三羧酸循环过程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三羧酸循环

糖酵解的最终产物丙酮酸,在有氧条件下进入线粒体,通过一个包括三羧酸和二羧酸的循环逐步脱羧脱氢,彻底氧化分解,这一过程称为三羧酸循环(tricarboxylic acid cycle,TCAC)。这个循环是英国生物化学家克雷布斯(H.Krebs)首先发现的,所以又名Krebs 循环(Krebs cycle)。1937年他提出了一个环式反应来解释鸽子胸肌内的丙酮酸是如何分解的,并把这一途径称为柠檬酸循环(citric acid cycle),因为柠檬酸是其中的一个重要中间产物。TCA循环普遍存在于动物、植物、微生物细胞中,是在线粒体基质中进行的。TCA循环的起始底物乙酰CoA不仅是糖代谢的中间产物,也是脂肪酸和某些氨基酸的代谢产物。因此,TCA循环是糖、脂肪、蛋白质三大类物质的共同氧化途径。

(一)三羧酸循环的化学历程

TCA循环共有9步反应(图5-6)。

1.反应(1)丙酮酸在丙酮酸脱氢酶复合体催化下氧化脱羧生成乙酰CoA,这是连结EMP与TCAC的纽带。

丙酮酸脱氢酶复合体(pyruvic acid dehydrogenase complex)是由3种酶组成的复合体,含有6种辅助因子。这3种酶是:丙酮酸脱羧酶(pyruvic acid decarboxylase)、二氢硫辛酸乙酰基转移酶(dihydrolipoyl transacetylase)、二氢硫辛酸脱氢酶(dihydrolipoic acid dehydrogenase)。6种辅助因子。6种辅助因子分别是硫胺素焦磷酸(thiamine pyrophosphate,TPP)、辅酶A (coenzyme A)、硫辛酸(lipoic acid)、FAD(flavin adenine dinucleotide)、NAD+(nicotinamide adenine dinucleotide)和Mg2+。

图5-6 三羧酸循环的反应过程

上述反应中从底物上脱下的氢是经FAD→FADH2传到NAD+再生成NADH+H+。

2.反应(2)乙酰CoA在柠檬酸合成酶催化下与草酰乙酸缩合为柠檬酸,并释放CoASH,此反应为放能反应(△G°,=-32.22kJ·mol-1)。

3.反应(3)由顺乌头酸酶催化柠檬酸脱水生成顺乌头酸,然后加水生成异柠檬酸。

4.反应(4)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢生成NADH,其中间产物草酰琥珀酸是一个不稳定的β-酮酸,与酶结合即脱羧形成α-酮戊二酸。

5.反应(5) α酮戊二酸在α酮戊二酸脱氢酶复合体催化下形成琥珀酰辅酶A和NADH,并释放CO2。

α酮戊二酸脱氢酶复合体是由α酮戊二酸脱羧酶(α-ketoglutaric acid decarboxylase)、二氢硫辛酸琥珀酰基转移酶(dihydrolipoyl transsuccinylase) 及二氢硫辛酸脱氢酶所组成的,含有6种辅助因子:TPP、NAD+、辅酶A、FAD、硫辛酸及Mg2+。该反应不可逆。

6.反应(6)含有高能硫酯键的琥珀酰CoA在琥珀酸硫激酶催化下,利用硫酯键水解释放的能量,使ADP磷酸化成ATP。该反应是TCA循环中唯一的一次底物水平磷酸化,即由高能化合物水解,放出能量直接形成ATP的磷酸化作用。

7.反应(7)琥珀酸在琥珀酸脱氢酶催化下,脱氢氧化生成延胡索酸,脱下的氢生成FADH2。丙二酸、戊二酸与琥珀酸的结构相似,是琥珀酸脱氢酶特异的竞争性抑制剂。

8.反应(8)延胡索酸经延胡索酸酶催化加水生成苹果酸。

9.反应(9)苹果酸在苹果酸脱氢酶的催化下氧化脱氢生成草酰乙酸和NADH。草酰乙酸又可重新接受进入循环的乙酰CoA,再次生成柠檬酸,开始新一轮TCA循环。

TCA循环的总反应式为:CH3COCOOH+4NAD++FAD+ADP+Pi+2H2O3CO2+4NADH+4H++FADH2+ATP(5-8)

(二)三羧酸循环的回补机制

TCA循环中某些中间产物是合成许多重要有机物的前体。例如草酰乙酸和α酮戊二酸分别是天冬氨酸和谷氨酸合成的碳架,延胡索酸是苯丙氨酸和酪氨酸合成的前体,琥珀酰CoA是卟啉环合成的碳架。如果TCA循环的中间产物大量消耗于有机物的合成,就会影响TCA循环的正常运行,因此必须有其他的途径不断地补充,这称之为TCA循环的回补机制(replenishing mechanism)。主要有三条回补途径:

1.丙酮酸的羧化丙酮酸在丙酮酸羧化酶催化下形成草酰乙酸。

Pyr+CO2+H2O+ATPOAA+ADP+Pi (5-9)

丙酮酸羧化酶的活性平时较低,当草酰乙酸不足时,由于乙酰CoA 的累积可提高该酶活性。这是动物中最重要的回补反应。

2.PEP的羧化作用在糖酵解中形成的PEP不转变为丙酮酸,而是在PEP羧化激酶作用下形成草酰乙酸,草酰乙酸再被还原为苹果酸,苹果酸经线粒体内膜上的二羧酸传递体与Pi进行电中性的交换,进入线粒体基质,可直接进入TCA 循环;苹果酸也可在苹果酸酶的作用下脱羧形成丙酮酸,再进入TCA循环都可起到补充草酰乙酸的作用。这一回补反应存在于高等植物、酵母和细菌中,动物中不存在。

PEP+CO2+H2O→OAA+Pi (5-10)

3.天冬氨酸的转氨作用天冬氨酸和α酮戊二酸在转氨酶作用下可形成草酰乙酸和谷氨酸:

ASP+α-酮戊二酸OAA+Glu (5-11)

通过以上这些回补反应,保证有适量的草酰乙酸供TCA循环的正常运转。

(三)三羧酸循环的特点和生理意义

1.在TCA循环中底物(含丙酮酸)脱下5对氢原子,其中4对氢在丙酮酸、异柠檬酸、α-酮戊二酸氧化脱羧和苹果酸氧化时用以还原NAD+,一对氢在琥珀酸氧化时用以还原FAD。生成的NADH和FADH2,经呼吸链将H+和电子传给O2生成H2O,同时偶联氧化磷酸化生成ATP。此外,由琥珀酰CoA形成琥珀酸时通过底物水平磷酸化生成ATP。因而,TCA 循环是生物体利用糖或其它物质氧化获得能量的有效途径。

2.乙酰CoA与草酰乙酸缩合形成柠檬酸,使两个碳原子进入循环。在两次脱羧反应中,两个碳原子以CO2的形式离开循环,加上丙酮酸脱羧反应中释放的CO2,这就是有氧呼吸释放CO2的来源,当外界环境中二氧化碳浓度增高时,脱

相关文档
最新文档