 物联网是指通过信息传感设备,按照约定的协议,把需要联网的物品与网络连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪监控和管理的一种网络,它是在网络基础上的延伸和扩展应用。物联网是被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。有业内专家认为物联网一方面可以提高经济效益,大大节约成本,另一方面可以为全球经济的复苏提供技术动力。 目前,美国、加拿大、欧盟、日本、韩国等都在投入巨资深入研究探索物联网,并启动了以物联网为基础的“智慧地球”、“U-Japan”、“U-Korea”、“物联网行动计划”等国家性区域战略规划。 我国把发展物联网已经提到国家的战略高度,它不但是信息技术发展到一定阶段的升级需要,同时也是实现国家产业结构调整,推动产业转型升级的一次重要契机。2010年9月,《国务院关于加快培育和发展战略性新兴产业的决定》发布,新一代信息技术、节能环保、新能源等七个产业被列为中国的战略性新兴产业,将在今后加快推进,其中物联网技术作为新一代信息技术的重要组成部分,更是在近一年里受到政府、企业和科研机构的大力支持。 当前,世界各国的物联网基本都处于技术研究与试验阶段,物联网相关技术研究还处于起步发展阶段,在物联网基础研究和技术开发等方面还面临许多挑战。物联网涉及到的关键技术领域很多,包括RFID识别技术、泛在传感技术与纳米嵌入技术、IPV6地址技术以及等。从软件的角度来看,物联网软件技术研究方面也是处于起步阶段,尤其是基础软件的研究均处于探索阶段。 面对物联网所带来的大数据量、数据时效性高、安全与隐私性要求高等挑战,人们也在不断地探索亲的解决办法。在物联网系统中,由于传感器节点及采样数据的异构性,基础软件显得尤为重要。物联网基础软件不仅屏蔽了各类传感器硬件及数据的差异,实现了物联网节点及数据的统一处理,而且实现了海量物联网节点之间的协同工作,从而大大简化了物联网应用程序的开发。我们以动态位置感知类应用为例,相关的传感器可以包括GPS传感器、RFID传感器、手机定

城市基础设施三维可视化管理平台(简介)

城市基础设施三维可视化管理系统(简介) 随着全球信息化的变革,科技的不断进步,三维模拟技术的适用领域也越来越广泛。基础设施三维可视化管理系统(以下简称为可视化管理系统)是就对当前基础设施资源基础数据三维模拟的综合应用。通过可视化管理系统的建立,模拟整全城的市貌,动态生成管网三维,并通过对基础设施的管理、分析,为基础设施建设、维护、指挥决策等各方面的应用提供依据。 可视化管理系统是将基础设施平面数据的三维可视化展现,通过将平面数据以及三维数据动态的联动,增强了“所见即所得”的用户体验。可以通过属性查询来获取当前的三维信息,也可以通过三维图形获取对应的属性信息,达到真正的图文联动,“三维”和“属性”的互查;可以通过动态生产管网三维,展示当前管网的三维模拟效果,并在此基础上进行日常的测量、浏览、查询、分析等,加强了基础设施的数字化建设,为基础设施的建设、指挥决策提供了更加明了、更加形象的可视化依据。 可视化管理系统的建立是符合当前社会新潮、满足当前社会需要的新型产业软件,是三维模拟技术与数字化基础设施结合的产物,具有蓬勃的发展潜力。 一、系统目标 建立可视化管理系统时,应在基础平台选择、数据规范、应用系统的可维护性和可扩充性等方面给予全面的考虑和留有充分的余地,使之能随着前期目标的实现,有计划有步骤地开展数据搜集和建库工作,不断完善系统功能、扩大应用范围,使系统逐步演进成一个更高层次的可视化管理系统。 结合市当前规划管理的业务特征,遵循求实可行的方针,以实用性、先进性、开放性、可靠性为原则,在统一的软硬件平台上,建立起可视化管理系统,具体目标主要有:建立各种建筑物、纹理材质以及管网附属设施模型库,是动态生成三维场景必不可少的一部分;建立三维的基础地形数据库;实现动态生成管网三维并建立对应的管网数据库;建立可视化管理系统,实现对城市管网属性的查询、

