宽带放大器设计

宽带放大器设计
宽带放大器设计

宽带放大器设计

一、设计目的

(1)掌握宽带放大器的设计、组装与调试方法;

(2)熟悉集成电路的使用方法。

二、设计内容及要求

(1)设计一个宽频带放大器,要求带宽大于30MHz ,可扩展;

(2)带宽增益积大于300MHz ,可扩展;

(3)输出阻抗为600Ω,输出电压≥1V 。

三、宽带放大器原理

几种常见宽带放大器(参考):

1.二级直接耦合宽带放大器电路

图1是二级直接耦合宽带放大器电路,第二级采用PNP 型晶体管,这种电路适合于提高电源电压的利用率,需要给出较大输出振幅的电路。各级开环增益为20dB ,与R1串接的电位器RP1用于调整晶体管最适宜的偏置。隔直电容C1和C2的参数由低频特性确定,频率特性上限由所使用的晶体管(特别是VT2)限制,若使用2SA495晶体管,约有30MHz 的带宽。VT2要求具有高截止频率f H ,低输入电容C Ob 晶体管。直流偏置是降低集电极负载电阻,有较大工作电流。这种电路要采用稳定电源供电,低负载使用时,要在VT2输出增设1级射随电路。两级宽带放大器构成电压串联负反馈电路,其电压放大倍数

114

51=+=R R Auf

图1 二级直接耦合宽带放大器电路

2.宽带缓冲器电路

宽带缓冲器电路如图2所示。这种电路用作电流驱动能力较弱的通用宽带运放输出电路,要求高速动作的无放电电路及50Ω负载的线路驱动电路等。

该电路属于简易功率合成器,VT1、VT2、VT3和VT4均工作在射极跟随状态。要求VT1与VT2,VT3与VT4参数一致。输入的功率P IN在A点一分为二,经过电流放大后,在B点合成。电压放大倍数不超过2,但接近2。但电流放大倍数较大,因此功率放大倍数也较大。此电路输入阻抗高,而输出阻抗低,正适合于作驱动级。

图2 宽带缓冲器电路

电阻Ri用于防止高频振荡等异常动作。旁路电容Cl和C2也很重要,要靠近晶体

管安装。

3. 10MHz以上的宽带放大器电路

图3是采用μPC4539C构成的宽带放大器电路。视频放大器常采用差动输入/差动输出的μA733,此电路是电流差动型的宽带放大器电路,转换速率高(60V/μs),GB乘积大(300MHz),高频特性优良,并由μPC4539外部设定工作条件。

图3 采用μPC4539C构成的宽带放大器电路

μPC4539C 内电路结构为电流差动型,与一般放大器的设计方法不同。首先是偏置工作点的设定,内部电流基准I SET 由R5设定,I SET =(V CC -1.2V)/(R 5-lk Ω),当R 5=20k Ω时,I SET 为568μA 。

7脚偏置输入电流由V CC 和R4确定,与输出端的直流电位无关。因单电源工作,

μPC4539C 的输入/输出需接隔直电容,根据需要低频特性选用C1与C5。反馈放大器的 增益由R3与R2之比决定,约10倍(20dB),与R3并联相位补偿电容,抑制高频尖峰信号,获得平坦的频率特性。GBW 随设定电流I SET 的不同大幅度变化,I SET 为20μA 时,GBW 为20MHz;;100μA 时为90MHz ;1mA 时为300MHz 。

闭环增益由电阻R2和R3确定,采用稳定性高的金属膜电阻。电容C1和C5根据低频截止频率选定,R

f C c π21≥ (R 为750Ω或150Ω),C1和C2采用l00μF 以上的铝电解电容,但高频时阻抗增大,与其并联0. l μF 的陶瓷电容更好。

4.采用y,PC1663C 构成的宽带放大器电路

图.4是采用μPC1663C 构成的宽带放大器电路。μPC1663C 与视频放大器μA733有相同的电路结构,高频特性好,达到100MHz 以上的频率。适用于高清晰度电视、高分辨显示器、视频电路、CCD 传感放大器等电路中,需要带宽特性的电路。

图4 11PC1663C 构成的宽带放大器电路

μPC1663C 是差动输入/输出型集成芯片,此电路使用单端输入/输出。输入端用R1(50Ω)作为终端电阻,采用直流耦合,但输出端产生约3V 的同相电压,需要电容C3进行交流耦合。差动输出作为单端使用时,不用的输出端子开路,特性发生变化,因此,接入R4和R5调节平衡。

输入差动晶体管的发射极间电阻R3用于设定差动增益,R3为0时,增益为300倍,100Ω时为100倍,1.2k Ω时为20倍。若R3采用lk Ω可变电阻,就可方便改变增益。与一般运放相比,其特点是即使改变闭环增益,频率特性也不会改变。

