第6章 最优控制
合集下载
最优控制理论课件
![最优控制理论课件](https://img.taocdn.com/s3/m/954694cc680203d8ce2f24e3.png)
8
最优控制问题
1.1 两个例子
例1.1 飞船软着陆问题
软着陆 过程开 始时刻 t 为零
h& v
v& u g m
m& K u
m 飞船的质量 h 高度 v 垂直速度 g 月球重力加速度常数 M 飞船自身质量 F 燃料的质量 K 为常数
初始状态 h(0) h0 v(0) v0 m(0)MF
f(x(t),u(t),t) 为n维向量函数
22.03.2020
现代控制理论
24
最优控制问题
1.2 问题描述
(1) 状态方程 一般形式为
x&(t) f (x(t),u(t),t)
x(t) Rn
x(t)|tt0 x0
为n维状态向量
u(t) Rr
为r 维控制向量
f(x(t),u(t),t) 为n维向量函数
求解最优控制的变分方法
泛函与函数的几何解释
22.03.2020
现代控制理论
50
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
22.03.2020
现代控制理论
51
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
泛函的增量 J ( x ( g ) ) J ( x ( g ) x ) J ( x ( g ) ) L ( x , x ) r ( x , x )
J x ( T ) ,y ( T ) ,x & ( T ) ,y & ( T ) x & ( T )
控制
(t)
22.03.2020
现代控制理论
第六章 最优控制2012
![第六章 最优控制2012](https://img.taocdn.com/s3/m/78416f0db9d528ea81c77991.png)
,使J 为极小。
一、性能指标及分类 性能指标函数(又称目标函数、性能泛函),最优控制
问题可归结为求性能指标的极值问题。按照实际控制性能 常见:
⑴ 最短时间问题:
拦截导弹最短时间控制
⑵ 最小消耗问题:控制量u(t)与燃料消耗量成正比
导弹最小燃料控制
(3) 线性调节器问题:考虑在平衡位置 x=0附近的状态调节
导弹稳定控制
在变分法中这类问题称为拉格朗日问题。它要求状态向 量及控制向量在整个动态过程中都满足性能要求。
⑵ 终值型性能指标:
卫星的指向控制
在变分法中称为迈耶尔问题。只要求状态在过程终端时 满足一定要求,而对状态及控制量在整个动态过程中的演变 不作要求。
⑶ 复合型性能指标:
卫星的指向和 稳定控制
的变分是指两个函数间的差
问题:何为两个函数的差?两个函数距离接近?
K阶近似度
定义:设 是线性赋范空间 上的连续泛函,其增量可表示为
其中,
是关于 的线性连续泛函,
是关于 的高
阶无穷小。则
称为泛函 的变分。
泛函的变分等于
3、泛函变分的规则 1) 2) 3) 4)
变分的导数等于导数的变分
4、泛函的极值
寻求在
上的最优控制
或
,以将系统状
态从
转移到 x(t f ) 或 x(t f ) 的一个集合,并使性能指标
最优。其中
是 x 、u 和t 的连续函数
最优控制问题就是求解一类带有约束条件的条件泛函极值问 题。
泛函与变分法
一、泛函与变分
1、泛函的基本定义: 对于某个函数集合 中的每一个函数 ,变量J 都有一个
在变分法中称为波尔札问题。它要求状态在过程终端 时满足一定要求,而且状态向量及控制向量在整个动态过 程中都应满足一定要求。
第6章 用变分法求解最优控制问题
![第6章 用变分法求解最优控制问题](https://img.taocdn.com/s3/m/41386ae608a1284ac9504315.png)
§6-2 泛函与变分的基本概念
3.泛函的变分 ● 泛函的增量 由自变量函数 x(t ) 的变分 x(t ) 引起泛函 J [ x(t )]的增量
J J [ x* (t ) x(t )] J [ x* (t )] 为泛函 J [ x(t )] 的增量。
f {x(t f ); g1[ x(t f )] 0, g 2 [ x(t f )] 0}
3. 容许控制 控制量受客观条件限制所能取值得范围。
U {u (t ); ( x, u ) 0} u (t ) U
§6-1 最优控制问题的一般提法
4. 性能指标 tf L[ x(t ), u (t ), t ]dt (1)积分型性能指标: J t0 反映控制过程中对系统性能的要求。
在容许控制集合 U 中,寻找控制向量 u (t ) U , t [t0 , t f ] ,使系统由 给定的初始状态出发,在 t t0 时刻转移到规定的目标集,并使性能 tf 指标: J [ x(t ), t ] L[ x(t ), u (t ), t ]dt
f f
取得极小值。
t0
1 2
若 x(t ) t 有
t x ( t ) e 若 有
§6-2 泛函与变分的基本概念
2.泛函自变量的变分 泛函 J [ x(t )] 的自变量函数 x(t ) 与标称函数 x* (t )之间的差值函数
x x(t ) x(t ) x* (t ) 称为泛函自变量的变分,记作 x(t )或 x 。 x(t ) x (t ) B 设 x (t ) 为 x(t ) 的容许曲线,即 x(t ) x (t ) x* (t ) (t ) x* (t ) 令 0 1 A 则 x* (t ) x* (t ) (t ) x (t ) t 这样: x(t ) (t ) x(t ) x* (t ) (t ) x* (t ) x(t )
最优控制理论PPT课件.ppt
![最优控制理论PPT课件.ppt](https://img.taocdn.com/s3/m/7e7a64ffcf84b9d529ea7a12.png)
J x y J x J y
则称J x为线性泛函
Modern Control Theory
Page: 8
§6-2 最优控制中的变分法
现
代 (5)泛函的变分
控 制
泛函Jx的增量:Jxt,x Jxt x Jxt
理 论
Lxt,x rxt,x
其中Lxt ,x— J的线性函数
rxt ,x— J的高阶无穷小
论
J x(t) 0
Modern Control Theory
Page: 12
§6-3 无约束条件的泛函极值问题
现
代 控
一、t0 , t f 给定的泛函极值问题
制
理 定理:设
论
J tf L(x, x,t) t0
求min J的x*(t) ?