智慧园区三维可视化物联网运营管理平台

智慧园区三维可视化物联网运营管理平台 以3DGIS+BIM模型为基础,构建统一地理坐标系和空间参考框架的智慧园区三维可视化平台,支持室内/室外、动态/静态、直接/间接、独立/关联等数据的集中展示,运用先进信息可视化手段,加工、提炼出数据背后的隐含价值,通过大屏能够实时反映示范区真实运行状态。包括三维综合显示各系统设备位置及状态数据,涵盖监控设备、门禁设备、能耗设备、楼宇设备、消防设备、人员定位、车辆、绿色生态等建筑设备、电气、弱电设备、各子系统的实时运行监控服务。 系统主要功能要求 一、多维研判 全景沙盘与数据价值的深度分析打通智慧园区各部门互联互通渠道,建立统一的数据存储总线,依托精细运营管理平台、集成服务平台和其他途径获取的业务数据,实现区域级产业运营的综合分析。其内容可包括空间运营分析、企业360°视图、产业综合运行分析等,为园区精准招商和优化运营提供决策支撑。以三维电子沙盘的形式,展示入驻企业,系统应能自动获取入驻企业的数据,并进行大数据分析,包括: 1)园区经济贡献度:对于各专业园区的经济贡献分析,动态显示产值、税收的同比分析、环比分析,实现对目标完成率、历史排名、历年变化趋势的分析、能耗、员工数量等指

标在不同专业园区的值及所占的比例进行分析。 2)产业结构分析:对于园区的产业结构分析主要是按照总收入统计不同技术领域的值及所占的比例来分析产业的结构。 3)经济指标分组统计:可以对整个园区按照按工商注册类型、按技术领域、按重点企业进行分类统计;也可以先按照专业园区再按照按工商注册类型、按技术领域、重点企业进行分类统计企业的经济指标 4)用户画像:对用户进行全方面分析,抽象出相对应的标签,拟合成的虚拟的画象,主要包含基本属性、社会属性、行为属性及心理属性。结合用户画像可针对不同用户类型进行个性化推荐、广告精准营销、辅助产品设计、细化运营等多方面营销手段; 5)企业大数据:运用街区各种设备例如智能摄像头、门禁对入驻企业的能源的消耗、规模等多方面信息进行分析,得到企业的活跃度、企业人员密集度、企业人员活动频率等信息,并可将分析数据提供给招商经理制作针对性的招商计划等。 6)街区全景沙盘:全景沙盘可直观看到街区全景园区可视化地图,并基于地图即时掌握空间经营、企业分布的概要运行情况。 7)招商引资分析:以直观图报表展示街区招商动态、项目进度统计、项目进度汇报、招商绩效、项目报表信息。 8)重点项目动态:显示重点项目进度报告、履约状态、建设进度,便于领导及时掌握进展状况,协调各方加快项目推进。 9)服务效能分析:管理人员可以便捷地掌控区域的各类服务资源以及这些服务资源的使用情况,在线受理的效能和进度,可作为服务绩效考评依据。 10)空间销控视图:以平面视图的方式,铺列显示物业项目位置及占用状态,以项目/楼宇/房间为要素,显示房屋基本信息(地址/可用面积/租赁状态/是否即将到期)。

三维可视化机房数据中心智能监控管理系统

三维可视化机房数据中心智能监控管理系统随着计算机技术的迅速发展,数字交换技术的日新月异,计算机通信已经深入到社会生活并对社会经济的发展起着决定性的作用,而在这其中计算机机房数据中心作为载体更是整体生态链中的重中之重。尤其是近年来,云技术的突飞猛进,计算机机房数据中心所承受的压力越来越大:机房计算机系统的数量与日俱增,其环境设备也日益增多,机房环境设备(如供配电系统、UPS电源、空调、消防系统、保安系统等),由于各类设备各自独立,如果没有统一的监控系统进行管理,主要是依靠值班人员的定时巡检来进行系统监控,由于值班人员知识面和安全管理的问题,值班人员不可能详细地检查每套系统,所以存在较大的安全生产隐患。 因此,为满足工作需要,提高机房维护和管理的安全性,北京金视和科技股份有限公司建立一套“可视化、智能化、远程化”的监控系统,为机房高效的管理和安全运营提供有力的保证。系统简介 三维可视化机房数据中心智能监控管理系统(3DDCIMMS)对机房实现远程集中监控管理,实时动态呈现设备告警信息及设备参数,快速定位出故障设备,使维护和管理从人工被动看守的方式向计算机集中控制和管理的模式转变。突破性的三维仿真技术是智能可视化数据中心建设的一个重要的组成部分,机房设备具有数量大、种类多、价值高、使用周期长、使用地点分散、缺少实时性管理、管理难度大等特点。全三维可视化监控平台,形象化的虚拟场景和真实数据相结合,增强机房设备、设施数据的直观可视性、提高其利用率。 系统特点 三维虚拟可视化平台 在现有资源管理系统数据库的基础上,以三维虚拟现实的形式展现数据中心的运行情况。实现可视化管理和服务器设备物理位置的精确定位。三维虚拟现实方式