5. 50MHz 宽带放大器电路

宽带放大器广泛用于高速脉冲与视频电路、高频振荡器、高速A/D 转换器的前置放大器等。图5中的运放A1采用HA2539构成的宽带放大器电路。HA2539追求高速性能,具有S/R 为600μs ,GB 积为600MHz ,f T 为400MHz 及优良的交流特性,但不足之处是失调电压最大为15mV ,输入偏置电流为20μA ,失调电流最大为6μA ,输入阻抗典型值为l0k Ω,不适用运算等电路。

为使工作频率达到100MHz ,必须降低电路阻抗,反馈电阻R3为lk Ω左右,据此推算

R2,令R1 =R2 //R3,以减小因输入偏置电流产生的失调。为使输出阻抗为50Ω,在输出端串联电阻R4,如果与下级的连线短接,则可不接R4。电源线路的旁路电容要靠近HA2539安装,要与钽电容C2并联0.01~0. lμF的陶瓷电容。

图5 50MHz宽带放大器电路

6. 100MH超宽带直流放大器电路

如图6所示是采用CLC221A构成的超宽带直流放大器电路,它适用于放大高速脉冲信号。CLC221A特性良好,转换速率为6500V/μs,tr=tf=2.1ns,- 3dB带宽时频率为170MHz;直流特性好,失调电压为0.5mV,漂移电压为5μV,可直接构成宽带直流放大器。

图6采用CLC221A构成的超宽带直流放大器电路

CLC221A与普通运算放大器设计不同,它采用电流反馈方式的高性能运算放大器。同相放大与反相放大均大,但反相放大时可获得平坦的频率特性,片内有R f为1.5kΩ的反馈电阻。同相放大器时,可按A IN为1+(1. 5kΩ/R G)计算出R G;反相放大时,可按A IN为1. 5k Ω/R G计算出R G。

7.低漂移宽带放大器电路

图7采用TL592B构成的低漂移放大器电路。为了改善直流特性,增设直流反馈运放A2电路,该电路的失调漂移取决于A2,高频特性取决于A1的复型放大器电路。

图7.9.7 采用TL592B构成的低漂移放大器电路

TL592B的噪声特性比普通运放有所改善,lkHz~l0MHz的输入信号其噪声电压典型值为3μV。TL592B可构成直流复合型放大器,直流到低频由直流特性好的运放A2决定,直流特性较差的TL061接人反馈环内。

高频特性由A1决定,它可获得300MHz频率的平坦特性。因为TL592B输入差动放大电路的射极间电阻可使电路获得13~400倍的差动增益。所以调整RP2可使整个电路的频率特性保持平坦。

TL592B的输出端4,5产生2.9V的同相电压,而失调电压的典型值为350mV,因此,兼作缓冲器的电平移动电路(VT1和VD1)时也是2.9V压降。VT2为有源负载电路,恒流偏置值由稳压管稳定电压与射极电阻R6决定,即I=(V Z2-V BE)/R6=13mA。

输出电阻R7决定输出阻抗,按照不同需要选用其阻值,最好还是按抑制VT1的最大集电极电流来确定。TL592B的输入偏置电流比通用运放大,典型值为9μA,若输入端采用交流耦合,就会产生失调电压,应并联小电阻。

8.宽带ALC放大器电路

图8采用TL026等构成的宽带ALC放大器电路,这是一种把输入电平的变动稳定保持在某一电平上的电路。例如,在产生低频到几十兆赫兹的信号发生器中,由于输出电平的频率特性不平坦,为此增设本电路,可自动控制振幅保持恒定。另外,为降低输出阻抗,增设缓冲器电路。

图8电路中,外部电压改变增益的宽带采用TL026集成芯片,它具有20dB的压缩特性。输入电路中接人的电阻R0用于降低输入电平(输入电平为-26~-6dB以上)。TL026驱动50Ω以上负载时,不能获得较大输出振幅,因此,增设晶体管构成的缓冲器电路,使其减轻负

载。

图中:A1 TL026、A2和A3 TL072、VT1 2SA733、VT3 2SC945、VT3 2SC945

VD1和VD2 2SS97、VD3和VD4LS1588、VT4 2SA733

图8宽带ALC放大器电路

TL026为差动输出,若其负载电阻不相等,则频率特性要改变,为此,在5脚接人电容C2和电阻R4。2,7脚的电位差可对增益进行控制。运放A2用于直流电平稳定。用二极管VD1对输出电压进行整流,其直流电压与基准电压(R P1上电压)进行比较。接入的二极管VD2是为了补偿VD1的温度特性。

运放A2工作于比较器状态,输出电平增加时,来自VDi的电流变大,则A2对其积分输出负电压并加到A3的反相输入端,使2脚对A2的7脚电位增加,促使增益降低。

9.宽带对数放大器电路

图9采用TL441构成的宽带对数放大器电路,获得80dB的对数压缩特性,每十进位(10倍的变化)获得0.1V输出,把- 80~+l0dB范围的电平变化压缩为0~0.5V。该电路可用于通信、计测等装置的IF放大器及宽量程电平显示器中。

