KW KW汽车车载充电机充电桩原理及设计

DC/DC部分采用的是氮化镓MOS 此部分是采用氮化镓MOS的

?输出电压170 to 500 V DC ?输出功率: 3.3kW max

?输出电流: 12 A DC max ?效率: > 96%输出

?输入电压: 85 to 265 V AC ?频率: 45 to 70 Hz

?输入电流: 20 A RMS max ?PFC:≥0.99

输入?输出电压: 12V—24V DC ?输出功率: 2.0kW max

?输出电流: 12 A DC max ?效率: > 97%

输出?输入电压: 200-500 Vdc

?输入电流: 15 A RMS max

输入充电机部分:高达99%效率(PFC)

车载DC/DC 部分

高效率,要求我们PFC 部分及DC/DC 部分均达98%以上效

率方可,这里介绍采用氮化镓的无桥PFC (效率高达99%)

及采用氮化镓的全桥DC/DC ,效率亦达99%。

方可使整机方案0.99*0.99=98%效率

PFC电路升级

传统单级PFC,有整流桥

交错式PFC,有整流桥适合中小功率

含有整流桥,当大功率输出时,桥上损耗较大。MOSFET及二极管损耗较大

单电感。

大功率常会选此电路

含有整流桥,当大功率输出时,桥上损耗较大。MOSFET及二极管损耗较大需要二个电感,二个SIC二极管

体积较大

Coolmos无桥PFC,没有整流桥

氮化镓MOS无桥PFC,无整流桥,采用SIC二极管

氮化镓MOS无桥PFC,无整流桥,采用同

步整流

目前主流的无桥PFC

无整流桥,通过DSP/MCU控制S1,S2实现无桥PFC。

节省了整流桥上的损耗,效率大大提高。但需需二个电感,二个SIC二极管,二个MOSFET。

体积相对交错PFC,一样较大

采用氮化镓MOS的无桥PFC

只要一个电感,二个MOSFET,二个硅二极管

实现99.0%的效率,PF>99

相对Coolmos方案。效率提高,成本下降,体积减少1/3采用同步整流的氮化镓无桥PFC

S1,S2是工频开关,50HZ,Q1,Q2采用高频50K—500K 开关实现无桥PFC.

99.4%效率。PF>99

高效率,线路简单,低成本。

工频50HZ ,采用硅

管进行同步整流

采用氮化镓MOS

同步整流。工作在

50KHZ—

500KHZ,~ 达

1MHZ

EMI 滤波部分PFC 电感,仅

一个取样电阻

氮化镓MOS/HEMT 的无桥PFC 原理图

采用的是DSP 控制,工作频率在100KHZ

2400W,仅需一个很小的散热片一个很小的PFC电感

线路简单。

效率高达近99%

EMI实测报告

采用QFN封装的氮化镓做成的模块化产品

正面图背面图

1000W及2200W的无桥PFC(电感大小不同)

效率高达99。

5%

Low residue charge for GaN allows for a fast reset time & a much reduced recirculation energy Courtesy: Work done by Virginia Tech.DC/DC,基于氮化镓的LLC 电路(效率1%‐3%提高等同频率,等同Rds(on)GaN Cool-Mos GaN vs CoolMosfet效率差别500K LLC 10%负载50%负载100%负载3.50% 1.80% 1.0%

整个LLC设计无散热片处理

效率高达98.8%

1500W DC/DC模块/采用氮化镓MOS设计

高超高功率密度

99%效率,很好用于汽车上的

DC/DC

电动汽车(EV)和混合动力汽车(HEV)作为解决当今世界环境污染和能源危机两大问题的方法之一越来越受到重视。动力电池和低压蓄电池是电动汽车的两个核心部件,动力电池为电动机提供能量并存储再生制动时的能量,低压蓄电池为车载仪表、控制及照明系统提供能量,车载辅助电源DC-DC变换器作为两组电池之间的桥梁,要求其具有高效率、高功率密度、高可靠性等特点。适用于车载辅助电源DC/DC变换器的拓扑有多种,其中全桥ZVS软开关变换器以其高效率、结构、控制简单等优点而倍受青睐,成为研究热点。本文以提高车载辅助电源的效率和功率密度为目标,着重针对单级全桥ZVS变换器和两级变换器中前级峰值控制交错并联Boost变换器进行了研究。论文首先介绍了车载电源拓扑发展及现状,针对1500W,输出12V,125A的应用场合,选取单模块750W全桥ZVS变换器、两模块并联的方案进行研究,在总结前人研究的基础上,进行变换器主电路参数的设计以及功率器件的选取,建立了变换器小信号模型,并详细给出了补偿网络的设计方法。文中还对实验调试过程中的桥臂直通问题进行了探讨。在分析设计的基础上,搭建了一台750W实验样机,对样机效率做出了测试。效率是体积有限、运行工况恶劣的车载辅助电源最重要的性能指标之一,本文建立了全桥ZVS 变换器的损耗模型,通过损耗分析得出主要的损耗来源,然后针对功率器件的选择、主电路参数优化设计、吸收电路损耗的降低等几个方面进行了变换器的效率优化。对两台750W实验样机进行了并联,设计了均流环补偿网络,并进行了均流效果的测试。文章最后搭建了一台1500W交错并联Boost实验样机,变换器采用峰值控制方法,给出了小信号模型,详细给出了补偿网络的设计过程,最后进行了稳态以及动态试验予以模型的验证。