x *(t)满足以下条件:L d (L) 0 x dt x ---- 欧拉方程
ut Rp为控制向量,且ut 在t0,t f 上分段连续;
f Rn为连续向量函数,xt连续可微
2.初态和终态: x t0 ,x t f S 目标集
3.容许控制 : ut—控制域
指控制矢量u t 应满足的约束条件
Modern Control Theory
Page: 4
§6-1 一般概念
Page: 6
§6-2 最优控制中的变分法
现
代 一.泛函与变分的基本概念
控 制 1.泛函与变分的基本概念
理 论
(1)泛函 如果对于自变量t, 存在一类函数x t , 对于每个函数x t ,有一J值
与之对应,则变量J 称为依赖于函数x t 的泛函数,简称泛函,
记作J x t
(2)函数的变分
泛函J x t 的变量x t 变分 x : x x t x0 t , 它表示x t 与x0 t 之间的差
则称J x为线性泛函
Modern Control Theory
Page: 8
§6-2 最优控制中的变分法
现
代 (5)泛函的变分
控 制
泛函Jx的增量:Jxt,x Jxt x Jxt
理 论
Lxt,x rxt,x
其中Lxt ,x— J的线性函数
rxt ,x— J的高阶无穷小
论
J x(t) 0
Modern Control Theory
Page: 12
§6-3 无约束条件的泛函极值问题
现
代 控
一、t0 , t f 给定的泛函极值问题
制
理 定理:设
论
J tf L(x, x,t) t0
求min J的x*(t) ?
x *(t)满足以下条件:L d (L) 0 x dt x ---- 欧拉方程
ut Rp为控制向量,且ut 在t0,t f 上分段连续;
f Rn为连续向量函数,xt连续可微
2.初态和终态: x t0 ,x t f S 目标集
3.容许控制 : ut—控制域
指控制矢量u t 应满足的约束条件
Modern Control Theory
Page: 4
§6-1 一般概念
Page: 6
§6-2 最优控制中的变分法
现
代 一.泛函与变分的基本概念
控 制 1.泛函与变分的基本概念
理 论
(1)泛函 如果对于自变量t, 存在一类函数x t , 对于每个函数x t ,有一J值
与之对应,则变量J 称为依赖于函数x t 的泛函数,简称泛函,
记作J x t
(2)函数的变分
泛函J x t 的变量x t 变分 x : x x t x0 t , 它表示x t 与x0 t 之间的差
现代控制理论基础 第6章 线性系统的最优控制
![现代控制理论基础 第6章 线性系统的最优控制](https://img.taocdn.com/s3/m/f37cd0090975f46526d3e1ca.png)
,
7
方法的比较
总的来说,当控制量无约束时,‘采用“变分法” ;当控制量有 约束时,采用“极小值原理” 或“动态规划”;如果系统是线性的, 采用“线性二次型”方法最好,因为,一方面,二次型指标反映了大 量实际的工程性能指标的要求;另方面,理论上的分析及求解较简单、 方便、规范,而且还有标准的计算机程序可供使用;得到的控制器易 于通过状态反馈实现闭环最优控制,工程实现方便。在实际的工程控 制中,目前线性二次型最优控制己得到了广泛的成功应用。
J 值为极值 J (最大值或最小值),这种泛函求极值的方法,实际上 就是数学上的“变分”问题,须采用数学中的“变分法” 。
5
采用直接变分法求解最优控制率,难于甚至“无法解决容许控 制属于闭集”的最优控制问题,所以受到实际工程应用上的限制, 例如,每台电动机都有最大功率的限制;船舶或飞机的操纵舵面 也有最大偏转角的限制。况且采用直接变分法设计出的系统,其 抗参数变化的能力,即系统的鲁棒性也不强。因此,工程应用上 有较小的实用价值。
线性系统二次型的最化控制,因为其性能指标具有明确的物理 意义,在大量的工程实际中具有代表性,而且最优控制率的求解 较简单,并具有统一的解析表达式,构成的最优控制系统具有简 单的线性状态反馈的型式,易于工程实现,所以在国内外实际的 工程中目前己得到广泛应用。本章主要介绍其基本概念、基本原 理和设计方法。
下面只介绍线性二次型最优控制的基本概念、求解原理及设 计中的一些主要结论。
8
第三节 线性二次型最优控制
一、控制对象数学模型
线性系统的状态空间表达式
x(t) A(t)x(t) B(t)u(t)
y(t) C(t)x(t)
式中,
n x(t) 为 维状态向量;
(6-4)
7
方法的比较
总的来说,当控制量无约束时,‘采用“变分法” ;当控制量有 约束时,采用“极小值原理” 或“动态规划”;如果系统是线性的, 采用“线性二次型”方法最好,因为,一方面,二次型指标反映了大 量实际的工程性能指标的要求;另方面,理论上的分析及求解较简单、 方便、规范,而且还有标准的计算机程序可供使用;得到的控制器易 于通过状态反馈实现闭环最优控制,工程实现方便。在实际的工程控 制中,目前线性二次型最优控制己得到了广泛的成功应用。
J 值为极值 J (最大值或最小值),这种泛函求极值的方法,实际上 就是数学上的“变分”问题,须采用数学中的“变分法” 。
5
采用直接变分法求解最优控制率,难于甚至“无法解决容许控 制属于闭集”的最优控制问题,所以受到实际工程应用上的限制, 例如,每台电动机都有最大功率的限制;船舶或飞机的操纵舵面 也有最大偏转角的限制。况且采用直接变分法设计出的系统,其 抗参数变化的能力,即系统的鲁棒性也不强。因此,工程应用上 有较小的实用价值。
线性系统二次型的最化控制,因为其性能指标具有明确的物理 意义,在大量的工程实际中具有代表性,而且最优控制率的求解 较简单,并具有统一的解析表达式,构成的最优控制系统具有简 单的线性状态反馈的型式,易于工程实现,所以在国内外实际的 工程中目前己得到广泛应用。本章主要介绍其基本概念、基本原 理和设计方法。
下面只介绍线性二次型最优控制的基本概念、求解原理及设 计中的一些主要结论。
8
第三节 线性二次型最优控制
一、控制对象数学模型
线性系统的状态空间表达式
x(t) A(t)x(t) B(t)u(t)
y(t) C(t)x(t)
式中,
n x(t) 为 维状态向量;
(6-4)
最优控制
![最优控制](https://img.taocdn.com/s3/m/352a514ac850ad02de80418e.png)
J =
能观,
1 1 x ( t f ) T C T Q 0 Cx ( t f ) + 2 2
tf
[ x T C T Q 1 Cx + u T Q 2 u ] dt ∫
t0
二次型指标最优控制问题
线性系统
二次型性能指标
x = Ax + Bu y = Cx
tf
J =
1 T x (t f )Q 0 x (t f ) + 2
1 二次型性能泛函
1 1 T J = x (t f ) Q 0 x (t f ) + 2 2
半正定
tf
[ x T Q 1 x + u T Q 2 u ] dt ∫
t0
半正定
正定
误差大小的代价函数, qij大表示对应误差要求小 对控制的约束或要求. 表示在区间内消耗的能量, qij大表示对应付出的能量小. 最优控制目标是使性能指标J取得极小值, 其实质是用不大的控制来 保持比较小的误差,从而达到所用能量和误差综合最优的目的.