TL441的内部电路如图10所示,内有4个差动放大器,每个差动放大器放大30dB,总共120dB范围,从实用性考虑,约80dB的压缩比较好。根据差动放大器的输入/输出特性,1个对数放大器不能获得直线性,故采用8个对数放大器。所以,每个对数放大器平均压缩15dB。为了处理微弱电平到+10dB高电平信号,B输入单元需要接入前置放大器。低电平时,宽带运放A11,和A22工作,B1,B2,A1,A2依次饱和,可适应80dB范围的信号处理。A2输入虽接有R5(15kΩ)电阻,但TL441的输入阻抗为500Ω,约得1/31(约-30dB)

的分压,该级可处理最高输入电平信号。

图9采用TL441构成的宽带对数放大器电路

图10 TL441内部等效电路图

运放A11和A22的增益恰好需要30dB ,反馈电阻R2为:R2 =R1 (A -1)=3.06k Ω,故采用3 k Ω的半微调电位器,为了提高压缩精度,也可采用2.7k Ω+500Ω半微调电位器。TL441有输出Y 与Y (反相)及Z 与Z (反相)二组。合成)])Z Y (Z),Y [(++后分别加到A33的同相输入端与反相输入端进行加法运算。另外,输出端总有输出接近+Vcc 的同相电压,因此,需要接人差动输入电平移动电路。

图11是压缩动态范围宽信号的高频对数放大器。频率范围4MHz ,输入电平-14dB ,线性度士ldB ,动态范围40Db 。TL592是宽带可变增益视频放大器。

图11是压缩动态范围宽信号的高频对数放大器

10.宽带功率放大器电路

图12是宽带功率放大器电路。用于函数发生器输出或脉冲输出放大等。整个电路为一反相放大器,由R2引入电压并联负反馈求和点a上的交流电压经由电容C2由宽带交流放大器放大。被交流放大器放大的信号,其最低频率应是直流运放不能响应的频率,直流及很低的频率信号由直流运放反相放大,送人运放放大器同相端,总的频率特性是由电阻R2反

馈的这两种放大信号合成的。

图12是宽带功率放大器电路

主放大器电路有差动输入端,运放输出送到同相端,从输出反馈到求和点的增益A为-R2 /Rl主放大器电路是全对称的推挽电路,如果不要求像运放那样的直流漂移,此电路也可单独使用。各级工作点设定时保证宽带工作。例如,VT1和VT2的集电极电阻设定较低(240Ω),VT3和VT4的输出振幅相同,用加大集电极电流来提高转换速率,而不是在集电极基极间加相位补偿的方法,因为那样会使SR变坏。

为使高频频率特性平坦,各有关处增加相位补偿电路,C3用于调整主放大器的开环特性,Cl约lpF,用于调整阻尼振荡或超程。CV1为半微调电容器,用于修正由于电路的输入电容引起灵敏度的下降。运放A1为积分电路,增益A等于1时频率为160Hz。

四、设计

参考宽带放大器的原理说明设计一个满足技术要求的宽带放大器电路。

五、安装与调试

根据设计原理图进行制板并安装.在外观检查和通电检查无误后,才开始对电路进行调试。

宽带直流放大器的设计

第29卷第1期湖北民族学院学报(自然科学版)Vol.29No.1 2011年3月Journal of Hubei University for Nationalities(Natural Science Edition)Mar.2011 宽带直流放大器的设计 刘三军,樊江川,宴佳治,廖红华 (湖北民族学院信息工程学院,湖北恩施445000) 摘要:宽带直流放大器在无线通信领域,尤其是发射机的末级有重要的用途.通过各种方案的比较,系统采用运放OPA690作为前级和中间级放大,输出级采用?15V供电的视频运放AD811,辅以相应的偏置电路和程控可调电阻实现增益的调节,以单片机MSP430为控制核心;设计出电压增益A V范围为0 60dB,最大输出电压有效值V o ≥10V,3dB通频带为0 10MHz的宽带直流放大器.人机接口采用红外遥控及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能. 关键词:宽带放大器;带宽增益;MSP430;OPA690 中图分类号:TP212.2文献标识码:A文章编号:1008-8423(2011)01-0103-05 Design of Wideband DC Amplifier LIU San-jun,FAN Jiang-chuan,YAN Jia-zhi,LIAO Hong-hua (School of Information Engineering,Hubei University for Nationalities,Enshi445000,China) Abstract:Wide band DC Amplifier can be widely used in wireless telecommunication field,especially in the output side of a transmitter.Based on the comparison of various methods,the system uses OPA690as front and middle amplifiers and AD811as the output amplifier,and uses the adjustable resistors to change gain of wide band DC Amplifier.The experiment shows that voltage gain ranges from0dB to 60dB.The maximum output sine voltage is more than10volts.The3dB pass band is from0to10MHz. The whole system is controlled by MSP430which is of low power consumption,and the infrared remote module is used as interface,LCD is used as display module that is convenient for interaction. Key words:wideband DC amplifier;pass band gain;MSP430;OPA690 随着微电子技术的发展,人们迫切地要求能够远距离、迅速而准确地传送多媒体信息.于是,无线通信技术得到了迅猛的发展,技术也越来越成熟.而宽带放大器是上述通信系统和其它电子系统必不可少的一部分,随之,人们对它的设计要求也越来越高.宽带放大器广泛应用于A/D转换器、D/A转换器、有源滤波器、波形发生器、视频放大器等电路;例如在通讯、广播、雷达、电视、自动控制等各种装置中,宽带放大器都有十分广泛的应用和良好的市场前景[1]. 放大器是能把输入信号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成.宽带放大器可以作为高频功率放大器使用,高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出;因而可以用宽带放大器作为发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平.按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器[2]. 收稿日期:2010-10-20. 基金项目:湖北省教育厅科学研究项目(DZ0101903). 作者简介:刘三军(1980-),男,硕士,主要从事嵌入式、SOPC技术的研究.