充电桩设计教材

辽宁科技大学 毕业设计(论文) 题目名称电动汽车充电桩的设计 题目类型毕业设计 系部电子信息与工程系 专业班级自动化12 学生姓名张樱舰 指导教师程万胜 辅导教师程万胜 时间2016.5.04至2016.6.04

摘要 随着社会的发展以及能源、环保等问题的日益突出,纯电动汽车以其零排放,噪声低等优点越来越受到世界各国的重视,电动汽车已成为2l世纪汽车产业的发展方向.电动汽车的迅速发展,对电池能源的要求越来越高,因而电池运行状态的管理变得越来越重要。本文深入地研究电动汽车的电池管理系统,并提出合理的系统设计思想与实现方法。首先介绍了电动汽车的发展历史和电池管理系统的技术现状,以及剩余电量预测的几种模型,以删一Ni电池作为研究对象,在分析MH-Ni电池的工作原理、电池的电压、电流和温度特性和传统预测方法的基础上,提出采用经验与积分计算结合的电池剩余容量预测方法。在对蓄电池快速充电原理和目前各种充电方法的研究基础上,提出了两阶段充电模式,即在充电前期采用多段恒流充电和脉冲充电相结合的快速充电方法,而在充电后期采用定电压补足充电法;对蓄电池快速充电的控制技术进行了探讨,在设计中,采用了具有电池电压负增量控制、电池最高电压控制和电池温度控制功能的综合控制法。综合以上研究,本文介绍了所研制的一种分布式、功能模块化的车载电池管理系统,它主要由主控模块、可控充电系统模块、电压采集子模块、温度采集子模块,电流测量子模块及显示模块构成,通过LIN总线实现相互通讯。并根据该总体设计,具体分析讨论了各个模块电路具体设计及实现方法。 关键词:电动汽车:电池管理系统:剩余容量:快速充电

SZDBZ-29.1-2010-电动汽车充电系统技术规范-第1部分:通用要求(1)

生命赐给我们,我们必须奉献生命,才能获得生命。 ICS 43.080 T 47 SZDB/Z 深圳市标准化指导性技术文件 SZDB/Z 29.1—2010 电动汽车充电系统技术规范 第1部分:通用要求 Technical specification of electric vehicle charging system Part 1: General requirements 2010-05-18发布2010-06-01实施

目次 前言................................................................................ II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 总则 (7) 5 设计要求 (7) 6 功能要求 (8) 7 环境与安全防护要求 (8) 8 标识与标志要求 (9) 附录 A (规范性附录)电动汽车充电设施直流计量装置 (10) 附录 B (规范性附录)电动汽车充电设施交流计量装置 (12)

前言 为贯彻落实国家节能环保政策,促进电动汽车推广应用,延伸供电服务价值链,指导和规范深圳市电动汽车配套充电设施建设,特制定本指导性技术文件。 SZDB/Z 29-2010《电动汽车充电系统技术规范》分为九个部分: ——第1部分:通用要求; ——第2部分:充电站及充电桩设计规范; ——第3部分:非车载充电机; ——第4部分:车载充电机; ——第5部分:交流充电桩; ——第6部分:充电站监控管理系统; ——第7部分:非车载充电机电气接口; ——第8部分:非车载充电机监控单元与电池管理系统通信协议; ——第9部分:城市电动公共汽车充电站。 本部分为SZDB/Z 29-2010的第1部分。 本部分按照GB/T 1.1-2009给出的规则起草。 本部分由深圳市发展与改革委员会提出并归口。 本部分起草单位:深圳市城市发展研究中心、中国南方电网有限责任公司、比亚迪股份有限公司、普天海油新能源动力有限公司、深圳市奥特迅科技有限公司、深圳市五洲龙汽车有限公司、深圳市计量质量检测研究院、深圳市科陆电子有限公司。 本部分主要起草人:吴德林、蔡羽、文新民、陆象桢、徐涛、高声敢、余建国、黄志伟、李飞、余南华、蒋浩、王晓毛、孙卫明、柯丽、李涛、邓伟光、张建华、郭彬、邓先泉、傅毅、邵浙海、赵宇、刘金玉、吴志强、王凤仁、李志刚、徐跃飞、雷惠博。

交直流充电桩设计及技术参数

桩 充电桩其功能类似于加油站里面的加油机,可以固定在地面或墙壁,安装于公共建筑(公共楼宇、商场、公共停车场等)和居民小区停车场或充电站内,可以根据不同的电压等级为各种型号的电动汽车充电。充电桩的输入端与交流电网直接连接,输出端都装有充电插头用于为电动汽车充电。充电桩一般提供常规充电和快速充电两种充电方式,人们可以使用特定的充电卡在充电桩提供的人机交互操作界面上刷 卡使用,进行相应的充电方式、充电时间、费用数据打印等操作,充电桩显示屏能显示充电量、费用、充电时间等数据。 充电桩充电桩由桩体、电气模块、计量模块等部分组成,充电桩 分为交流充电桩和直流充电桩。 交流充电桩又称为交流供电装置,固定安装在电动汽车外、与交 流电网连接,为电动汽车车载充电机(即固定安装在电动汽车上的充电机)提供交流电源的供电装置。交流充电桩只提供电力输出,没有充电功能,需连接车载充电机为电动汽车充电。 交流充电桩设计要求的功能规范有以下六点, 1.可以提供AC220V/7kw供电能力 2.具备漏电、短路、过压、欠压、过流等保护功能,确保充电桩安全可靠运行 3.具备显示、操作等必需的人机接口 4.交流充电计量 5.设置刷卡接口,支持RFID卡、IC卡等常见的刷卡方式,并可配置打印机,提供票据打印功能 6.具备充电接口的连接状态判断、控制导引等完善的安全保护控制逻辑 交流充电桩的电源要求为,输入电压:单相AC220V±10%,输出 频率50Hz±2%,输出为AC220V/7kw

