生物化学-考试知识点_维生素 (2)

生物化学-考试知识点_维生素 (2)
生物化学-考试知识点_维生素 (2)

维生素 一级要求 多选题

1

哪种维生素的前身由绿色植物合成? A D 维生素A 维生素D B E 生物素 维生素B 12

C 尼克酸 A

B

2 构成视紫红质的维生素A 活性形式是:

A C E 9-顺视黄醛 13-顺视黄醛 17-顺视黄醛

B D 11-顺视黄醛 15-顺视黄醛 3 4

5

6

7

8

9

维生素K 与下列哪种凝血因子合成有关?

A D 因子XII 因子VIII

B E 因子XI 因子V

C C 因子II 吡哆醛 C

维生素B 2是下列哪种酶辅基的组成成分?

A D NAD TPP +

B E NADP FAD

+

E

维生素PP 是下列哪种酶辅酶的组成成分? A D 乙酰辅酶A TPP B FMN 吡哆醛

C NAD

+

E E

泛酸是下列那种酶辅酶的组成成分:

A D FMN TPP

B NAD E CoASH

+

C NADP

+

E D

CoASH 的生化作用是: A 递氢体 D 转移酰基 B 递电子体 E 脱硫

C 转移酮基 C 转移CO

生物素的生化作用是:

A 转移酰基 D 转移氨基

B 转移CO 2 E 转移巯基

B

维生素C 的生化作用是: A 只作供氢体 B 只作受氢体

D 是呼吸链中的递氢体 C 既作供氢体又作受氢体

E 是呼吸链中的递电子体

10 人类缺乏维生素C 时可引起:

C A

A 坏血病 D 癞皮病

B 佝偻病 E 贫血症

C 脚气病 11 维生素C 的化学本质是一种:

A 含有二个羧基的有机酸

B 含有一个羧基的有机酸

C

D

E 含有六碳原子的、二个烯醇式羟基的化合物 含有六个碳原子及一个羟基的化合物 含8个碳的有机酸

C

12 13

14

日光或紫外线照射可使:

A C E 7-脱氢胆固醇转变成维生素D 3 7-脱氢胆固醇转变成维生素D 2 维生素E 活化

B D A 1生成 A 2生成 A

维生素D 的活性形式是: A C E 1,24-(OH) 2-D 3 1,25-(OH) 2-D 3 24-(OH)-D 3

B 1-(OH)-D 3 D 1,26-(OH) 2-D 3 C

维生素K 是下列那种酶的辅酶: A C 丙酮酸羧化酶 谷氨酸γ-羧化酶 B 草酰乙酸脱羧酶 天冬氨酸γ-羧化酶

D

E 转氨酶

C

15 维生素B 6是在下列代谢中发挥作用:

A 脂肪代谢 D 无机盐代谢

B 糖代谢 E 水代谢

C 氨基酸代谢 C

16 除下列哪种物质外,其余均为呼吸链的组成?

A 泛醌(辅酶Q)

B 细胞色素C

D FAD

E 肉毒碱

C NA

D +

E

17 典型的坏血病是由于缺乏下列哪种维生素所引起的?

A 硫胺素

B 核黄素 E 维生素A

C 泛酸

D 泛酸是下列哪种生化反应中酶所需辅酶成分?

抗坏血酸

D

18 A D 脱羧作用 还原作用 B 乙酰化作用 E 氧化作用

C 脱氢作用 C 硫胺素

C 硫胺素

B D

B

19 转氨酶的作用活性同时需下列哪种维生素?

B 泛酸 E 核黄素

A 烟酸

D 磷酸吡哆醛 20 下列哪种化合物是辅酶A 的前体?

A D 核黄素 钴胺素

B 泛酸 吡哆胺

E 21 维生素E 是一种什么化合物?

A C 脂肪酸 生育酚

B D 丙基硫尿嘧啶类似物 苯醌 E 前列腺素

22 与视蛋白结合形成视紫红质的物质是:

C

D

A 全反视黄醛 C 11顺视黄醇 E 维生素A 2

B 全反视黄醇 D 11顺视黄醛 23 下列哪一种是脂溶性维生素?

A 遍多酸 D 叶酸

B 尼克酸 E 吡哆醇

C 胆钙化醇 C

24 脚气病是由于缺乏下列哪一种物质所致?

A 胆碱

B 乙醇胺 E 丙酮 25 下列哪种维生素参与呼吸链氧化磷酸化?