0 x = 1
1 x a + 2
1
y=x1
1 w( s ) = C ( sI A) B = 2 s + s a + 2 +1
281
6.4 线性二次型最优控制问题
6.4 线性二次型最优控制问题
输出调节问题
x (t ) = A (t ) x (t ) + B (t )u (t ) y ( t ) = C ( t ) x ( t ), x ( t 0 ) = x 0
q1 , q 2 > 0 , q 0 ≥ 0
u * ( t ) = Q 2 1 ( t ) B T ( t ) P ( t ) x ( t ) = q 2 1 p ( t ) x ( t )
现代控制理论第六章
![现代控制理论第六章](https://img.taocdn.com/s3/m/75c5f5e96294dd88d0d26b1d.png)
式中,δx(t) 为宗量函数x(t)的变分, L[x(t), δx(t)] 是 δx(t) 的线性连续泛函,o[ x(t), δx(t)] 是关于 δx(t) 的高阶无穷 小,则定义泛函增量的线性主部
δJ = L[ x(t), δ x(t)]
(6-19)
为泛函 J[ x(t)] 的变分,记作 δJ 。若泛函有变分,则 称该泛函可微。
物体的升降速度,则上式可写成状态方程
& x1 (t) = x2 (t)
& x2 (t) = u(t) − mg
x 其初始条件是 x1 (t0 ) = x10 , 2 (t0 ) = x20 。现需寻找 一个能使物体以最短时间从初态 ( x10,x20 ) 到达终态 (0,0)的控制u(t)。定义系统的性能指标为
1. 始端时刻和终端时刻固定时的泛函极值问题
首先讨论不仅初始时刻 t0 、终端时刻 t f 固定,而 且初始状态 x(t 0 ) = x0 、终端状态 x(tf ) = xf固定这一最 简单情况下无约束条件的泛函极值问题(最优控制的 最优控制的 基本问题)。 基本问题
J = ∫ dt = t f − t0
tf t0
t 式中, t0为起始时刻, f 为终止时刻。要求时间最短, 即使性能指标J最小,这样求得的控制即为最优控制 u *(t) 。
2. 搅拌槽问题 设有一盛放液体的连续 搅拌槽,如图6-2所示。槽内 装有不停转动着的搅拌器S, 使液体经常处于完全混合状 态,槽中原放 0o C 的液体。 现需将其温度升高,为此在 入口处送进一定量的液体, 其温度为u(t),出口处流出 等量的液体,以保持槽内液
由式(6-20)得
∂ (J[x(t) + εδx(t)]) = ∂ ∫tt0f [x(t) + εδx(t)]2 dt ∂ε ∂ε ε =0
第六章控制系统参数优化及仿真
![第六章控制系统参数优化及仿真](https://img.taocdn.com/s3/m/433be424a36925c52cc58bd63186bceb19e8ed8c.png)
6.1 参数优化与函数优化
数学中的变分法,拉格朗日乘子法和最大值原理,动态规划等都是解析法,所以也都是间接寻优法。由于在大部分控制系统中目标函数J一般很难写出解析式,而只能在计算动态相应过程中计算出来,所以仿真中一般较少采用间接寻优方法。 (2) 直接寻优法 直接寻优法就是直接在变量空间搜索一组最佳控制变量(又称决策变量,设计变量)。这是一种数值方法,具体办法是,利用目标函数在一局部区域初始状态的性质和已知数值,来确定下一步计算的点,这样一步步搜索逼近,最后接近最优点。
6.1 参数优化与函数优化
优化技术是系统设计中带有普遍意义的一项技术,本节首先讨论优化技术中的一些基本定义和问题. 一、优化问题数学模型的建立 用优化方法解决实际问题一般分三步进行: (1) 提出优化问题,建立问题的数学模型。 (2)分析模型,选择合适的求解方法。 (3)用计算机求解,并对算法,误差,结果进行 评价。 显然,提出问题,确定目标函数的数学表达式是优化问题的第一步,在某种意义上讲也是最困难的一步。以下分别说明变量,约束和目标函数的确定。
第六章 控制系统参数优化及仿真
仿真是将已知系统在计算机上进行复现,它是分析,设计系统的一种重要实验手段。怎样才能使设计出来的系统在满足一定的约束条件下,使某个指标函数达到极值,这就需要优化的仿真实验。所以仿真技术与优化技术两者关系十分密切。
第六章 控制系统参数优化及仿真
优化技术包括内容很多,本章主要介绍与系统最优化技术有关的参数优化技术方法。 第一节首先对控制系统常用的优化技术做一概括性的叙述。 第二节介绍单变量技术的分割法和插值法。 第三节为多变量寻优技术,介绍工程中常用的最速下降法,共轭梯法和单纯形法。 第四节为随机寻优法。 第五节简单介绍具有约束条件的寻优方法。 第六节介绍含函数寻优的基本方法。 最后向读者介绍了Matlab优化工具箱的使用方法。
数学中的变分法,拉格朗日乘子法和最大值原理,动态规划等都是解析法,所以也都是间接寻优法。由于在大部分控制系统中目标函数J一般很难写出解析式,而只能在计算动态相应过程中计算出来,所以仿真中一般较少采用间接寻优方法。 (2) 直接寻优法 直接寻优法就是直接在变量空间搜索一组最佳控制变量(又称决策变量,设计变量)。这是一种数值方法,具体办法是,利用目标函数在一局部区域初始状态的性质和已知数值,来确定下一步计算的点,这样一步步搜索逼近,最后接近最优点。
6.1 参数优化与函数优化
优化技术是系统设计中带有普遍意义的一项技术,本节首先讨论优化技术中的一些基本定义和问题. 一、优化问题数学模型的建立 用优化方法解决实际问题一般分三步进行: (1) 提出优化问题,建立问题的数学模型。 (2)分析模型,选择合适的求解方法。 (3)用计算机求解,并对算法,误差,结果进行 评价。 显然,提出问题,确定目标函数的数学表达式是优化问题的第一步,在某种意义上讲也是最困难的一步。以下分别说明变量,约束和目标函数的确定。