交流充电桩的系统框图如下 交流充电桩给电动汽车的充电机提供电力输入,由于一般的车载充电机的功率不是很大,所以不能很好的实现快速充电。但我们可以采用直流充电桩来实现快充。 直流充电桩是固定安装在电动汽车外、与交流电网连接,可以为非车载电动汽车动力电池提供直流电源的供电装置。直流充电桩的输入电压采用三相四线AC380V±15%,频率50Hz,输出为可调直流电,直接为电动汽车的动力电池充电。由于直流充电桩采用三相四线制供电,可以提供足够的功率,输出的电压和电流调整范围大,可以实现快充的要求。 直流充电桩与交流充电桩的计量和通信及扩展计费功能类似,因此可以设计框图如下图所示 其工作原理:三相 380V 交流电源经过整流滤波变成直流输入电压,供给IGBT 桥。单片机通过驱动电路使功率开关IGBT工作把直流输入电压转换成脉宽调制的交流电压,然后由高频变压器变压隔离,最后通过输出整流滤波得到直流,进而对铅酸蓄电池充电。同时通过可控的电流电压反馈回路改变充电电流和充电电压,通过检测电池的端电压,充电电流以提供单片机进行决策。放电电路在充电电压较高时工作,以提高电池的接受能力。辅助电路提供器件工作电源,而保护电路(过流,过压、过温)可以保证系统安全、可靠工作。同时通过单片机来显示电量、时间等数据。

基于嵌入式系统的电动汽车交流充电桩设计

2012年8月15日第35卷第16期 现代电子技术 Modern Electronics Techniq ueAug .2012Vol.35No.16 基于嵌入式系统的电动汽车交流充电桩设计 范晓燕1,丁立波1,马河祥1,张文会2 (1.南京理工大学,江苏南京 210094;2.河南远大电力设备有限公司,河南济源 454650 )摘 要:交流充电桩是电动汽车充电系统的主要设备之一。在此以基于Cortex-M3内核的微处理器为核心,结合嵌入式实时操作系统μC/OS-Ⅱ,完成了电动汽车交流充电桩的设计与实现。对系统各个硬件模块的原理和结构进行了描述,并详细阐述了应用软件的任务优先级安排和各任务之间的关联性设计。该交流充电桩工作稳定、计量准确、操作简单、安装布设方便, 系统的可扩展性强,且已通过相关机构鉴定。关键词:电动汽车;交流充电桩;嵌入式系统Cortex-M3;μ C/OS-Ⅱ中图分类号:TN911-34;TM92 文献标识码:A 文章编号:1004-373X(2012)16-0178- 03Design of AC charging  point for electric vehicles based on embedded systemFAN Xiao-yan1,DING Li-bo1,MA He-xiang1, ZHANG Wen-hui 2 (1.Nanjing University of Science and Technology,Nanjing 210094,China;2.Henan Yuanda Electric Power Equipment Co.,Ltd.,Jiy uan 454650,China)Abstract:AC charging point is one of the main devices for electric vehicle charging system.This paper completes the de-sign and implementation of AC charging point,for which a microprocessor based on Cortex-M3as the core is adopted and aembedded real-time operating systemμC/OS-Ⅱis combined.The principle and structure of each hardware module are de-scribed in detail.The arrangement of priority and interconnection design of each task of the application software is elaborated.The test results show that the AC charging point has the features of stable operation,accurate measurement,simple manipu-lation,convenient installation and good scalability .Keywords:electric vehicle;AC charging point;embedded system;Cortex-M3;μ C/OS-Ⅱ收稿日期:2011-02- 26 汽车是现代生活中不可或缺的交通工具, 但随着能源危机和环境污染问题日益严峻,传统燃油汽车的发展面临着越来越大的压力。电动汽车凭借其在环保和节能等方面的优势,已成为汽车工业发展的必然趋势。然而,电动汽车要想得到快速广泛的普及,便捷高效的电能补给网络建设是重要的前提之一。充电系统为电动汽车运行提供能量补给,是电动汽车的重要基础支撑系统,也是 电动汽车商业化、 产业化过程中的重要环节[1 ]。交流充电桩是指固定安装在电动汽车外,与交流电网连接,为电 动汽车车载充电机提供交流电源的供电装置[ 2 ]。1 总体方案设计 本文研制了一种落地式交流充电桩,外观如图1所示,该交流充电桩安装方便,使用简单,可布设于充电站、 停车场等室内或室外场所。1.1 功能需求分析 首先,作为电动汽车电能补给装置,系统必须采取必要的安全防护措施,向车载充电机可靠地输出高质量的交流电能,同时保障操作人员及设备的电气安全。其次,准确的电能计量及收费是系统的基本功能,要满足 分时段多费率的使用要求。最后,一个友善的人机接口界面及便捷的操作流程设计,能够给用户留下愉快的使用体验,从而使产品更容易为市场所接受。1.2 模块化结构设计 根据交流充电桩的功能需求,对系统进行了模块化设计, 包括交流输入控制模块、交流输出控制模块及中央管理模块,如图1所示 。 图1 交流充电桩结构框图 各模块主要实现的功能如下: (1 )交流输入控制模块。实现交流电能的计量,交流供电控制,电气安全防护等。(2 )交流输出控制模块。实现充电电缆连接判断,与车载充电机进行通信。 (3)中央管理模块。实现人机交互、用户身份识别、计量收费、数据管理和通信、交流输入/输出模块控制,以及故障诊断等功能。