宽带低噪声放大器设计毕业设计

本科毕业设计 学院 专业 年级 姓名 设计题目宽带低噪声放大器设计 指导教师职称 ****年* 月* 日

目录 摘要 (1) Abstract. (1) 1概述 (1) 2低噪声放大器设计的原理 (2) 2.1噪声系数 (2) 2.2低噪声放大器的功率增益以及分配电压增益 (2) 2.3端口驻波比 (3) 2.4工作带宽与增益平坦度 (3) 2.5动态范围以及压缩点 (3) 2.6三阶截断点 (4) 2.7低噪声放大器的稳定性 (4) 3器件的选择 (4) 3.1放大器的选择 (5) 3.2放大器的介绍 (5) 3.3电源的供电 (5) 3.4选用器件的介绍 (5) 4模拟电路设计 (5) 4.1方案选择 (6) 4.2模拟电路设计 (6) 4.3电源电路 (6) 5电路的调试 (8) 5.1调试过程 (8) 5.2测试结果 (8) 5.3系统的改进措施 (10) 6总结 (11) 参考文献 (11)

宽带低噪声放大器设计 学生姓名:*** 学号:*********** 学院:专业: 指导老师:职称: 摘要:本文介绍了一个15V单电源供电的低噪声放大器设计,设计采用三级级联的方式。该系统主要是宽带低噪声放大器,为了满足要求,采用了高速运算放大器μa741作为前两级放大,末级用CA3140作为功率放大电路。测试结果表明,放大倍数为100倍,带宽有1MHz。 关键词:μa741;放大器;带宽;噪声系数 The design of the low noise amplifier with broadband Abstract: This article describes the design of a single 15V power supply and low noise amplifier. The system has three amplifier consisted ofμa741 and CA3140, which meet the requirements of broadband and low noise. Test results show that a amplifier with bandwidth 1MHz is 100 times. Keywords: μa741;amplifier;Bandwidth;noise figure 1概述 我们知道低噪声放大器是射频电路的重要组成部分,并且在有源滤波器等电子电路当中宽带低噪声放大器起着重要作用。而且在射频微波电路当中,放大器也起着重要作用,它的好坏直接决定了射频微波电路的功能的实现,具有很重要的现实意义,所以在制做低噪声放大器的时候我们要注意它的各项指标是否能够达标。 除此之外,我们知道随着社会的发展,以及各项科学技术的发展,对通信带宽的要求也越来越宽因此各种通信设备在宽频带上的工作要求不再是以前的一个或者几个频点。由于我国对放大器设计的技术相对来说还不算很先进,所以更需要后起之秀对放大器设计进行进一步的探索和研究。 随着时代的发展,人们对通信质量的要求也更高,其中包括要使工作频率更高、工作频率更宽以及噪声系数更小,这已经成为各项科学技术设备发展的趋势。本文介绍了一种比较简单易行的宽带低噪声放大器设计方法。本设计利用具有低噪声,高速运算的放大器μa741,以及DC-DC交换器TPS61087DCR作为此宽带的噪声放大器

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

宽带高频功率放大器

5.4 宽带高频功率放大器 以LC谐振回路为输出电路的功率放大器,因其相对通频带只有百分之几甚至千分之几,因此又称为窄带高频功率放大器。这种放大器比较适用于固定频率或频率变换范围较小的高频设备,如专用的通讯机、微波激励源等。除了LC谐振回路以外,常用于高频功放电路负载还有普通变压器和传输线变压器两类。这种以非谐振网络构成的放大器能够在很宽的波段内工作且不需调谐,称之为宽带高频功率放大器。 以高频变压器作为负载的功率放大器最高工作频率可达几百千赫至十几兆赫,但当工作频率更高时,由于线圈漏感和匝间分布电容的作用,其输出功率将急剧下将,这不符合高频电路的要求,因此很少使用。以传输线变压器作为负载的功率放大器,上限频率可以达到几百兆赫乃至上千兆赫,它特别适合要求频率相对变化范围较大和要求迅速更换频率的发射机,而且改变工作频率时不需要对功放电路重新调谐。本节重点分析传输线变压器的工作原理,并介绍其主要应用。 5.4.1 传输线变压器 1. 传输线变压器的结构及工作原理 传输线变压器是将传输线(双绞线、带状线、或同轴线)绕在高导磁率铁氧体的磁环上构成的。如图5-24(a)所示为1:1传输线变压器的结构示意图。 传输线变压器是基于传输线原理和变压器原理二者相结合而产生的一种耦合元件,它是以传输线方式和变压器方式同时进行能量传输。对于输入信号的高频频率分量是以传输线方式为主进行能量传输的;对于输入信号的低频频率分量是以变压器方式为主,频率愈低,变压器方式愈突出。 如图5-24(b)为传输线方式的工作原理图,图中,信号电压从1、3端输入,经传输线 R上。如果信号的波长与传输线的长度相比拟,变压器的传输,在2、4端将能量传到负载 L 两根导线固有的分布电感和相互间的分布电容就构成了传输线的分布参数等效电路,如图 5-24(d)所示。若认为分布参数为理想参数,信号源的功率全部被负载所吸收,而且信号的上限频率将不受漏感、分布电容及高导磁率磁芯的限制,可以达到很高。 图5-24 1:1传输线变压器的结构示意图及等效电路