C 硫胺素

D 丝氨酸

C B

B

E

A 生物素 D 钴胺素

B 核黄素 E 泛酸

C 硫胺素 26 在NA

D 或NADP A 尼克酸 D 吡哆醛 + +

中含有哪一种维生素?

B 尼克酰胺 E 吡哆胺

C 吡哆醇 27 磷酸吡哆醛参与

A 脱氨基作用 D 转甲基作用

B 羧化作用 E 转氨基作用

C 酰胺化作用 28 某些氨基酸脱羧的辅酶是

A 焦磷酸硫胺素 C 黄素腺嘌呤二核苷酸 E 生物素

B 磷酸吡哆醛 D 尼克酰胺腺嘌呤二核苷酸 B

29 丙酮酸脱氢酶体系中不含有下列哪种辅助因子?

A 磷酸吡哆醛 C 硫辛酸 E 辅酶A

B 焦磷酸硫胺素 D 黄素腺嘌呤二核苷酸 A

30 与前胶原赖氨酸和脯氨酸残基羟化有关的维生素是

A D 生育酚 核黄素

B 抗坏血酸 生物素

C 尼克酰胺 E B

31 下列有关维生素的叙述哪一个是错误的?

A B C D E 维生素可分为脂溶性水溶性两大类 脂溶性维生素可在肝中储存

B 族维生素通过构成辅酶而发挥作用 摄入维生素

C 越多,在体内储存也越多 尚未发现脂溶性维生素参与辅酶的组成

D

32 与红细胞分化成熟有关的维生素是

A 维生素

B 1和叶酸 B 维生素B 1和遍多酸

D 维生素B 12和遍多酸 C

E 维生素B 12和叶酸

遍多酸和叶酸

C C

33 硫辛酸的生化作用是

A D 递氢体 递电子体

B 转移酰基 递氢和递电子体

C 递氢和转移酰基 E 34 下列哪一种酶的辅酶不含维生素?

A C E 谷草转氨酶 乳酸脱氢酶 丙酮酸脱氢酶

B D 琥珀酸脱氢酶 糖原合成酶 D

35 36

下列哪一种酶的辅基含有核黄素?

A C E 乳酸脱氢酶 6-磷酸葡萄糖酸脱氢酶 α-酮戊二酸脱氢酶体系

B D 苹果酸脱氢酶 β-羟丁酸酸脱氢酶 E

体内参与叶酸转变成四氢叶酸的辅助因子有 A C 维生素C 和NADPH 维生素C 和NADH B 维生素B 12 泛酸 D E 维生素PP

A

二级要求

37 维生素PP 的化学本质是:

A C E 嘧啶的衍生物 咪唑的衍生物 类固醇

B 吡啶的衍生物 吡咯的衍生物 D B

38 下列有关NAD+的说法哪一项是错误的?

A C NAD NAD +

+ +

含有尼克酰胺和腺嘌呤 含有两分子D-核糖 能可逆地加氢脱氢 B D NAD 含有两个磷酸基

+

+

NAD 是乳酸脱氨酶所特有的辅酶 E NAD

D

39 下列哪一个维生素的作用能被氨喋呤及氨甲蝶呤所拮抗?

C A 维生素B6

D 叶酸 B 核黄素

E 遍多酸

维生素B 1 D

40 含有金属元素的维生素是

A D 维生素

B 1 维生素B 12 B 维生素B 2 叶酸

C 维生素B 6 E

D C

41 下列辅酶或辅基中哪一个不含B 族维生素?

A NAD D NADP +

B CoA

C CoQ

+

E FMN

42 下列化合物中哪一个不含维生素?

A D CoA-SH UDPG

B TPP FAD

C NADP +

E D

43 不含硫的维生素是

A 叶酸

B 硫胺素

C 硫辛酸

D 生物素

E 以上都不是 在叶酸分子中,参与一碳单位转移的原子是:

A

44 45 A D +

下列有关NAD 的说法哪一项是错误的?

N5、N6 N5、N10 B N7、N8 N9、N8 C N9、N10 E D

A NAD C NAD E NAD + +

+

含有尼克酰胺和腺嘌呤 B NAD 含有两个磷酸基 + 含有两分子D-核糖

能可逆地加氢脱氢 D NAD 是乳酸脱氨酶所特有的辅酶 +

D

46 6-磷酸葡萄糖转变成6-磷酸葡萄糖酸伴有

A FNM 的还原

B NADH 的氧化

C NA

D D NADPH 的氧化

E NADP 47 下列维生素哪一个是辅酶A 的前体?