数据中心基础设施管理系统-三维可视化监控方案

数据中心基础设施管理系统三维可视化监控方案 (DCIM)

目录 1.项目概述及需求理解 (4) 1.1.项目背景简介 (4) 1.2.项目管理范围 (4) 1.3.项目建设原则 (5) 1.4.项目建设目标 (6) 1.5.解决方案概述 (7) 2.系统架构及实现原理 (11) 3.1.系统架构 (11) 3.1.1.采集层 (11) 3.1.2.处理层 (12) 3.1.3.管理层 (12) 3.1.4.交互展现层 (13) 4.DCIM系统功能实现 (13) 5.1.三维可视化管理 (13) 5.1.1.IT类资产三维浏览 (15) 5.1.2.数据中心容量可视化管理 (20) 5.1.3.数据中心配线可视化管理 (23) 5.1.4.数据中心能耗可视化管理 (32) 5.1.5.数据中心运维可视化管理 (35)

5.1.6.集中监控展示 (40) 5.2.报表分析 (46) 5.2.1.监控报表 (46) 5.2.2.运维管理报表 (49) 6.系统部署方案及软硬件配置要求 (53) 6.1.分布式部署方案 (53) 6.2.服务器硬件 (55) 6.3.服务器软件 (57)

1.项目概述及需求理解 1.1.项目背景简介 伴随着数据中心规模的不断扩大,业务量的逐渐增大,对数据中心的运维管理也变的越来越重要。一旦基础设施系统出现问题,而没有及时地得到妥善解决,常常会给企、事业造成很大的损失。怎样能7x24小时保证设备系统的正常运行,避免各种故障的发生,优化和改进传统的运维模式,提高客户服务的及时性和满意度就显得非常重要。 因此,建设一套数据中心基础设施管理系统势在必行。一个完备的运维管理系统能够提供7x24小时检测基础设施运行状态、各种资源状态的信息。运维管理人员依靠流程管理系统可以及时排除故障避免造成重大损失,控制运维质量提高服务水平。1.2.项目管理范围 项目内容: 设施故障发现与警报; 记录日常运维日志信息; 设施故障统计; 设施软硬件信息统计; 服务进程管理; 将数据信息存储备份,并采用不同方式直观的展示出来; 服务人员绩效、考核管理;

三维可视化技术都有哪些运用

三维可视化技术都有哪些运用 伴随着数据在当前互联网技术迅速发展壮大下变的层面更广,总数更大、构造愈来愈繁杂,大家如果想要更加清楚,迅速的认识和了解一份数据,传统化的二维平面图数据图表现已不能够满足需求,三维可视化技术越融合多媒体技术、互联网技术及其三维镜像技术完成了数据处理的虚拟化,根据对物体展开多方位的监管,搭建根据现实的3D虚拟现实技术实际效果,让数据呈现更加直观和易于了解,现已短时间变成信息内容智能化管理的关键构成部分,被广泛运用到各制造行业中。 一、什么叫数据可视化 简便的来讲数据可视化便是依据数据的特点、特性等属性,根据图像处理等适合的方法,将数据形象化的有概念性的展现出,作用大伙儿更强的、更清楚的了解数据,把握数据中的有效信息内容。 1.数据可视化的发展壮大与运用 数据可视化并不是什么新型技术,其发展历程发源能够上溯二十世纪50年代电子计算机图形学的初期。那时候,大家就可以利用软件建立出了第一批图形图表。伴随着互联网技术、电子计算机技术和优秀人才层面的短时间发展壮大,各种各样的数据可视化呈现在大家

的眼下。伴随着近几年来大数据备受关注,互联网端数据剖析产品盛行。企业历经前些年IT 系统基本建设后累积了很多数据,包含业务流程数据、客户数据、以及他第三方数据。这种数据对公司很有使用价值,探寻和剖析的意向明显,其才被更广泛运用到每个制造行业中。 (1)数据可视化运用可分成三类: ①宏观环境形势可视化:宏观环境形势可视化就是指在特殊环境中对随时间流逝而持续转变的总体目标实体展开觉察,能够直观、灵活、真实地展现宏观环境形势,能够迅速把握某一行业的总体形势、特点。 ②机器设备模拟仿真运作可视化:根据图像、三维动漫及其电子计算机程序控制技术与三维建模相结合,完成对机器设备的可视化表述,使管理者对其所管理的机器设备有品牌形象实际的定义,对机器设备所在的部位、外观设计及全部主要参数一目了然,会大大减少管理者的劳动效率,提升管理高效率和管理水准。 ③数据分析可视化:是现阶段谈及较多的运用,广泛运用于商务智能、政府部门管理决策、公众服务、网络营销这些行业。凭借可视化的数据数据图表,能够很清楚合理的传递与沟通交流信息内容。 2.数据可视化的发展趋向