宽带直流放大器设计

宽带直流放大器(C题) 摘要 本系统以两级直接耦合的可控增益放大器AD603为核心,外加跟随器OPA642和电压放大器AD811配合,实现了增益可调的宽带直流放大器。系统主要由四个模块构成:前置放大电路、可控增益放大电路、后级功率放大电路、单片机显示控制模块。可控增益放大电路由两级直接耦合的可控增益放大器AD603构成,可实现-20dB到40dB的增益调节范围,配合AD811的固定增益实现0dB到60dB的增益调节范围;后级功率放大电路由高速缓冲器BUF634扩大输出电流,提升放大器的带负载能力。第二级AD603与固定增益模块间加入直流偏移调零模块,最大限度地减小了整个放大器的直流偏移。为解决宽带放大器自激问题及减小输出噪声,本系统采用多种形式的抗干扰措施,抑制噪声,改善放大器的定性。 关键词:宽带放大器,可控增益,调零电路,固定增益,功率放大

一、系统方案 1. 方案比较与选择 (1)可控增益放大 方案一:采用可编程放大器的思想,将输入交流信号作为高速DAC 的基准电压,用DAC 的电阻网络构成运放反馈网络的一部分,通过改变DAC 数字控制量实现增益控制。理论上讲,只要DAC 的速度足够快、精度足够高就可以实现很宽范围的精密增益控制,但是控制的数字量和最后的20dB 不成线性关系而成指数关系,造成增益调节不均匀,精度下降,因此不选用此方案。 方案二:选用两级集成可控增益放大器直接耦合作为增益控制,集成可控增益放大器的增益与控制电压成线性关系,控制电压由单片机控制DAC 产生。单级集成可控增益放大器AD603具有-10dB 到+30dBdB 的增益控制范围,两级级联后理论上可达到-20dB 到+60dB 的增益控制范围,精度达到0.5dB,带宽90MHz ,可以满足题目指标要求。 采用集成可控增益放大器AD603实现增益控制,外围电路简单,便于调试,而且具有较高的增益调节范围和精度,故采用此方案。 (2)功率放大电路 方案一:采用分立元件实现宽带功率放大器,可以实现较大输出电压,但需采用多级高频放大电路,受电路分布参数影响,调试难度大,带宽难以保证,所以不选用此方案。 方案二:采用单片集成宽带运算放大器提供较高的输出电压,再由高速缓冲器 BUF634实现扩流输出,提升放大器带负载能力。此方案电路较简单,容易调试,故采用此方案. (3)低通滤波器方案论证 方案一:采用有源滤波器,通带内没有可以没有能量损耗,电路相对有源滤波复杂,需要直流电源供电。 方案二:采用无源低通LC 滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。无源LC 滤波器的优点是电路比较简单,不需要直流电源供电,可靠性高,为了使通带尽量平坦,选用了通带比较平坦的巴特沃斯滤波器。同时在滤波器后加入固定增益放大器,弥补信号通过滤波器时幅度的衰减。 2. 方案描述 系统框图如图1所示,系统主要由五个模块构成:前置放大电路、可控增益放大电路、低通滤波电路、后级功率放大电路、单片机显示控制模块。系统增益调节范围为0~60dB ,

宽带放大器设计报告

宽带放大器设计报告 ―-武汉大学电子设计基地设计组第1组:许可崔振威谢超 摘要:本系统利用可变增益放大器AD600作为核心,通过模拟开关选通不同的控制电压的方式来达到增益步进6dB,总增益从0dB到30dB的目的,其控制电压均由2.5v电压基准MAX873经过精密电阻分压得到,有效的保证了控制电压的稳定度,获得良好的波形。前置放大采用由AD844构成的正向放大器,可以有效的提高输入电阻,使输入电阻达到兆欧级别。后级放大采用增益固定为10dB的同向放大器,从而使整个电路的增益能从10dB变化到40dB,该放大器由高精度宽带运放MAX477构成,在保证良好输出波形的同时,可以使输出电压有效值大于3V。前置放大和后级放大的输出均采用峰值检测电路检测出正半周最大电压值,用于有效值的计算,采用AD603构成的AGC电路,在输入信号在0.05V~1.00V内变化时,能将输出有效值稳定在2.05~2.6 V。整个系统的通频带为1K~14.6MHz。由12位A/D 转换器MAX197对输出信号的峰值进行测量,分辨率达到1mV 。AT89S52和CycloneFPGA构成的单片机小系统板可以通过键盘,人为预置增益值来获取相应的放大倍数,同时实时显示实际增益值、输出有效值和当前增益误差。整个系统采用中文显示,界面友好美观,控制方便。