车载手机充电器原理

车载手机充电器? 简单的: 直接将车载12V电源经一片7805变成5V,再通过10十几个100K电阻分压,得到4.5~4.8伏的电压即可。 复杂的,12V通过LM317或者LM2596之类的芯片,稳压到4.7V ,并用一个电流检测模块,比如可用LM311之类的精密比较器,一旦电流减小,则通过电源芯片关断供电。但要注意,这些电源芯片大部分都是内部工作在开关模式,所以输出纹波比较大,注意要做好输出滤波。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 本文来自:我爱研发网(https://www.360docs.net/doc/d217993681.html,) 详细出处:https://www.360docs.net/doc/d217993681.html,/bbs/dispbbs.asp?boardID=56&ID=15346&page=1

充电桩项目可行性计划

充电桩项目 可行性计划 规划设计/投资分析/产业运营

充电桩项目可行性计划 充电桩,是用来给电动汽车(EV)充电的设备,是传统加油站及gaspump的替代品。充电桩主要由桩体、电气模块、计量模块等部分组成,一般具有电能计量、计费、通信、控制等功能。充电桩设备本身并没有太 高的技术含量,竞争差异主要体现在所生产设备的稳定性、兼容性、成本 的控制、品牌口碑和招投标能力。 该充电桩项目计划总投资9408.62万元,其中:固定资产投资7480.26万元,占项目总投资的79.50%;流动资金1928.36万元,占项目总投资的20.50%。 达产年营业收入14770.00万元,总成本费用11616.69万元,税金及 附加171.72万元,利润总额3153.31万元,利税总额3759.97万元,税后 净利润2364.98万元,达产年纳税总额1394.99万元;达产年投资利润率33.52%,投资利税率39.96%,投资回报率25.14%,全部投资回收期5.48年,提供就业职位325个。 坚持节能降耗的原则。努力做到合理利用能源和节约能源,根据项目 建设地的地理位置、地形、地势、气象、交通运输等条件及“保护生态环境、节约土地资源”的原则进行布置,做到工艺流程顺畅、物料管线短捷、

公用工程设施集中布置,节约资源提高资源利用率,做好节能减排;从而实现节省项目投资和降低经营能耗之目的。 ......