三维可视化平台的发展背景

数据中心三维可视化管理平台严格按照数据中心机房建设有关技术的标准和规范来建设实施,采用高标准的三维可视化系统设计原则,达到“国内领先、国际先进”的总体设计目标,并提 供强大的向上/向下接口。 一.三维可视化平台遵循的原则如下: 1.先进性原则:采用国际最新、最先进的三维可视化技术,软硬件均为模块化设计,各模块 间互相独立,互不干扰。对建有冗余热备功能的系统,在系统维护或更换时不影响整个系统 的正常工作,保障系统全天候正常运行,符合国际最新潮流。 2.集中性原则:采用合理的系统体系结构,建立对IT环境各种对象的集中管理,即需要覆盖 眼前需要管理的物理对象,也需要考虑未来的逻辑对象。 3.实时性原则:系统采用先进的API、SNMP等数据通信接口技术,通过内部网络可以实现 与各类机房动环监控系统、资产管理系统、网管系统和IT运维系统的实时数据交互、展示和控制,及时反应各类系统及设备的运行参数和状态,发生故障预警和报警时能第一时间发出 告警通知管理人员查看并解决问题。 4.实用性和高效性原则:系统为管理人员提供直观、易用的图形化操作界面和策略定义工具,支持采用各类WEB浏览器通过互联网络从任意地点管理三维可视化系统,保持各种功能操 作方式的一致性。 5.安全性和稳定性原则:系统必须要达到单位级的安全标准,提供良好的安全可靠性策略, 支持多种安全可靠性技术手段,可充分利用现有的诸如防火墙、入侵检测系统、漏洞扫描、 防病毒系统等基本安全防御系统与外网隔离,保证安全;同时制定严格的安全可靠性管理措施,拥有完善的身份认证和授权,使各类功能具有完善的访问授权安全机制;支持各组件之 间的信息安全传输;设计数据备份、应急处理与灾难恢复等技术措施,防止和恢复由内在因 素和危机环境造成的错误和灾难性故障,确保系统数据的可靠性,实现整个系统的稳定运行。 6.开放性原则:系统预留了南向、北向等多种对外数据通信接口,能向上级IT综合运维平台 提供所有监控数据、报警信息和展示页面,也可以从下级各类监控或管理系统中获取需要展 示和控制的数据,其中数据接口包括API接口、SNMP协议接口、OPC接口以及xmxxxxl接 口等相关的国际标准或行业标准。。 7.灵活性和可扩展性原则:系统的建设采用模块化结构,具有灵活的多级组网功能,模块化 结构有利于扩容与扩展,配置具备可伸缩及动态平滑扩展能力,通过系统框架和相应服务单 元的配置,适应监控范围和内容的变化,即可整合现有其他系统、扩建的新系统、集成新增 的第三方应用等,使得系统具有良好的可扩充性。 8.经济性原则:采用模块化设计,有良好的可扩展性和可伸缩性,系统的安装简单、省时、 安全、可靠,易学习、易管理维护,以获得良好的性能价格比,便于今后的扩展和分步实施,并充分考虑系统的运行成本,并使之达到最小化。

规划三维可视化解决方案

规划北京划三维可京易伟航2 可视化 航科技012-1 化解决技有限公2 方案 公司

1. 2. 间地2.1式的同时2.2趣点系统 行业案烟台高新系统简为了提城地理数据支1. 场景浏z 场景漫支持鼠标的浏览。 z 场景复实现场景z 环绕飞实现场景z 路线飞设定一条时还可以针2. 查询定系统提供点面板进行z 坐标定通过输入统同时支持案例 新区三维可视简介 城市规划管理支撑,辅助科浏览功能漫游 标拖动浏览,复位 景返回到初始飞行 景围绕当前中飞行 条线路,使场针对路径进行定位功能供多种定位查行定位,通过定位 入坐标值,场持经纬度坐标视化辅助决理水平,提高科学决策,能 对场景进行始进入系统中心点进行场景自动沿行高度、速能 查询的方式过点击查看场景自动跳转标和投影坐决策支持系统高城市规划城市信息化行自由拖动统时的位置。行环绕浏览,沿这一路径进速度的设置,式:包括通过看对象的属性转到该坐标坐标。 统 划管理效率化建设具有动、转换角度 当鼠标点进行飞行,以改变浏过坐标、模性等。 标实际的位置,为城市规有重要的示范度、放大和点击时停止环无需手动拖浏览的状态。糊查询、属置,从而进行规划管理提供范意义。 和缩小等多种环绕。 拖动场景浏。 属性、图层行精确的定供空种方浏览。、兴定位。