第六章 控制系统参数优化及仿真
仿真是将已知系统在计算机上进行复现,它是分析,设计系统的一种重要实验手段。怎样才能使设计出来的系统在满足一定的约束条件下,使某个指标函数达到极值,这就需要优化的仿真实验。所以仿真技术与优化技术两者关系十分密切。
第六章 控制系统参数优化及仿真
优化技术包括内容很多,本章主要介绍与系统最优化技术有关的参数优化技术方法。 第一节首先对控制系统常用的优化技术做一概括性的叙述。 第二节介绍单变量技术的分割法和插值法。 第三节为多变量寻优技术,介绍工程中常用的最速下降法,共轭梯法和单纯形法。 第四节为随机寻优法。 第五节简单介绍具有约束条件的寻优方法。 第六节介绍含函数寻优的基本方法。 最后向读者介绍了Matlab优化工具箱的使用方法。
线性二次型最优控制问题
![线性二次型最优控制问题](https://img.taocdn.com/s3/m/9a9664cd690203d8ce2f0066f5335a8102d266e7.png)
2023/12/21
9
对容许控制U(t)和终态X(tf)的说明
(1) 在线性二次型问题的定义中,并没有直接提出对控制 作用U(t)的不等式约束,但这并不等于在物理上不需要对 U(t)进行必要的限制。实际上,用适当选择Q(t)和R(t)数值 比例的方法,同样可以把U(t)的幅值限制在适当的范围之 内。这样,就可以在保持闭环系统线性性质的前提下,实 现对U(t)的限制。
2023/12/21
1
线性二次型最优控制问题是指线性系统具有二次型 性能指标的最优控制问题,它呈现如下重要特性:
性能指标具有鲜明的物理意义。最优解可以写成统一的解 析表达式。所得到的最优控制规律是状态变量的反馈形式, 便于计算和工程实现。
可以兼顾系统性能指标的多方面因素。例如快速性、能量 消耗、终端准确性、灵敏度和稳定性等。
dt
这时问题转化为:用不大的控制量,使系统输出Y(t)紧
紧跟随Yr(t)的变化,故称为跟踪问题。
2023/12/21
13
6.2 有限时间的状态调节器问题
问题6.2.1 给定线性定常系统的状态方程和初始条件
X (t) AX (t) BU (t)
X
(t0 )
X0
(6.2.1)
其 中 X(t) 是 n 维 状 态 变 量 , U(t) 是 m 维 控 制 变 量 , A 是 nn常数矩阵,B是nm常数矩阵。性能指标是
在理论上,线性二次型最优控制问题是其它许多控制问题 的基础,有许多控制问题都可作为线性二次型最优控制问 题来处理。
线性二次型最优控制问题,在实践上得到了广泛而 成功的应用。可以说,线性二次型最优控制问题是 现代控制理论及其应用领域中最富有成果的一部分。
2023/12/21
高等教育《最优控制理论》课件 第六章
![高等教育《最优控制理论》课件 第六章](https://img.taocdn.com/s3/m/a6082ad950e2524de5187e1f.png)
SN ( x)
W1 ( x) = d ( x, F )
最优性原理 一个多级决策过程的最优策略具有这样的性质:不管其初始状态和初始决策如 何,其余的决策必须根据第一个决策所形成的状态组成一个最优策略。
6-2 离散最优控制问题
设控制系统的状态方程为
x ( k + 1) = f [x ( k ), u ( k )]
cx(1) 1 x 2 (1) x(1) * u (1) = − ,J 1 = c ,x ( 2 ) = 1+ c 2 1+ c 1+ c
再考虑从x(0)到x(1)的情况,控制为u(0)
1 c 2 1 1 * J 2 [x(0)] = min u 2 (0) + J1* = min u 2 (0) + ⋅ x (1) u (0) 2 u (0) 2 2 1+ c 1 1 c J 2 [x(0)] = u 2 (0) + [x(0) + u (0)]2 2 2 1+ c ∂J 2 =0 ∂u (0) cx(0) u ( 0) = − 1 + 2c cx 2 (0) * J2 = 2(1 + 2c) 1+ c x(1) = x(0) 1 + 2c cx(0) cx(0) , u * (1) = − 最优控制序列为 u * (0) = − 1 + 2c 1 + 2c
最优性能指标为
cx 2 (0) J = 2(1 + 2c)
*
6.3 连续动态规划
设连续系统动态方程为
& x(t ) = f ( x(t ), u (t ), t )
x(t ) ∈ R n , u (t ) ∈ R p
W1 ( x) = d ( x, F )
最优性原理 一个多级决策过程的最优策略具有这样的性质:不管其初始状态和初始决策如 何,其余的决策必须根据第一个决策所形成的状态组成一个最优策略。
6-2 离散最优控制问题
设控制系统的状态方程为
x ( k + 1) = f [x ( k ), u ( k )]
cx(1) 1 x 2 (1) x(1) * u (1) = − ,J 1 = c ,x ( 2 ) = 1+ c 2 1+ c 1+ c
再考虑从x(0)到x(1)的情况,控制为u(0)
1 c 2 1 1 * J 2 [x(0)] = min u 2 (0) + J1* = min u 2 (0) + ⋅ x (1) u (0) 2 u (0) 2 2 1+ c 1 1 c J 2 [x(0)] = u 2 (0) + [x(0) + u (0)]2 2 2 1+ c ∂J 2 =0 ∂u (0) cx(0) u ( 0) = − 1 + 2c cx 2 (0) * J2 = 2(1 + 2c) 1+ c x(1) = x(0) 1 + 2c cx(0) cx(0) , u * (1) = − 最优控制序列为 u * (0) = − 1 + 2c 1 + 2c