充电桩项目可行性计划目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

电动汽车车载充电机设计与实现

科技信息2013年第5期 SCIENCE&TECHNOLOGYINFORMATION作者简介:瞿章豪(1987—),男,硕士,从事电力电子器件、电动汽车充放电研究。徐正龙(1989—),男,硕士,从事电力电子器件、电动汽车充放电研究。 0引言 随着现代高新技术的发展和当今世界环境、能源两大难题的日益突出,电动汽车以优越的环保和节能特性,成为了汽车工业研究、开发和使用的热点。电动汽车的发展包括电动汽车以及能源供给系统的研究和开发,其中能源供给系统是指充电基础设施,供电、充电和电池系统及能源供给模式。充电系统为电动汽车运行提供能量补给,是电动汽车的重要基础支撑系统,也是电动汽车商业化、产业化过程中的重要环节。因此,电动汽车充电设施作为电动汽车产业链的重要组成部分,在电动汽车产业发展的同时还应该充分考虑充电设施的发展[1]。研究发现,电池充电过程对电池寿命影响很大,也就是说,大多数的蓄电池是“充坏”的。因此,开发出一种性能优良的充电系统对电池的寿命和电动汽车性能具有重大的作用。 1车载充电机硬件电路设计 车载充电机电路模块如图1所示。主要包括三个部分:功率单元、保护及控制单元、辅助管理单元,其中功率单元在控制单元的配合下是把市电转换成蓄电池充电需要的精电;控制模块通过电力电子开关器件控制功率单元的转换过程,通过闭环控制方式精确完成转换功能。辅助模块主要是为控制模块的电力电子器件提供低压供电及实现系统与外界的联系。此三个单元协同作用组成闭环控制系统。下面对此系统按照所分单元进行解析。 图1 车载充电机硬件电路模块图 Figure.1 The hardware circuit module chart of Electric Vehicle ’s charger 1.1 功率单元设计解析 功率单元作为充电能量传递通道,主要包含EMI 抑制模块、整流模块、PFC 校正模块、滤波模块、全桥变换模块、直流输出模块。为防止电网与充电机之间的谐波相互影响,在电网与充电机之间加入由X 电容、Y 电容、共模电感组成的(Electro-Magnetic Interference EMI )抑 制器;为提高转换效率及降低谐波影响,在整流后加入基于BOOST 拓扑的主动式(Power Factor Correction PFC )功率因数校正器;车载充电器为高压输出,在此为提高系统抗电压应力能力,采用全桥DC/DC 拓扑变换电路。为提高输出精度,滤波单元采用π型滤波方式。在控制器作用及其他单元配合下,各模块协同作用,把电网粗电转换成电池充电所需的精电。 1.2保护及控制单元设计解析 控制单元在辅助单元及检测反馈配合下,在此单元主控器内加入智能控制算法提高系统充电能量转换效率。主要包含原边检测及保护模块、过流检测及保护模块、过压/欠压监测及保护模块、DSP 主控模块。保护及检测模块是由电阻组成的检测网络检测功率单元电压信号,通过LM317组成放大网络对检测到的信号放大,再通过光耦将此信号传递到控制端;由电流互感器TAK17-02组成的检测网络检测功率单元电流信号传到控制端。由DSP28335电路及脉冲变压器隔离驱动电路组成的控制器单元根据采集到的功率单元的电流和电压信息,对DC/DC 全桥变换器模块作出相应的充电、保护控制,使充电器能够更加安全、高效、快速的为蓄电池充电,在完成控制能量转换的同时实现保护功能。 1.3辅助管理单元设计解析 辅助单元负责为整个系统本身提供运行能量及信息交付接口。辅助管理单元主要包括CAN 通信模块、辅助电源模块、人机交互模块。CAN 通信通过研究充电器与BMS 之间通信技术,最终实现充电机与BMS 之间的通信,从而实现实时监测电池特性根据电池特性,选择电池最优充电曲线充电,加快充电速度,减少充电等待时间。系统内部需要多种压值的供电电源,因此辅助电源需满足可同时提供多路输出电源,从调整性要求出发,本文辅助电源模块采用以UC3854为主控芯片的(Flyback )反激拓扑电路,考虑对驱动电路提供驱动能量及成本、空间要求,此电路工作于CCM 模式,同时以DSP28335供电输出回路为反馈控制端,以提高系统稳定性。电池在不同的使用周期,其充电接受功率改变,同时为满足系统升级需求,加入人机交互模块,从而加入人工智能提高系统适应性。 2 车载充电机软件设计 2.1 常用充电控制方法问题分析 作为车载充电器中通用的控制方法,控制电路通常采用固定开关频率,改变脉冲宽度的方法。充电器总是工作在同样开关频率下,所需充电功率的大小靠调节脉冲宽度来实现。所需充电功率小,脉冲较窄,充电电流较小;所需充电功率大,脉冲较宽,充电电流较大[2]。在上述控制方法中,所需充电功率大的情况下,充电效率高,但所需充电功率小的情况下充电功率低。车载充电机的损耗主要有两类功率损耗:导通损耗和开关损耗。导通损耗主要由负载电流大小决定,而开关损耗与开关次数成正比,开关次数越少,开关损耗就越低。在所需充电功率小的情况下,用恒频控制方法,此时开关频率与所需充电功率大的频率相同,所以两种情况下的开关损耗相同,此为固定开关频率控制方法 电动汽车车载充电机设计与实现 瞿章豪徐正龙 (重庆邮电大学自动化学院,中国重庆400065) 【摘要】本文设计了一种适用于电动汽车充电的充电系统,为提高充电效率,提出一种针对电池的充电的超前补偿控制算法。文中详细介绍了系统硬件电路组成及算法实现过程。充电实验结果表明,硬件设计结构合理,同时该算法控制的充电过程可以达到更高的充电效率。 【关键词】电动汽车;车载充电机;超前补偿控制;变频控制技术 The Charger's Design and Implementation Based on Electric Vehicle QU Zhang-hao XU Zheng-long (Chongqing University of Posts and Telecommunications ,Chongqing ,400065,China ) 【Abstract 】This paper designs a battery charging system that ’s suitable for electric vehicle,in order to improve the charging efficiency,this paper puts forward a battery charging control algorithm based on the lead compensation.This paper introduces the hardware circuit ’s structure and the algorithm ’s realization process of the system,in detail.The Charging experimental results show that the algorithm controls the charging process can achieve more higher charging efficiency 。 【Key words 】Electric Vehicle;Vehicle ’s charger;Lead compensation control;Variable frequency control technology ○机械与电子○ 133

电动汽车充电站及充电桩施工标准

苏州帕斯珀电子科技有限公司施工标准 电动汽车充电站及充电桩施工标准 Standard for construction of electricvehiclecharging station and chargingpoint 2018 - 02- 02编制2018 - 02 - 实施苏州帕斯珀电子科技有限公司发布

目次 前言 1 范围 2 标准引用文件 3 名词术语 4 总则 5 充电站和充电桩的组成和功能 5.1充电站的组成和功能 5.2充电桩的组成和功能 5 充电站的规模和类型 5.1充电站规模 5.2充电站类型 5.3充电机配置 5.4公共充电站的设置 6 充电站选址和充电桩设置 6.1充电站选址 6.2充电桩设置 6.3充电站布置 6.4充电机和充电桩技术要求 7 负荷等级与供电电源 7.1负荷及负荷等级 7.3供电电源要求 8 充电站和充电桩配电系统 8.1主要电气设备的选择 8.2充电站配电系统 8.3充电桩配电系统 8.4配电线路及敷设 9电能质量的要求 9.1电压偏差要求 10电气照明 10.1照度标准

10.3照明种类 11防雷与接地 11.1一般要求 11.2接地要求 12电气测量和计量 12.1一般要求 12.2表计的设置 13充电站安全防护 13.1消防及安全 13.2噪音限值 13.3标志标识 14对其他专业的设计要求14.1土建专业 14.2通风专业