使场 z 模糊查根据关键z 图层定在场景中 场景跳转到查询定位 键字进行查询定位 的数据都以 该数据所在询,面向系以图层的方在位置。 系统中包括的 方式在系统中的所有数据中进行管理据。 理,通过双击击图层中的数数据,

位置 z 兴趣点兴趣点面置缩略图片z 点击查 点击规划点定位 面板中保存的。通过双击查询 或地籍数据 的图片,既是击图片,场 据,屏幕弹是对场景中场景跳转到该 弹出属性信息中感兴趣点位该位置。 息。 位置的索引引,同时配以 以该

三维可视化服务平台关键技术研究及应用

三维可视化服务平台关键技术研究及应用随着计算机图形学技术的发展和三维引擎技术逐步完善,三维可视化应用已渗透到日常生活和工作中,对三维应用的需求与日俱增。在建筑、交通、电力、安监、环保、军工等多个领域,三维可视化都有广泛的实际应用并具有前所未有的全新体验。 三维可视化系统将多种复杂信息融汇在虚拟仿真环境之中,充分利用了空间的第三个维度,自然呈现三维形体的复杂信息,提升了信息交互的及时性和准确性。由于对三维可视化应用的实时性和真实感的要求逐渐增高,更优化的可视化系统架构和实时渲染算法的研究成为了研究重点。 亟需构建一套完善的可视化系统应用架构,能够支持动态构建应用模型,为具体应用提供便捷的运行管理模式,能够降低三维可视化应用的门槛,并且加快其研发的进度。此外,还能够完善动态场景的管理,提高场景结构的组织效率,完善三维场景实时渲染(在交互的实时性和场景真实感方面)。 针对上述需求和问题,本论文在国家科技重大专项及相关项目支持下,对三维应用服务平台关键技术展开研究,具体研究工作:1.三维可视化服务平台的管理模型。建立一套完善的可视化系统应用架构,支持动态构建应用模型,加快三维可视化应用的研发进度,降低三维可视化应用的门槛。 本论文提出基于三维可视化服务平台的管理模型,首先分析了传统的三维应用程序构建方法、三维引擎及其内核,围绕课题项目背景,提出了三维可视化服务平台架构。在此基础上,围绕三维可视化服务平台核心控制,提出基于角色、组件、消息(ACM)模型,能够有效管理角色、组件等资源及通信控制。 为满足动态构建三维应用的需求,采用“模型-实例”思想,提出了角色模型

(模型-算法-属性-消息)和运行管理模型,能够动态绑定角色算法和数据属性,形成可配置管理模式及运行工作机制,并给出了如何快速构建三维可视化应用逻辑流程。同时,本论文考虑多终端可视化应用模式需要,采用改进的负载均衡策略完善多终端应用模式。 最后将三维可视化服务平台的管理模型应用于三维应急救援模拟演练系统。实验证明,本论文提供的方法支持动态构建三维应用,能够为具体三维应用提供便捷的管理模式,有效提高三维可视化应用的开发效率,满足多终端可视化应用需要。 2.基于自适应二叉树和场景图的场景管理方法。场景管理技术是虚拟现实及可视化关键技术之一,也是三维可视化服务平台的关键技术。 为解决加速室内外物体的实时渲染、如何有效精准地实施场景空间剖分及提高场景结构的组织效率等难题,通过研究传统的场景管理技术并结合应用需求,本论文提出一种基于自适应二叉树和场景图的场景管理方法。首先,阐述了自适应二叉树的剖分算法,引用分割平面评分标准,形成自适应的行为,通过搜索有效分割平面算法,提高分割的有效性,有利于后续渲染。 其次,利用自适应二叉树空间剖分准确性高以及场景图适应性强等特点,采用自适应二叉树空间剖分算法与场景图相结合的模式,构建场景管理模型,可以对不同的场景类型运用不同的ABT权重,形成相应的场景管理策略。最后,将基于自适应二叉树和场景图的场景管理方法应用于机房可视化管理系统。 实验证明,本论文提出的场景管理方法有效提升三维场景组织效率,加速三维场景实时渲染。3.基于复杂场景的可见性裁剪算法。 研究可见性裁剪技术及传统裁剪算法,在第三章已建立的优化场景空间结构