最优性能指标为
cx 2 (0) J = 2(1 + 2c)
*
6.3 连续动态规划
设连续系统动态方程为
& x(t ) = f ( x(t ), u (t ), t )
x(t ) ∈ R n , u (t ) ∈ R p
现代控制理论-第六章
![现代控制理论-第六章](https://img.taocdn.com/s3/m/adf24cd876eeaeaad1f3301f.png)
• 新系统的状态方程为
x1 0 x 0 2 x3 10000 y 1 0 0x 1 0 1510 x1 0 1 x2 0 u 114 .1 x3 10000 0
x Ax Bu
• 新系统
y Cx v Hy u x ( A BHC ) x Bv y Cx
2.输出反馈到状态微
• 原系统 • 完全可观 • 新系统
x Ax Bu y Cx
x Ax Bu Hy y Cx x ( A HC ) x Bu y Cx
• 新系统的方框图
第三节 全维状态观测器
•一.定义:若系统是完全可观的,但因种种原因,如空间 不足、成本较高等,无法将状态量测到,可人为建立全部 状态,使构建的状态变量无限接近原系统的状态变量,称 为全维状态观测器,简称状态观测器。 •二.实现条件:系统完全可观 •三.实现方法: •1.原系统 x Ax Bu, y Cx
1 S 3 114 .1S 2 1510 S lim 0.151 0.2 S 0 S S 3 114 .1S 2 1510 S 10000
• 新系统的传递函数为
G(S ) k 10000 3 ( S 100 )( S 7.07 j 7.07 )( S 7.07 j 7.07 ) S 114 .1S 2 1510 S 10000
2
• 3.利用状态反馈实现极点配置: I ( A BHC ) • 4.利用状态反馈实现极点配置: I ( A HC )
2
h
h1 h2
最优控制第六章极小值原理
![最优控制第六章极小值原理](https://img.taocdn.com/s3/m/a2ac87623b3567ec112d8a21.png)
以 w u,w * u*代入上式,便得
H x*, *,u,t H x*, *,u*,t
(35)
上式表明,如果哈密尔顿函数H看成 utU 的
函数,那么最优轨迹上与最优控制u*(t)相对应的
H将取绝对极小值(即最小值)。这是极小值原理的
一个重要结论。
定理 设系统状态方程为
xt0 x0
Nxt f ,t f 0
(48)
这就是著名的极小值原理。
下面对定理作些说明: 1) 定理的第一、第二个条件,即式(41)~式
(44),普遍适用于求解各种类型的最优控制问题, 且与边界条件形式或终端时刻自由与否无关。其
中,第二个条件:min H x*, *,u,t H x*, *,u*,t uU
(45)
u u
3) H函数在最优轨迹终点处的值决定于
H
Φ
T
N
0
(46)
t f
t f tt f
4) 协态终值满足横截条件
t f
Φ
x
t
f
N T
x t f
tt f
(47)
5) 满足边界条件
J1
Ψ
x T
Ψ x
Φ t f
N T t f
tt f
t f
d xT
tf
Φ
x
N T x
Ψ x
t t
f
wT
Ψ w tt f
zT
Ψ z
tt f
王孝武主编《现代控制理论基础》(第3版)第6章课件
![王孝武主编《现代控制理论基础》(第3版)第6章课件](https://img.taocdn.com/s3/m/68b18d857e192279168884868762caaedc33ba56.png)
2
由伴随方程 H 0
x
const
(t
f
)
x(t
f
)
1 2
cx2 (t
f
)
cx(t
f
)
因为 const
(t) (t f ) cx(t f )
由控制方程
H u 0
u
即
u* (t) cx(t f )
将 u* 代入状态方程 x u cx(t f )
解为 x(t) cx(t f )(t t0 ) c1
(7)
其中,x 为n 维状态向量; u 为r 维控制向量; f 为n 维向量函数。
要求在控制空间中寻求一个最优控制向量 u(t),使以下性能指标
J [x(t f )] t f L(x, u,t) d t t0
沿最优轨线 x(t)取极小值。
(8)
(性能指标如(8)式所示的最优控制问题,是变分法中的波尔扎 问题)
当 t t0 时,代入上式,求得 c1 x(t0 ) ,所以
x(t) cx(t f )(t t0 ) x(t0 )
当 t t f 时,
x(t
f
)
1
x(t0 ) (t f
t0
)
最优性能指标为
J
*
1 2
cx2
(t
f
)
1 2
tf t0
u2 d t 1 cx2 (t0 ) 2 1 c(t f t0 )
(10)
则 J [x(t f )] t f [H (x, u, λ,t) λT (t)x]d t
t0
[x(t f )] t f H (x, u, λ,t) d t t f λT (t)x d t
t0
由伴随方程 H 0
x
const
(t
f
)
x(t
f
)
1 2
cx2 (t
f
)
cx(t
f
)
因为 const
(t) (t f ) cx(t f )
由控制方程
H u 0
u
即
u* (t) cx(t f )
将 u* 代入状态方程 x u cx(t f )