前言 为贯彻落实国家节能环保政策,促进电动汽车推广应用,延伸供电服务价值链,指导和规范电动汽车配套充电设施建设,特制定本标准。 本标准是由苏州帕斯珀电子科技有限公司制定。最终解释权归公司所有;

W汽车车载充电机原理及设计

?输出电压170 to 500 V DC ?输出功率: 3.3kW max ?输出电流: 12 A DC max ?效率: > 96%输出 ?输入电压: 85 to 265 V AC ?频率: 45 to 70 Hz ?输入电流: 20 A RMS max ?PFC:≥0.99 输入?输出电压: 12V—24V DC ?输出功率: 2.0kW max ?输出电流: 12 A DC max ?效率: > 97% 输出?输入电压: 200-500 Vdc ?输入电流: 15 A RMS max 输入充电机部分:高达99%效率(PFC) 车载DC/DC 部分 高效率,要求我们PFC 部分及DC/DC 部分均达98%以上效 率方可,这里介绍采用氮化镓的无桥PFC (效率高达99%) 及采用氮化镓的全桥DC/DC ,效率亦达99%。 方可使整机方案0.99*0.99=98%效率

DC/DC部分采用的是氮化镓MOS 此部分是采用氮化镓MOS的

PFC电路升级 传统单级PFC,有整流桥 交错式PFC,有整流桥适合中小功率 含有整流桥,当大功率输出时,桥上损耗较大。MOSFET及二极管损耗较大 单电感。 大功率常会选此电路 含有整流桥,当大功率输出时,桥上损耗较大。MOSFET及二极管损耗较大需要二个电感,二个SIC二极管 体积较大

Coolmos无桥PFC,没有整流桥 氮化镓MOS无桥PFC,无整流桥,采用SIC二极管 氮化镓MOS无桥PFC,无整流桥,采用同 步整流 目前主流的无桥PFC 无整流桥,通过DSP/MCU控制S1,S2实现无桥PFC。 节省了整流桥上的损耗,效率大大提高。但需需二个电感,二个SIC二极管,二个MOSFET。 体积相对交错PFC,一样较大 采用氮化镓MOS的无桥PFC 只要一个电感,二个MOSFET,二个硅二极管 实现99.0%的效率,PF>99 相对Coolmos方案。效率提高,成本下降,体积减少1/3采用同步整流的氮化镓无桥PFC S1,S2是工频开关,50HZ,Q1,Q2采用高频50K—500K 开关实现无桥PFC. 99.4%效率。PF>99 高效率,线路简单,低成本。

电动汽车充电桩设计外文文献翻译最新译文

文献出处Hawkins S. The design of the electric vehicle charging pile [J]. SAE International Journal of Alternative Powertrains, 2015,5(3): 213-221. 原文 The design of the electric vehicle charging pile Abstract In the world's oil resources shortage and the grim situation of global warming, the construction of low carbon vehicles will become the auto industry a new development direction. Current research of electric vehicles around the world has entered the white-hot. People try to make it become a mainstream in the 21st century the development of the automobile. Electric vehicle charging infrastructure is an important part of the electric car industry chain can not be ignored in, at the same time of developing electric vehicle industry also should fully take into account the development of the charging infrastructure, so the design of electric vehicle charging pile and its control method of study is very necessary. Keywords: Electric vehicle charging pile; Equilibrium control; The human-computer interaction 1 Introduction Countries in the world to promote energy conservation and environmental protection, of which the word "low carbon" everyone not unfamiliar, carbon emissions in today's car is bigger, the industry also gradually focus on low carbon field. The auto industry's carbon emission is higher and higher. To be raising industry development and the balance of environmental emissions, the automobile industry faced with the transformation of development. In the world's oil resources shortage and the serious situation of global warming, the global auto industry uniform standards will reference to carbon emissions standards, leading the global auto industry development better. Electric cars compared to traditional petrol powered cars, in terms of environmental protection and energy saving shows the outstanding advantages. The electric car has many advantages, such as less pollution emissions, high efficiency, low noise, low running cost, etc., it has these advantages in reducing air pollution and energy shortage is of great significance.

电动汽车充电桩特点、组成及技术指标

电动汽车充电桩特点、组成及技术指标 一、交流充电桩 1、主要技术参数 32 A(7KW)/63A(14KW)/100A(40KW) C, 5% ~ 95%无凝露 C, 5% ~ 95%无凝露 2、交流充电桩的控制构成 交将1充智能紀帯动值携 性龍优毋智臧始玄全可31 .召it鱼卡开唇 55人电,玉好鞍且三戌制阳户軸IP辂 盒电日碎削主6B.匚ombol. CnmboZ, CHAdtMO 22aV±2CW ?丸雄SEW& 嘗出电宦豳220帖左2 临 工岸爭:a逞蜃我忙-背弋 啟丸首出功車1$KW/7KW/WKW 交 流 充 电 粧 输入交流电压:220 V士 10% 输出交流电压:220 V士 10% 输出最大电流: 16 A( 3. 5KW / 额定交流频率:50 Hz 工作环境:-20°C?+ 50 储存环境:-25°C?+ 70 立式简易交流充电桩(WMJ22016 ) 崖 中式充电站交遍充电桩首选