一、方案论证与选择 1.增益控制部分: 方案一 采用普通宽带运算放大器组成的放大电路,同时由分立元件构成的AGC控制电路,通过包络检波再反馈回放大器的方法来控制放大倍数,这种方法构成电路简单,但是反馈控制比较困难,难以实现步进,精度也很低。 方案二 采用集成可变增益放大器AD600作为增益控制。AD600是一款低噪声、精密控制的可变增益放大器,温度稳定性高,最大增益误差为0.5dB,满足题目要求的精度,其增益(dB)与控制电压成线性关系,因此可以方便的采用控制电压的方式来控制放大器的增益.采用D/A变换装置输出电压控制高速压控放大器AD600来实现增益的步进,采用此种方法可以获得很小的步进。但是由这种方法得到的控制电压有一定的纹波,而芯片AD600对控制电压非常敏感,微小的电压波动就能造成输出波形上下起伏,波形不佳。 方案三 主控芯片采用AD600,利用电压基准源通过精密电阻分压得到各个增益值对应得控制电压,在用模拟开关CD4051来选则不同的控制电压来达到控制增益的目的。电压基准源采用MAXIM公司2.5 V基准MAX873。 经过比较,选用方案三。 2.有效值测量部分 方案一 采用检波二极管构成的峰值检测电路,然后用A/D转换器对其检测结果进行读数。峰值检测的原理是当输入电压正半周通过时,检波管导通,对电容C充电,适当选择电容值,使得电容放电速度大于充电速度,这样,电容两端的电压可以保持在最大电压处,该电压通过一个用运算放大器构成的射极跟随器输出电压峰值。采用这种电路优点是频带响应宽,频率越高检测反而越准确,且电路简单。但是由于检波二极管存在一定的导通压降,且为非线性,测量精度低,小信号时尤其明显。同时电容值的选取也使得电路有一定的局限性,如选取太大,放电时间过长,会改善输出电压发纹波,但是会导致该电路响应速度慢;如果电容选的太小,放电时间过短,能改善电路的响应时间,但也会导致低频时输出电压纹波较大。 方案二 采用集成电路AD637作为有效值运算,它测量有效值的范围为0-7V,精度优于0.5%,且外围元件少,频带宽,对于一个有效值为1V的信号,它的3dB带宽为8MHz,并且可对输入信号的电平以dB形式表示。该方案精度高,直接输出有效值,但电路稍复杂,且不适合高频信号。 经过比较,方案二中AD637对小信号测量具有很大优势,而方案一中在频带方面满足要求,考虑到题目的频带范围和制作成本的因素,采用方案一。 3.自动增益控制部分(AGC) 方案一 AGC电路实际上是一个根据输出电压的动态的调整放大倍数,从而使输出稳定在预定范围的反馈型电路。根据该特点可以引入CPU、A/D和D/A转换器通过程序对放大倍数进行控制,即数字式AGC,此种AGC电路的输出范围完全由人为设定,可以很容易满足题目要求,

OCL功率放大器的设计报告

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生:郭二珍 学生学号:1008220107 系别:电气学院 专业:自动化 届别:2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。(3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。

因此,本设计可采用甲乙类互补电路。 2、容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P o≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。