解为 x(t) cx(t f )(t t0 ) c1
(7)
其中,x 为n 维状态向量; u 为r 维控制向量; f 为n 维向量函数。
要求在控制空间中寻求一个最优控制向量 u(t),使以下性能指标
J [x(t f )] t f L(x, u,t) d t t0
沿最优轨线 x(t)取极小值。
(8)
(性能指标如(8)式所示的最优控制问题,是变分法中的波尔扎 问题)
当 t t0 时,代入上式,求得 c1 x(t0 ) ,所以
x(t) cx(t f )(t t0 ) x(t0 )
当 t t f 时,
x(t
f
)
1
x(t0 ) (t f
t0
)
最优性能指标为
J
*
1 2
cx2
(t
f
)
1 2
tf t0
u2 d t 1 cx2 (t0 ) 2 1 c(t f t0 )
(10)
则 J [x(t f )] t f [H (x, u, λ,t) λT (t)x]d t
t0
[x(t f )] t f H (x, u, λ,t) d t t f λT (t)x d t
t0
最优控制 第6章 最优控制的计算方法
![最优控制 第6章 最优控制的计算方法](https://img.taocdn.com/s3/m/dc9c9681d4d8d15abe234e9a.png)
则(6-7)变为
δJ = φ[ X (t f ) + δX (t f ), t f ] − φ[ X (t f ), t f ] + ∫ {H [ X + δX , U + δU , X , t ]
t0
tf
− H [ X , U , λ , t ] − λ [ f ( X + δX , U + δU , t ) − f ( X , U , t )]}dt
δJ = J [U + δU ] − J [U ] = φ[ X (t f ) + δX (t f ), t f ] − φ[ X (t f ), t f ]
+ ∫ F [ X + δX , U + δU , t ] − F [ X , U , t ]dt
t0 tf
(6-7)
哈密顿函数为:
H [ X , λ , U , t ] = F [ X , U , t ] + λT f [ X , U , t ]
§6.1 直接法
一、梯度法
给定系统的状态方程:
& = f [ X (t ), U (t ), t ] X
初始条件:
(6-1) (6-2)
X (t 0 ) = t0
以及性能泛函: J [U (t )] = φ[ X (t f ), t f ] + 终端时刻 t f 给定, X (t f ) 自由。
∫
tf
t f ∂H ∂φ T t ] δX (t f ) − [λT (t )δX ]t0f + ∫ [ ] δUdt t0 ∂U ∂X (t f ) T
(6-11)
考虑边界条件 则(6-11)变为
δJ = φ[ X (t f ) + δX (t f ), t f ] − φ[ X (t f ), t f ] + ∫ {H [ X + δX , U + δU , X , t ]
t0
tf
− H [ X , U , λ , t ] − λ [ f ( X + δX , U + δU , t ) − f ( X , U , t )]}dt
δJ = J [U + δU ] − J [U ] = φ[ X (t f ) + δX (t f ), t f ] − φ[ X (t f ), t f ]
+ ∫ F [ X + δX , U + δU , t ] − F [ X , U , t ]dt
t0 tf
(6-7)
哈密顿函数为:
H [ X , λ , U , t ] = F [ X , U , t ] + λT f [ X , U , t ]
§6.1 直接法
一、梯度法
给定系统的状态方程:
& = f [ X (t ), U (t ), t ] X
初始条件:
(6-1) (6-2)
X (t 0 ) = t0
以及性能泛函: J [U (t )] = φ[ X (t f ), t f ] + 终端时刻 t f 给定, X (t f ) 自由。
∫
tf
t f ∂H ∂φ T t ] δX (t f ) − [λT (t )δX ]t0f + ∫ [ ] δUdt t0 ∂U ∂X (t f ) T
(6-11)
考虑边界条件 则(6-11)变为
现代控制理论 第6章 最优控制(录像)2(极小值 [1]加了二次型
![现代控制理论 第6章 最优控制(录像)2(极小值 [1]加了二次型](https://img.taocdn.com/s3/m/d65dd491fc4ffe473368abc0.png)
由min H x , ,u,t H x , ,u ,t uU
min H
uU
min uT BT
u( t ) SGN( BT )
得:
ui( t )sgn ( BT ) i ,i1,2, ,r
1 a 0
其中函数sgn a
0
a0
1 a 0
a为向量时用SGN表示。
总目录 返回 上一页 下一页
6.8 极小值原理
经典变分法
x Hx,u, ,t , Hx,u, ,t , Hx,u, ,t 0
x
u
状态方程
伴随方程
控制方程
应用范围:
u无约束, 且H对u连续可微 难满足
一般 ui Mi ( i 1,2 m ) 更一般控制u(t)受不等式约束:
gxt ,u(t),t 0
总目录 返回 上一页 下一页
t
u 切换时刻
总目录 返回 上一页 下一页
6.10.2 状态轨线及开关曲线
x* t 12.3
1
0 0.307
1
0.5
t 0 0.307
6.44
5
1 t 0 0.307 1 t
总目录 返回 上一页 下一页