三维机房可视化运维管理系统

三维机房可视化运维管理系统 系统简介 随着社会信息化程度的不断提高,机房计算机系统的数量与俱增,其环境设备也日益增多,机房环境设备(如供配电系统、UPS电源、空调、消防系统、保安系统等)必须时时刻刻为计算机系统提供正常的运行环境。因此,对机房动力设备及环境实施管理就显得尤为重要。为满足工作需要,提高机房维护和管理的安全性,北京金视和科技股份有限公司建立一套“可视化、智能化、远程化”的三维机房可视化运维管理系统,为机房高效的管理和安全运营提供有力的保证。 三维机房可视化运维管理系统对机房实现远程集中监控管理,实时动态呈现设备告警信息及设备参数,快速定位出故障设备,使维护和管理从人工被动看守的方式向计算机集中控制和管理的模式转变。突破性的三维仿真技术是智能可视化数据中心建设的一个重要的组成部分,机房设备具有数量大、种类多、价值高、使用周期长、使用地点分散、缺少实时性管理、管理难度大等特点。全三维可视化监控平台,形象化的虚拟场景和真实数据相结合,增强机房设备、设施数据的直观可视性、提高其利用率。 系统特点 三维虚拟可视化平台 在现有资源管理系统数据库的基础上,以三维虚拟现实的形式展现数据中心的运行情况。实现可视化管理和服务器设备物理位置的精确定位。三维虚拟现实方式对机房楼层、设备区、设备安装部署情况及动力环境等附属设施的直观展示,实时展现监控和报警数据。可实现360度视角调整。 IT资产可视化管理 在三维环境中通过鼠标点击实现楼层、机房、机房子区域、机柜、设备的分级直接浏览。实现机房可用性动态统计,包括空间可用性、用电量分布、温湿度分布情况和机房承重分布情况统计。当上架设备物理位置发生变化时,设备位置根据数据库变化自动变更。用户也可通过维护工具自行调整。 机房环境监控可视化管理 在三维环境中以虚拟现实的方式来展示传统环境监控系统,给管理员一个更加贴近现实场景的操作环境,进一步提升了操作体验。极大的提高的机房监控管理的人性化、真实化。

三维可视化综合运营管理方案

三维可视化综合运营管理方案 目录 综述 (2) 一、Howsky3D三维综合信息管理平台简介 (3) 1.1 Howsky3D平台简介 (3) 1.2 Howsky3D功能简介 (4) 1.2.1 城市和大楼三维地形地物表示 (4) 1.2.2 建筑物内部三维表示和属性信息表达 (5) 1.2.3 建筑物线框结构表达 (6) 1.2.4 设备在线管理与集成 (7) 1.2.5 与管理信息系统的对接 (8) 1.3 Howsky3D系统架构 (9) 二、三维建模与仿真表现 (11) 2.1 三维建模与虚拟现实仿真技术 (11) 2.3 虚拟现实技术在项目展示中的应用 (12) 三、三维可视化信息管理系统 (13) 3.1设备管理集成管理 (13) 3.1.1 安全防范系统集成 (13) 3.1.2 智能楼宇系统集成 (14) 3.1.3 消防系统集成 (17) 3.2 物业管理 (17) 3.2.1 物业管理的需求 (17) 3.2.1 物业管理功能模块 (19) 3.3 固定资产管理 (21) 3.3.1 总体思路 (21) 3.3.2 系统功能 (22)

综述 浩天三维公司提供的“Howsky3D三维综合信息管理平台”是一个贯穿整个项目生命周期的三维可视化的信息管理平台,它始于项目的规划论证阶段,在设计、建设、运营期间对建筑物及其相关设备信息进行数据管理,从而在业界率先提出了“三维面向对象的建筑物数据管理”概念。Howsky3D三维综合信息管理平台是一个完全三维表现的可视化管理平台,该平台借鉴并融合了GIS和CAD两种系统,采用了独特的数据结构和表现方式,可用点、线框、实体三种模式表达建筑物内外部结构并进行分拆与组合,方便与管理信息系统集成,弥补了传统三维仿真技术在对象管理、属性管理以及信息查询方面的不足,具有实施快速、成本低廉、功能丰富、仿真度高、应用广泛等特点。平台能与后台大型关系数据库和管理信息系统对接,具有极为强大的信息管理、数据查询和三维表现能力。 该平台首先采用了三维虚拟现实系统的表现形式,可以满足大楼进行精美的三维展示和营销的需求,可以进行项目的规划和论证,可以在项目的论证、设计、建造、销售阶段进行充分的展示; 该平台其次可以采用线框方式表现建筑物的内部结构及其属性信息,因此可以进行物业管理、固定资产管理和楼宇经济管理,非常直观地表达当前大楼入住企业和居民的管理、经营、物业、税收、人口、固定资产等状态,从而为领导决策提供依据; 该平台最后还可以动态地显示设备及其状态信息,集成安全防范、智能楼宇自控、消防等系统,对设备进行在线管理和查询。如果出现报警,系统自动进行切换和联动,直观显示报警地点的三维空间信息并联动弹出相关视频,是理想的三维综合信息管理一体化解决方案。