宽带直流放大器的设计

宽带直流放大器地设计 电子信息工程专业学生:陈朝霞指导老师:许岳兵 摘要:本文以TI 公司地压控放大器VCA810 为核心,外加ADI 公司地运算放大器AD806 5 作前级,采用ST 公司地89C52 单片机控制系统增益,通过按键实现对小信号放大增益± 6 dB 步进可调,并通过1602 液晶实时显示.系统主要由前级缓冲模块,程控放大模块,人机交换模块,显示模块组成.整个系统结构简单,性能稳定,操作简单可靠. 关键词:程控放大;VCA810 ;STC89C52 1 引言 宽带放大器在自动控制系统,电子测量技术,智能仪表等领域应用非常广泛.传统放大 器由分立元件器搭建而成,且有地采用电容级间耦合方式,因此不具有直流放大能力,但在仪器仪表地应用中,也需要对直流信号或者偏置信号进行采集和还原,因此设计一款具有直流放大功能地宽带直流放大器是很有必要地.而宽带直流放大电路地发展中,为了满足 电路地更高性能与控制地便捷性,准确性,程控宽带直流放大电路应时而生.本文就是对程 控宽带直流放大器进行研究. 2 系统方案设计与论证 本文所设计地宽带直流放大器基本要求是3dB带宽为OHz?6MHz ;最大增益>40dB (100倍),增益值6dB步进可调,并实时显示增益;最大输出电压有效值>3V负载电 阻600 Q.根据设计功能要求,系统分为信号放大模块,控制模块和人机交换模块 2.1 方案比较与选择方案一:采用分立元件构成,利用高频三极管或场效应管差分对构成多级放大电路,通过负反馈电路来确定增益.但电路比较复杂,且零点漂移严重,难以实现直流信号地放大. 方案二:采用集成运放芯片级联.集成运放芯片使用比较简单,但精度高,且集成运放具有高放大倍数、高输入电阻、低输出电阻等优良性能.而对于实用地放大电路,通常要求 其输入电阻大,输出电阻小,集成运放刚好能满足上述要求. 方案选定:比较上述地两种方案,决定采用方案二. 2.2 系统方案描述 系统框图如图 1 所示,系统分为信号处理电路和控制电路两部分.信号处理电路主要由前级缓冲模块、可变增益放大模块组成.前级缓冲模块采用AD8065 电压反馈型芯片.可变增益放大器采用可控增益放大器VCA810. 系统通过STC89C52 实现控制,通过STC89C52 和按键控制DAC0832 地输入数字量,并在LCD1602 上实时显示该放大器地增益.

一种增益可控的射频宽带放大器设计

一种增益可控的射频宽带放大器设计 射频宽带放大器是各类电子仪器与仪表里很常用、很重要的一个單元电路。为此,论述了一款增益可控的射频宽带放大器的设计选型的过程,给出了参数的计算过程和选型是要考虑的技术指标和功能。因此结论对模拟放大电路的设计具有一定的参考价值。 标签:射频;宽带放大器;参数计算;选型要求 doi:10.19311/https://www.360docs.net/doc/d24156344.html,ki.16723198.2017.09.088 1理论计算 1.1设计要求 根据用户对高频、大信号的放大要求,课题研究小组进过分析和研究,得出下列的具体设计参数: (1)被设计的放大器的电压增益A V≥52dB,增益可控52dB,输入信号电压的有效值Vi≤5mV,其输入阻抗、输出阻抗均为50欧姆,负载电阻50欧姆,且输出电压有效值V o≥2V,波形无明显失真; (2)在50MHz~160MHz频率范围内增益波动不大于2dB; (3)-3dB的通频带不窄于40MHz~200MHz,即fL≤40MHz和fH≥200MHz; (4)电压增益A V≥52dB,当输入信号频率f≤20MHz或输入信号频率f≥270MHz时,实测电压增益A V均不大于20dB; (5)放大器采用+12V单电源供电,所需其它电源电压自行转换。 通过对上述设计要求的分析可知,此课题对宽带放大器的参数选型提出了很高的要求,诸如:压摆率、增益带宽积、最大输出功率、高频高输出摆幅等都要进行严格的计算。只有做到科学计算,才能为正确的集成放大器选型打下坚实的基础,为后续设计提供科学保障。 1.2放大器的参数计算 (1)最小增益需要达到52dB(400倍),带宽200MHz,系统增益带宽积高达8*109MHz(*此处应注意多级放大和增益分配*); (2)输入电压有效值最大5mv,需要做小信号低噪声放大;

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

宽带直流放大器设计报告-江帆

宽带直流放大器 江帆、胡斌、王泽强 摘要: 本系统采用宽带压控增益放大器VCA810来实现增益可调,由前级放大模块、增益控制模块、带宽预置模块、后级功率放大模块、键盘及显示模块和电源模块组成,具有宽带数字程控放大功能。在前级放大电路中,用宽带电压反馈型运算放大器OPA690和宽带压控运算放大器VCA810放大输入信号,再经后级 THS3091功率放大电路将电压放大十倍,并增大输出电流,增强负载驱动能力,提高输出电压有效值X围。经验证,本方案完成了全部基本功能和部分扩展功能。关键字:压控增益放大器;功率放大;宽带数字程控 一.系统方案论证 1.1可控增益放大器部分 方案一:采用场效应管或三极管控制增益。只要利用场效应管的可变电阻区(或三极管等效为压控电阻)实现程控增益,本方案由于采用大量分立元件,电路复杂,稳定性差。 方案二:为了易于实现最大60dB增益的调节,可以采用高速乘法器型D/A实现,比如AD7420。利用D/A转换器的VRef作为信号的输入端,D/A的输出端做为输出。用D/A转换器的数字量输入端控制传输衰减信号实现增益控制。此方案简单易行,精确度高,但经实验知:转化非线性误差大,带宽只有几kHz,而且当信号频率较高时,系统容易发生自激,因此未选此方案。 方案三:根据题目对放大电路增益可控的要求,考虑直接选取压控增益运算放大器VCA810实现,其特点是以dB为单位进行调节,可调增益-40dB至+40dB,