例6.8.2 已知系统 x1t x1t ut x10 1
x2 t x1t
x2 0 0
其中 ut 1 ,若x t f 自由,求u* t 使
J x2 1 min
由正则方程组: x Ax Bu
H AT
x
(
t
)
e
AT t
(
0
)
e
AT t 0
u( t ) SGN( BT ) SGN( BT e ATt0 )
1.时间控制是Bang-Bang控制,即开关控制;
min H
uU
min uT BT
u( t ) SGN( BT )
得:
ui( t )sgn ( BT ) i ,i1,2, ,r
1 a 0
其中函数sgn a
0
a0
1 a 0
a为向量时用SGN表示。
总目录 返回 上一页 下一页
6.8 极小值原理
经典变分法
x Hx,u, ,t , Hx,u, ,t , Hx,u, ,t 0
x
u
状态方程
伴随方程
控制方程
应用范围:
u无约束, 且H对u连续可微 难满足
一般 ui Mi ( i 1,2 m ) 更一般控制u(t)受不等式约束:
gxt ,u(t),t 0
总目录 返回 上一页 下一页
t
u 切换时刻
总目录 返回 上一页 下一页
6.10.2 状态轨线及开关曲线
x* t 12.3
1
0 0.307
1
0.5
t 0 0.307
6.44
5
1 t 0 0.307 1 t
总目录 返回 上一页 下一页
例6.8.2 已知系统 x1t x1t ut x10 1
x2 t x1t
x2 0 0
其中 ut 1 ,若x t f 自由,求u* t 使
J x2 1 min
由正则方程组: x Ax Bu
H AT
x
(
t
)
e
AT t
(
0
)
e
AT t 0
u( t ) SGN( BT ) SGN( BT e ATt0 )
1.时间控制是Bang-Bang控制,即开关控制;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内,将系统从初始状态转移到零点附近,并使给定的性能泛函取极值。
6.12.3 无限时间状态调节器问题 对于无限时间状态调节器,这里要强调以下几点:
1)适用于线性定常系统,且要求系统完全能控,而在有限时间状态调节 器中则不强调这一点。 2)在性能泛函中,由于 去了意义,即 3)与有限时间状态调节器一样,最优控制也是全状态的线性反馈,结构 ,而使终端泛函 失
6.1 概述 6.2 研究最优控制的前提条件 6.3 静态最优化问题的解 6.4 离散时间系统的最优控 6.5 离散时间系统最优控制的 离散化处理 6.6 泛函及其极值-变分法 6.7 用变分法求解连续系统最 优控制问题-有约束条件 的泛函极值
6.8 极小值原理 6.9 Bang-Bang控制
6.10 双积分系统的时间最优
相同的最小时间
令
作用下,系统在
时
刻也将初值
转移到原点
。即
所以w也是最小时间控制,根据前面的结论,
都是
Bang.Bang控制,又
等的时刻上,有 最优控制矛盾,因此有:
不相
不是Bang—Bang控制,与w(〃)是
这表明控制
是惟一的。
6.10 双积分系统的时间最优控制
设双积分系统的状态方程为:
求最优控制
6.10.l
,把系统从仞态转移到终态,使
为极小。
根据极小值原理确定最优控制
列出哈尔密顿函数
为使H全局最小.呵得最优控制:
由协态方程
得:
即 解得: 故 在 相应的 ,如下图所示。 是一直线,其四种可能形状以及与之
显而易见,可供选择的最优控制序列有下列四种:
切换次数至多一次。切换时刻为:
6.10.2 6.10.3
状态轨线及开关曲线 最优控制律 转移到终态(0,0)。
为了使系统的状态能以最小时间从初态
当初态所划位置不同时,应当采取的控制规律不同。但是,凡不在开关曲线 上的点,至少要经过一次切换,转到开关曲线后才能沿着 γ+或γ-到达原点(0, 0)。因此,按照初态 所处的位置可得到下列最优控制规律:
若将开关曲线写成:
6.4.2 具有二次型性能指标的线性系统
6.5 离散时间系统最优控制的离散化处理
设系统状态方程为:
(73) 目标函数为: (74) 式中, 为终端代价函数,假定 是自由终端。 使式(74)为最小。
最优控制问题是在式(73)约束条件下,寻求
6.6 泛函及其极值——变分法
6.6.1 变分法的基本概念 1.泛函 变分法是研究泛函极值问题的数学工具。什么叫泛函呢?通俗地说,泛 函就是函数的函数。它是普通函数概念的一种扩充。 2.泛函的极值 3.泛函的变分 4.泛函极值定理 6.6.2 泛函极值的必要条件——欧拉方程 求泛函
静态最优化问题的目标函数是一个多元普通函数,其最优解可以通过古 典微分法对普通函数求极值的途径解决。动态最优化问题的目标函数是一个 泛函数,确定其最优解要涉及古典变分法求泛函极值的问题。 6.3.1 一元函数的极值 设 为定义在闭区间 上的实值连续可做函数,则存在极值
点
的必要条件是:
(21) 为极小值点充要条件是:
(7) 这时,在 空间中,把所有满足上式的点 的集合,记作: (8)
U称为控制集。把满足
(9) 的 称为容许控制。
3.明确初始条件 通常,最优控制系统的初始时刻 定始端。如果 条件: 是给定的。如果初始状态 称固 是任意的,则称自由始端。如果 必须满足某些约束
相应的始端集为: 此时, 则称为可变始端。 和终端状态 都是给
6.11 动态规划法
动态规划是贝尔曼(Bellman)在 20世纪~ 50年代作为多段(步)决策过程 研究出来的,现已在许多技术领域中获得广泛应用。 动态规划的核心是最优性原理。 6.11.1 多段决策问题
6.11.2
离散系统的动态规划