三维可视化技术的发展与应用

1早期三维可视化方式及存在问题 早期的三维可视化主要是将原始设计文件通过CAD/CAM软件来进行读取,但是企业中所使用的软件又各不相同,各CAD/CAM软件基于历史原因及不同的开发目的,内部数据记录方式和处理方式不尽相同,开发软件的语言也不完全一致,导致原始设计文件在不同的CAD/CAM软件中不能被交换与共享。 图一 为了改善此问题,国际上出现了一批具有代表性的数据交换标准格式,如的美国的IGES,ISO的STEP,德国的VDAIS、VDAFS,法国的SET等等。产品设计图档能够在不同CAD/CAM软件中进行浏览(见图一)。 针对IGES和STEP格式,德国Pro STEP做了一个关于曲面模型转换的对比测试可以很直观的反应目前两种格式所存在的问题。其中有六个CAD软件系统参加了测试,测试结果如下: ● 99.8%的曲面模型可以成功地采用STEP进行转换 ● 92.6%可以成功地采用IGES进行转换

图二 此项对比测试可以更明显的看到,两种格式虽然对于三维可视化起到一定的辅助作用,但无论STEP和IGES格式中任意一个都无法准确的完成曲面模型的数据转换。 另外两种格式的文件大小显得较为臃肿,并且需要大型的CAD/CAM软件系统的读取支持等,不利于进行传播交流。这些不利因素使得我们对改变传统的三维可视化方案需求迫切。 随着技术的不断进步,信息化厂商纷纷推出各种新的三维数据交流及可视化方案,目的是在保留基本三维模型信息的基础上,实现文件轻量化以及与三维软件无关联性,来满足企业需求。 2 众厂商积极推出轻量级三维可视化解决方案 2.1主流推行轻量化格式软件厂商一览 各厂商都推出了能够进行三维可视化的轻量级CAD数据格式,具有典型代表性的见表一。目前几乎所有的基于产品生命周期管理的软件厂商都有自己的三维

可视化运维管理系统解决方案

可视化运维管理系统 解决方案 杭州叙简科技有限公司 电话:9 传真:9

目录 1.系统概述................................................... 错误!未定义书签。 2.系统设计原则和特点 ......................................... 错误!未定义书签。 设计原则 ................................................ 错误!未定义书签。 先进性原则.......................................... 错误!未定义书签。 可靠性原则.......................................... 错误!未定义书签。 实用性原则.......................................... 错误!未定义书签。 标准性原则.......................................... 错误!未定义书签。 兼容性与扩展性原则 .................................. 错误!未定义书签。 易维护性原则........................................ 错误!未定义书签。 设计特点 ................................................ 错误!未定义书签。 多系统协同联动 ...................................... 错误!未定义书签。 全新交互式设计 ...................................... 错误!未定义书签。 兼容性和扩展性强 .................................... 错误!未定义书签。 易维护性............................................ 错误!未定义书签。 3.系统总体架构设计 ........................................... 错误!未定义书签。 系统建设目标 ............................................ 错误!未定义书签。 系统拓扑图 .............................................. 错误!未定义书签。 系统描述 ................................................ 错误!未定义书签。 系统组成 ................................................ 错误!未定义书签。 4.系统业务功能设计 ........................................... 错误!未定义书签。 信息状态监控模块 ........................................ 错误!未定义书签。 重要设备状态监控 .................................... 错误!未定义书签。 设备参数监控........................................ 错误!未定义书签。 视频监控............................................ 错误!未定义书签。 视频显示.................................................. 错误!未定义书签。 视频控制.................................................. 错误!未定义书签。 视频编辑.................................................. 错误!未定义书签。 视频联动.................................................. 错误!未定义书签。 故障信息发送........................................ 错误!未定义书签。 GIS三维可视化模块....................................... 错误!未定义书签。 值班管理模块 ............................................ 错误!未定义书签。 值班人员登记........................................ 错误!未定义书签。 日常工作内容........................................ 错误!未定义书签。 日常工作内容提醒 .................................... 错误!未定义书签。 相关值班人员显示 .................................... 错误!未定义书签。 故障抢修模块 ............................................ 错误!未定义书签。 派单................................................ 错误!未定义书签。 接单................................................ 错误!未定义书签。 到达................................................ 错误!未定义书签。 抢修/维护........................................... 错误!未定义书签。