+

的还原

+

的还原 D

B

A 核黄素 D 钴胺素

B 遍多酸 E 吡哆胺

C 硫胺素

48 下列有关维生素的叙述哪一项是错误的

A 维持正常功能所必需 C 在许多动物体内不能合成

B 是体内能量的来源 D 体内需要量少,但必须由食物供给 E 它们的化学结构彼此各不相同 49 下列哪一种维生素不能由肠道细菌合成?

B

A 维生素K

B 维生素B12 D 生物素 E 维生素

C 50 下列哪一种维生素与能量代谢无关?

C 叶酸 E

A 硫胺素 D 尼克酰胺 51 缺乏维生素PP 时会影响脂肪酸β氧化过程中的哪一步生化反应?

B E 遍多酸 核黄素

C 抗坏血酸 C

A 脂肪酰CoA 的生成 C L ,β-脂肪酰CoA 的生成

B α、β-烯脂肪酰CoA 的生成 D β-酮脂肪酰CoA 的生成 E β-酮脂肪酰CoA 的硫解

酮体的生成需要下列那一组维生素参与?

D

52 53

A 维生素

B 1、B 2 B 维生素B 6 、B 12

D 叶酸和B 12 C 尼克酰胺和遍多酸

E 生物素和维生素C

C

脂肪酸的合成需要下列哪一组维生素? A 维生素B 1、B 2、B 6 B 维生素B 2、B 6 、B 12

C 维生素B 12、叶酸 、 维生素C

D 维生素PP 、遍多酸、四氢叶酸

E 维生素PP 、遍多酸、生物素

54 磷酸吡哆醛与酶蛋白结合是通过

E

A 氢键 D Schiff 碱

B 疏水键 E 酯键

C 盐键 D

三级要求

55 自然界存在的、具有生理活性的抗坏血酸是: A D-抗坏血酸 B L-抗坏血酸 D L-二酮古洛糖酸 E D-脱氢抗坏血酸

C D·L -抗坏血酸 B

56 体内TPP 不足可引起下列哪种代谢反应障碍?

A 氨基酸转氨 C 柠檬酸脱氨 E 丙酮酸羧化

B 脂肪酸合成 D 丙酮酸氧化脱羧 D

57 氧化脱羧作用中酶所需的辅酶是下列哪种物质?

A 生物素

B 5'-脱氧腺苷钴氨素

D 抗坏血酸 C

E 磷酸吡哆醛

焦磷酸硫胺素

E

B

58 59 下列胡萝卜素在动物体内均可转变成维生素A,其中转化率最高的是:

B β-胡萝卜素 D 玉米黄素 A α-胡萝卜素

C γ-胡萝卜素 E 新玉米黄素A

琥珀酸转变成延胡索酸时伴有 A FMNH2的氧化 B FMN 的还原

D FAD 的还原 C FADH2的氧化

E 维生素PP

60 下列那种维生素的前身是色氨酸?

D C

A 维生素A D 维生素D 一级要求 多选题

B 生物素 E 维生素B 12

C 尼克酸 1 维生素A 1和A 2的区别是

A 结构不同

B 维生素A 2比维生素A 1的活性大

C 维生素A 1比维生素A 2的活性大

D 理化性质不同

E A 1和A 2分别存在于海水及淡水鱼肝中 ACE 2 维生素D 3

A 不能由人体合成,必须由食物供给

B 需要经肝及肾脏而变成为具有生物活性的形式

C 具有和胆固醇相同的环状结构

D 食物需要量冬季比夏季多

E D 3的生理活性强于D 2 ABCDE 3 硫辛酸的生化作用是

A 进行氧化还原反应

B 有抗脂肪肝作用

C 降低血阻固醇作用

D 对巯基酶类有保护作用

E 抗脚气病 ABCD 4 由泛酸组成的辅酶参与下列那种生化反应

A 脱羧反应

B 羧化反应

C 脱氢反应

D 转酰基作用

E 转氨基作用 D 5 体内参与叶酸转变成四氢叶酸的辅助因子有

A 维生素C

B 维生素B 12

C NADPH

D 泛酸

E 维生素PP AC 6 能促进红细胞发育和成熟的维生素是

A 维生素

B 6 B 维生素B 12

C 维生素PP

D 叶酸

E 维生素C BD 7 有生理活性的抗坏血酸是

A D-抗坏血酸

B L-抗坏血酸

C D ,L-抗坏血酸 D L-脱氢抗坏血酸

E D-脱氢抗坏血酸 BD 8 下列哪些物质参与丙酮酸脱氢酶系?