可以用单片机方便地预置增益。 综合以上的分析可知,方案三电路集成度高、条理较清晰、控制方便、易于数字化程控处理。所以本系统采用方案三。 1.2滤波部分 为了达到题目要求的5M和10M带宽,需制作两路低通滤波器电路。 方案一:由无源器件(电阻、电容、电感)构成八阶椭圆滤波器,电路比较简单,成本低,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应。 方案二:为达到通频带内增益起伏≤1dB,采用四阶巴特沃斯低通滤波器。巴特沃斯滤波器特点是通频带内频率响应曲线最大限度平坦,虽然阻带内缓慢下降,但可以增加阶数来加快阻带内的衰减。 由于用Tina仿真软件设计出来的八阶椭圆滤波器需用的器材(电阻、电容、电感)很难找到或组合成相近的值,而用Tina仿真软件设计出的四阶巴特沃斯低通滤波器幅频特性较好,所以选择了方案二。 1.3功率放大部分 方案一:用分立元件,此方案元器件成本低,易于购置。但是设计、调试难度太大,周期很长,尤其是手工制作难以保证可靠性及指标,故不采用此方案。 方案二:采用高输出电压运放作为功率输出部分的第一级,对信号进行电压放大;第二级采用推挽射级跟随器进行电流放大。由于采用分立元件,通频带内信号可能出现较大失真,线性度不好。 方案三:直接使用高电压输出、低失真、电流反馈型的运算放大器THS3091,可以大大提高输出电流,驱动50欧的负载。

宽带放大器设计论文

本科生毕业论文(设计) 题目(中文):宽带放大器 (英文): Wide-band Amplifier 学生姓名: 学号: 系别:物理与电子信息工程 专业:电子信息科学与技术 指导教师: 起止日期: 2010年 5月 23日

怀化学院本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文(设计)作者签名: 年月日

目录 摘要.............................................................................................. I 关键字.............................................................................................. I Abstract ............................................................................................. I Key words ......................................................................................... II 1 前言 .. (1) 1.1运算放大器的发展及应用概况 (1) 1.2宽带放大器简介 (2) 1.3课题研究的意义 (3) 2 设计任务与要求 (3) 2.1设计任务 (3) 2.2设计要求 (3) 2.2.1 基本要求 (3) 2.2.2 发挥部分 (4) 3 设计方案的选择与论证 (4) 3.1宽带放大器的总体设计方案 (4) 3.1.1 增益控制电路设计方案 (6) 3.1.2 功率输出部分设计方案 (7) 3.1.3 有效值测量电路设计方案 (7) 3.1.4 自动增益控制(AGC)设计方案 (7) 4 理论分析与参数计算 (8) 4.1带宽增益积 (8) 4.2电压控制增益的原理 (8) 4.3自动增益控制介绍 (11) 4.4正弦电压有效值的计算 (12) 5 系统各模块的电路设计 (12) 5.1直流稳压电源部分 (12) 5.2输入缓冲和增益控制部分 (12) 5.3增益控制部分 (13)

功率放大器的设计

功率放大器的仿真设计 0 引言 各种无线通信系统的发展,大大加速了半导体器件和射频功率放大器的研究进程。射频功率放大器在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能。因此,无线系统需要设计性能良好的放大器。而且,为了适应无线系统的快速发展,产品开发的周期也是一个重要因素。另外,在各种无线系统中由于不同调制类型和多载波通信的采用,射频工程师为减小功率放大器的非线性失真,尤其是设计无线基站应用的高功率放大器时面临着巨大的挑战。采用EDA工具软件进行电路设计可以掌握设计电路的性能,进一步有环设计参数,同时达到加速产品开发进程的目的。 功率放大器(PA)在整个无线通信系统中是非常重要的一环,因为它的输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。 1 功率放大器基础 1.1 功率放大器的种类 根据输入与输出信号间的大小比例关系,功率放大器可分为线性放大器与非线性放大器两种。属于线性放大器的有A类、B类及AB类放大器;属于非线性的则有C类、D类、E类、F类等类型的放大器。 (1) A类放大器是所有类型功率放大器中线性最高的,其功率元件在输入信号的全部周期内均导通,即导通角为360°,但其效率却非常低,在理想状 态下效率仅达到50%,而在实际电路中,则仍限制在30%以下。 (2) B类功率放大器的功率元件只在输入正弦波之半周期内导通,即导通角仅为180°,其效率在理想状态下可达到78%,但在实际电路中所达到的效 率不会超过60%。 (3) AB类功率放大器的特性介于A类和B类放大器之间,其功率元件偏压在远比正弦波信号峰值小的非零直流电流,因此导通角大于180°但远小于360°。一般情况下,其效率介于30%~60%之间。 (4) C类功率放大器的功率元件的导通时段比半周期短,即导通角小于180°。 其输出波形为周期性脉冲,必须并联LC滤波电路后,才可得到所需要的正弦波。在理论上,C类放大器的效率可达到100%,但在实际电路中仅能

功率放大器设计的关键:输出匹配电路的性能要点

功率放大器设计的关键:输出匹配电路的性能 对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm 的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在 0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图 1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输

相关文档
最新文档