三维可视化防真系统

1.1三维可视化仿真系统 当前地理信息系统技术仍以二维信息为主,比较而言,三维地理信息系统技术可以使信息的表现更真实、丰富、具体,而下一代GIS技术的一个主要特点也是支持“数字地球”或“数字城市”概念的实现,从二维向三维发展,从静态数据处理向动态发展,具有时序数据处理能力,因此三维地理信息系统技术与无线通信技术的结合将是未来地理信息技术发展的必然趋势,也将成为未来数字城市建设技术的必然选择。 三维GIS是模拟、表示、管理、分析客观世界中的三维空间实体及其相关信息的计算机系统,能为管理和决策提供更加直接和真实的目标和研究对象。三维GIS是二维GIS技术的延伸和扩展。 基于三维地理信息系统技术,能够实现城市地质灾害相关数据的的数字化、网络化及动态可视化,同时也可作为一个供地质灾害管理预测分析辅助的强大应用平台。 1.1.1电子沙盘框架建设 电子沙盘框架建设基于国际先进的SkyLine三维展示平台,利用DEM与DOM建立大场景的三维模型,实现整个地图大场景的描述,同时集成地质灾害相关信息,实现大场景的立体信息集成和展示,为使用者提供更为丰富的综合信息。 Skyline是一个领先的三维地理信息系统平台,用一个强大的界面,可以把不同的地理数据联系起来,并且可以把它们快速的分发到各个用户。沙盘框架逻辑如下:

1.1.1.1 架构模式 三维可视化仿真系统采用当今社会最流行也最实用的B\S架构,此架构降低了最终用户的维护和升级成本。 服务器端的配置:TerraExplorer Pro + TerraGate + internet License。 客户端的配置:TerraExplorer Viewer + IE6.0或以上。 开发环境:开发工具(Microsoft Visual Studio .NET 2003/2005 C#) + 客户端脚本语言(javascript/jscript)+ 编辑工具(UltraEdit/Editplus)。 Skyline软件体系结构如下图所示: 图错误!文档中没有指定样式的文字。-1 Skyline软件体系结构图总的架构来分,Skyline分为三个模块。 数据合成模块TerraBuilder家族,它分为三个级别:单机版(TerraBuilder)、企业版(TerraBuilder Enterprise)、直连(DirectConnect)。他们三个之间的区别

三维可视化数据管理系统解决方案

三维可视化数据中心内管理系统解决方案

伴随着数据中心的经营规模日益突出,大家急待提升其管理效益,而三维可视化,就是能为数据中心带来全新管理方式的一个关键工具。三维可视化将三维仿真建模与数据可视化技术充分融合,在3D情景中展现各类方式的可视化数据,协助客户一目了然地掌握业务趋势,获取数据使用价值,完成高效率管理方法与经营。 TWaver数据中心三维可视化管理系统软件做为数据中心行业的完善可视化产品,技术上而言,根据WebGL和html5开发设计的技术特性授予了其较低的应用门坎和高度的兼容模式,自主研发的3D引擎也得以支撑精致的3D实体模型,而预定义的模型库和数据端口则适用深层订制开发设计。而从作用上说,软件可完成数据中心内全部机器设备目标的三维仿真,以完全3D方式搭建全部数据中心环境,并将数据中心内的监管子系统列入到可视化机房管理服务平台中,实时剖析查询监管信息内容。 现阶段,软件早已完成了数据中心资产、容积、动环、智能安防、管道及其布线等阶段的可视化作用,成为很多数据中心管理必不可少的关键工具。 1.数据中心产业园区环境可视化 以三维虚拟仿真技术搭建数据中心所属产业园区的自然环境,包含产业园区中的工程建

筑房屋、园林景观及设备,以形象化的方法管理、展现数据中心产业园区,完成数据中心的虚拟仿真。 可以详细展现数据中心产业园区的外貌,包含土石、园林景观、河道、路面,构建与真正产业园区一致的虚拟环境。 此外,适用对产业园区内的各类IOT机器设备,如智能灯杆、智能垃圾桶、道闸机等完成实时的监管,实现高效、方便快捷的集中型管理,减少经营成本。 针对工程建筑房屋,可视化系统软件能够以三维仿真的全新升级展现方式,详细展现数据中心工程建筑的外形,依据房屋建筑的真正外形进行三维模型,展现工程建筑的基础规格型号信息内容。完成主机房所属楼房的三维仿真,三维模型的结果与真正自然环境一致,包含构造、规格,及其內部的室内装修风格等。

相关文档
最新文档