6.11.3 连续系统的动态规划
利用动态规划最优性原理,可以推导出能泛函为极小应满足的条件— 哈密尔顿—雅可比方程。 即
式右边第一项反映对终端性能的要求,例如对目标的允许偏差、脱靶情况等, 称为终端指标函数;第二项中L为状态控制过程中对动态品质及能量或燃料 消耗的要求等,称为动态指标函数。
若不考虑终端指标函数项
则有:Leabharlann 这种形式的性能指标称为积分型或拉格朗日型。若不考虑动态指标函数 项, 则形如:
称为终端型或梅耶型。
6.3 静态最优化问题的解
控制 6.11 动态规划法
6.12 线性二次型最优控制问 题 6.1 3 线性二次型次优控制问 题
6.1 概述
所谓最优化,原非新鲜概念,人们在从事某项工作时,总是想着采取 最合理的方案或措施,以期收到最好的效果,这里就包含着最优化问题。 求解动态最优化问题的方法主要有古典变分法,极小(大)值原理及动态 规划法等。 动态最优化问题可以分为确定性和随机性两大类。在确定性问题中,没 有随机变量,系统的参数都是确定的。本书只讨论确定性最优控制问题。
6.6.3 多元泛函的极值条件 6.6.4 可变端点问题 6.6.5 具有综合型性能泛函的情况
6.7 用变分法求解连续系统最优控制问题——有约束条件的 泛函极值
6.7.1 拉格朗日问题
6.7.2 波尔札问题
6.8
极小值原理
定理6.8.1 设系统状态方程为: (1) 始端条件为: 控制约束为:
(2) 终端约束为:
为极大值点充要条件是:
因为
的极小值和
的极大值等效,所以今后所有推导和
结论,均以圾小化为准。 6.3.2 多元函数的极值 设 元函数 这里 为 维列向量。它取
极值的必要条件是:
或函数的梯度为零矢量。
至于取极小值的充要条件,尚需满足:
即下列海赛矩阵为正定矩阵。
6.3.3
具有等式约束条件的极值
上面讲的是无约束条件极值问题的求解方法。对于具有等式约束条件的 极值问题,则要通过等效变换,化为无约束条件的极值问题来求解。 设罐头桶的几何尺寸:高为 半径为 则容积为: (29) 给定铁皮面积A=常量。要使罐头桶容积为最大,必然要受条件: (30) 的约束: 解此类问题的方法有多种,如嵌入法(消元法)和拉格朗日乘子法(增元法) 等。
则最优控制律可表示成:
6.10.4 最优控制律的工程实现
6.10.5 最优时间计算 基本方法是把状态转移轨线按控制序列分成若f段,逐段汁算所需时问然
后求和。下面给出的是从初态 沿最优轨线到轨线与开关曲线交点 的时问,以及从交点沿开关曲线到达原点时间的计算公式在日前情况下,只 要把这两段时间加起来,即为状态转移的最小时间。
必须为负定。 (4)
(5)
(6)
将式(6)代入式(2),得性能指标:
由于A 所有特征值均具负实部,故有
,从而下式成立: (7)
此外,反馈矩阵K 亦不能从李雅普诺夫方程: (8)
直接求解。因为式(8)中的P 和K 阵都未知。 一个简单的处理方法是用梯度速降法,由式(5)解出用K 表示的P , 即P【K】,然后代入性能指标式(7),再令:
式中,
为闭环系统的状态矩阵。
此时,性能指标演化为:
(2) 式中 在规定了系统结构的情况下,设计任务就是确定输出反馈矩阵K,使性 能指标式(2)取极值。 对渐近稳定系统式(1),构造一个李雅普诺夫函数:
(3) 将上式两边求导数,得:
对于渐近稳定的系统,当 为此,令: 式中Q 为正定的实对称阵。 因此 是负定的。比较式(5)和式(3)可得:
1.嵌入法
先从约束条件式(30) 解出一个变量,例如
数式(29)得:
等,然后代入目标函
(31)
这样就变成一个没有约束条件的函数式。显然,式(31)取极值的条件为:
可解出极值点:
又因为 积为: 2.拉格朗日乘子法
故上述极值点为极大值点。罐头桶的最大容
6.4 离散时间系统的最优控
6.4.1 基本形式
图也与前面的相同。但是,这里的P 是n×n 维的实对称常矩阵,是黎卡捉矩
阵代数方程的解。因此,构成的是一个线性定常闭环系统。 4)闭环系统是渐近稳定的,即系统矩阵 负实部,而不论原受控系统A的特征值如何。 的特征值均具
6.12.4 输出调节器问题
1.输出调节器的任务是当系统受到外扰时,在不消耗过多能量的前提下, 维持系统的输出矢量接近其平衡状态。 1.线性时变系统输出调节器问题 给定一个能观的线性时变系统:
6.12.5 跟踪器问题 1.线性时变系统跟踪器问题 2.线性定常系统
6.1 3
线性二次型次优控制问题
没完全能控、能观系统的动态方程为:
性能指标为二次型:
式中, 成,即
为正定(或半正定)对称阵; 是由输出变量
为正定对称阵。 的线性负反馈所构
如上所述,设控制变量
闭环系统结构图示如下图所示:
从图可得闭环系统的状态方程: (1)
6.2 研究最优控制的前提条件
在研究确定性系统的最优控制时,前提条件是: 1.给出受控系统的动态描述,即状态方程 对连续时问系统 对离散时间系统
(6)
2.明确控制作用域 在工程实际问题中,控制矢量 意大。即 上式的点 往往不能在 空间中任意取值,
而必须受到某些物理限制,例如,系统中的控制电压,控制功率不能取得任 要满足某些约束条件,这时,在 的集合,记作: 空间中,把所有满足
解出使
的K。
本章完
6.12
线性二次型最优控制问题
6.12.1 二次型性能泛函
二次型性能泛函的一般形式如下:
6.12.2 有限时间状态调节器问题 状态调节器的任务在于,当系统状态由于任何原因偏离了平衡状态时,
能在不消耗过多能量的情况下,保持系统状态各分量仍接近于平衡状态。在
研究这类问题时,通常是把初始状态矢量看作扰动,而把零状态取作平衡状 态。于是调节器问题就变为寻求最优控制规律u,在有限的时间区间