3、交流充电桩的功能 3.1 充电桩人机界面 3.2 充电桩状态指示 故障指示灯:设置1 个红灯,是故障信号总的指示灯,指示的故障包括联锁失败、过流、过压、欠压、失电、断路器跳闸( 短路、漏电)、刷卡机故障;运行状态指示灯:设置1 个绿灯,绿灯闪烁指示在充电状态,绿灯常亮指示充电完成或空闲状态; 3.3 充电桩保护功能具有漏电保护、短路保护、过流、过压、欠压保护等保护功能。除短路和漏电保护外,其它保护功能通过充电控制器控制接触器实现,以实现自恢复;短路和漏电保护选用带漏电保护的微型断路器实现。 3.4 计量计费功能 3.4.1 电度表 3.4.2 刷卡方式(RFID 卡或IC 卡) 3.4.3 充电方式 1) 按电量充电 2) 按时间长短充电 3) 充满为止 4) 按金额充按充电启动方式划分,有以下两种方式 1) 即到即充 2)定时充电

民用建筑中电动汽车充电桩配电设计简析

?研究与探讨?现代建红电临No.2Sol.10(Serial No.llU)20|9 民用建筑中电动汽车充电桩 配电设计简析 姜宁 [同济大学建筑设计研究院(集团)有限公司,上海200092] 摘要:根据国家及地方规范的要求,在充电桩安装比例、充电桩功率、配电系统负荷计算等方面分析了民用建筑中电动汽车充电桩的配电设计,可为类似民用建 筑中电动汽车充电桩的供配电系统设计提供参考。 关键词:民用建筑;充电桩;供配电系统;负荷计算 中图分类号:TU852文献标志码:B文章编号:1674-8417(2019)02-0005-04 DOI:10.16618/https://www.360docs.net/doc/d217993681.html,ki.1674-8417.2019.02.002姜宁(1985-),男,工程师,从事建筑电气供配电设计工作。 0引言 化石能源的大量使用是环境污染的主要原因,其中汽车尾气排放占很大比重。同时随着化石能源储量的降低,在能源的使用上必须寻找一条节能、绿色、可持续的发展之路。相比于传统燃油汽车,电动汽车运行过程中可以实现零排放;能耗折算成标准煤低于传统汽车30%以上,特别是城市拥堵环境中节能优势更明显。因此, 近年来国家相继出台一系列的优惠政策,推广电动汽车等新能源汽车的使用和发展。 1适用的国家规范及地方规范 近年,国家和地方发布很多关于新能源汽车规划方面的规范及文件。新能源汽车技术更新比较快,因此推动相关规范的更新也比较快,在设计中须要遵守最新的标准。 民用建筑中电动汽车充电设施的供配电设计需要满足的国家规范和相关规定主要有住房 和城乡建设部颁发的国家标准GB50966-2014《电动汽车充电站设计规范》⑴,国家发改委能源 局印发的《电动汽车充电基础设施发展指南(2015—2020年)》(发改能源]2015]1454号),国务院办公厅印发的《关于加快电动汽车充电基础设施建设的指导意见》(国办发〔2015〕73号),住房和城乡建设部印发的《关于加强城市电动汽车充电设施规划建设工作的通知》(建规[2015]199号)。 全国大部分省市均对电动汽车充电设施有结合当地实情的规划,因此在设计中还要考虑各地的地方标准。以下仅列举部分省市的地方标准和规范作为参考:北京市DB11/T1455—2017(电动汽车充电基础设施规划设计标准)[21,±海市《上海市电动汽车充电基础设施专项规划(2016—2020年)》,深圳市SZDB/Z29—2010(电动汽车充电系统技术规范》⑶,重庆市DBJ50-218—2015《民用建筑电动汽车充电设备配套设施设计规范》⑷,浙江省DB33-1121—2016《民用建筑电动汽车充电设施配置与设计规范》⑸。 2充电桩安装比例的确定 民用建筑按照建筑性质主要分为住宅建筑、商业建筑、办公建筑、停车场等,不同建筑类型对充电车位的使用需求也不同,各省市对不同类型 ?5 ?

车载充电机与BMS电池管理方案设计详解

车载充电机与BMS电池管理方案设计详解 [导读]车载充电机作为电动汽车关键零部件之一,对于电动汽车的普及起到了至关重要的作用。而在车载充电机测试方案方面,能提供专业方案的供应商并不多。 关键词:车载充电机电源管理汽车电子 2015年第一季度,在多重利好政策的刺激下,国内新能源汽车市场增长加快,仅第一季度新能源汽车乘用车销售达到26581辆。当然电动汽车在发展的同时,离不开与之配套的基础设施的建设。车载充电机作为电动汽车关键零部件之一,对于电动汽车的普及起到了至关重要的作用。而在车载充电机测试方案方面,能提供专业方案的供应商并不多。艾德克斯作为在新能源领域的领先测试测量方案供应商,提供的测试方案不仅能够完全满足不同型号的车载充电机测试的需求,还能通过一套软件来控制测试过程与充电机本身,具有其他厂商的测试方案所不具备的独特且重要的功能。 车载充电机与BMS电池管理系统 充电机主要应用给电动汽车上的动力电池充电,按是否安装在车上,充电机可分为车载式(随车型)和固定式。固定式充电机一般为固定在充电站内的大型充电机,主要以大功率和快速充电为主。而车载充电机安装在车辆内部,其优势就是可以在车库,路边或者住宅等任何有交流电源供电的地方随时充电,功率相对较小。 目前绝大多数的车载充电机都采用智能化的工作方式给动力电池充电,这直接关系着动力电池的寿命和充放电过程中的安全性。作为电动汽车最核心的动力电池,它是一个由多个单体电池封装成的电池组,虽然通过单体电池的电流相同,但是放电的深度会有所不同,深度放电是对电池的一种损耗;并且如果深度放电后的电池还被按照常规的电流值充电,则是对电池的进一步损耗。因此,BMS电池管理系统是电动汽车的一个重要部分,实现对动力电池电压及剩余容量(SOC)等数据的监控和管理。下图中简单表示了车载充电机和BMS

新能源汽车充电桩使用管理系统规定

新能源汽车充电桩使用管理规定 一、操作人员管理要求 1、充电桩操作人员必须经有关部门培训考核合格并持有颁发的资质证后上岗,同时需接受安全教育和岗位技能培训。操作人员应佩戴或在场站的醒目位置悬挂标明个人姓名、工号、岗位的标志。 2、充电作业时须穿戴专业绝缘防护鞋及绝缘防护手套,保持自身、车体、充电桩及边区域干燥。 3、操作人员应主动引导车辆进入充电位置,当车辆停稳,切断电动汽车动力电源和辅助电源,拉紧手刹,人员离车后,可进行充电作业。驾驶员自觉服从站点工作人员的安排。 4、充电前,操作人员应检查充电接口是否正常完好,并对车辆进行充电前检查,对充电设备与电动汽车连接和充电参数的设置进行确认。 5、充电启动后,确认充电正常,并定期巡视充电状态。发生安全事故,应快速按下红色急停按钮,切断电源。 6、充电过程中,车辆禁启动或移动,禁带电插拔充电插头。充电结束后、行车前,驾驶员应确认充电终止以及充电设备与电动汽车物理分离。 7、禁使用金属物体触碰充电枪接口、纯电车充电口。 8、操作人员应基本了解电动汽车的构造和充电设备的工作原理,

了解动力蓄电池应用的基础知识,掌握充电操作规程、充电设备检测、故障判断和处理、安全知识和应急处理法。 9、操作人员应按照充电桩生产厂家的顾客手册进行定期保养与例行检查,保持其安全、清洁、完好,并做好相关检查保养记录。 10、充电站每日应做好站日查,当班管理人员应对作业现场进行监督,发现违章行为和不安全因素,有权制止并向上级反映情况。充电作业人员应定期或根据工作需要随时进行巡视。 二、充电桩使用和管理 1、充电人员必须定期检查充电桩及其他相关设备,消防器材、设施设备保持清洁干燥,并做相关检查记录,按要求上报。定时对充电场地、充电设备设施、消防器材保洁,确保设备情况良好。 2、充电过程中,操作人员应按照操作流程操作,如厂家有其他充电要求,则按照厂家要求进行操作。同时须按要求对充电桩仪表、数据、充电模块、线路、开关等设施进行检查,并按要求填写巡检记录。 3、充电过程中如发生故障,充电人员应立即按下充电机上的急停按键,以防故障进一步扩大,并上报技术科,由专业人员进行设备维修。 4、如遇系统起火时,首先动用紧急停机装置切断电源,然后使用ABC通用型灭火器或者二氧化碳灭火器灭火,禁使用泡沫灭火器和水灭火。

电动汽车充电桩系统

电动汽车充电桩系统 1. 方案背景 1、行业背景 我国政府顺应时代发展,超常规地、大力发展电动汽车产业,由此带动了新能源电动汽车充电桩项目的蓬勃兴起,在国内各地电动汽车充电站纷纷涌现! 充电桩是电动力车的电站,其功能类似于加油站里面的加油机。每个充电桩都装有充电插头,充电桩可以根据不同的电压等级,为各种型号的电动车充电。电动汽车充电桩采用的是交、直流供电方式,需要特制的充电卡刷卡使用,充电桩显示屏能显示充电量、费用、充电时间等数据。充电桩作为加油站、小区电动汽车充电状态的人机交互产品。可实现计时充电和计电度量充电。卡内预先充值,每次充电后根据电度数自动从卡中减去,并打印出票据。 本方案描述的是EPC-9200工控主板在电动汽车充电桩系统中的应用。厂商采用我司的方案能快速地实现充电桩的组装,迅速占领市场。 图1.1 充电桩 2、充电桩系统需求

支持本地显示、触摸屏输入及按键输入; 用户通过非接触式 IC 卡刷卡充电; 通过显示屏能够进行充电方式选择、充电状态显示、充电计费查询、消费金额显示及余额查询; 根据用户选择的充电方式控制充电机对汽车电池充电; 支持消费单据打印; 能够监测汽车电池的电压、电流、温度; 支持外接电度表; 支持语音提示; 通过红外对充电桩上参数进行配置,以及数据查询; 能够通过 CAN、以太网或 GPRS 进行数据传输; 本地大数据量存储(图片、广告、充电记录等); 支持远程升级应用程序; 显示屏支持 10.4 寸。 2. 方案概述 充电桩内部设备较多,且大部分是RS-232接口,如果每一个设备都使用一条电缆接到工控主板上,则会使内部电路相当复杂,可靠性和电磁兼容性也会大打折扣。采用CAN总线通信,可以降低信号线复杂度,还可方便扩展更多设备。使用广州致远电子股份有限公司的EPC-9200产品方案如下图2.1所示。

相关文档
最新文档