A PLp

B Tpp

C 硫辛酸

D FAD

E CoA BCDE 9 维生素B 1参加下列那些生化过程:

A 氨基酸脱羧反应

B α-酮酸的氧化脱羧反应

C 酮体生成

D 抑制胆碱酯酶活性

生物化学考试重点总结

生化总结 1。蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。 2。模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。 3。蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。 4。试述蛋白质的二级结构及其结构特点。 (1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。 (2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。 (3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。 (4)β-转角结构特点:a、肽链出现180转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。 (5)无规则卷曲:肽链中没有确定的结构。 5。蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。 6。核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。A、B、和共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白和DNA连接形成的串珠状结构称核小体。 7。解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。 8。DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。9。试述细胞内主要的RNA类型及其主要功能。 (1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA 及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。 (2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。是蛋白质合成模板。成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。 (3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。转运氨基酸。 (4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。 (5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。 (6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。 (7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。 10。试述Watson-Crick的DNA双螺旋结构模型的要点。 (1)DNA是一反向平行、右手螺旋的双链结构。两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。 (2)DNA是一右手螺旋结构。螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36。DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟和小沟。(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。11。酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。 12。同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。 13。何为酶的Km值?简述Km和Vm意义。

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径:

过程 2 H 2 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变 构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 第一阶段:糖酵解途径 G (Gn ) 丙酮酸胞液

生物化学维生素总结

维生素总结 一、脂溶性维生素 1、维生素A 名称:类视黄素、抗干眼病维生素、A1:视黄醇、A2:3-脱氢视黄醇 活性形式:视黄醇、视黄醛、视黄酸 功能:1、视黄醛与视蛋白结合发挥视觉功能2、调控细胞的生长与分化、抗癌3、抗氧化 缺乏时病症:夜盲症、干眼病 发病机理或治病原理:感受弱光的视杆细胞内,全反式视黄醇被异构成11-顺视黄醇,氧化成11-顺视黄醛。此物作为光敏感视蛋白的辅基与之结合生成视紫红质。视紫红质感光时,异构为全反式视黄醛,并引起视蛋白变构。进而视蛋白通过一系列反应产生视觉冲动。视紫红质分解,全反式视黄醛与视蛋白分离,构成视循环。维生素A缺乏,视循环关键物质11-顺视黄醛不足,视紫红质少,对弱光敏感性降低,暗适应延长。 过量的影响:中毒,组织损伤。症状:头痛、恶心、肝细胞损伤、高血脂、软组织钙化、高钙血症、皮肤干燥、脱屑、脱发 2.维生素D 名称:抗佝偻病维生素(本质就是类固醇衍生物) 活性形式:1,25-二羟维生素D3 功能:1、调节血钙水平,促进小肠对钙、磷的吸收、影响骨组织钙代谢,维持血钙、磷的正常水平2、影响细胞的分化 (免疫细胞、胰岛B细胞、肿瘤细胞) 缺乏时病症:儿童:佝偻病成人:软骨病自身免疫性疾病 过量的影响:中毒。表现:高钙血症、高钙尿症、高血压、软组织钙化 备注:在体内可合成:皮下储有维生素D3原,紫外线照射下可变成维生素D3 3.维生素E 名称:生育酚类化合物(生育酚、生育三烯酚) 活性形式:生育酚 功能:1、抗氧化剂、自由基清除剂、保护细胞膜,维持其流动性2、调节基因表达(抗炎、维持正常免疫功能、抑制细胞增殖,降低血浆低密度脂蛋白的浓度。预防治疗冠状动脉粥样硬化性心脏病、肿瘤与延缓衰老有一定作用)3、提高血红素合成关键酶活性,促进血红素合成。缺乏时病症:新生儿:轻度溶血性贫血一般不易缺乏。重度损伤导致红细胞数量减少,脆性增加等溶血性贫血。动物缺乏,生殖器发育受损,甚至不育 备注:临床常用维生素E治疗先兆流产与习惯性流产 4.维生素K 名称:凝血维生素 活性形式:2-甲基1,4-萘醌 功能:1、维生素K具有促进凝血的作用, 就是许多γ-谷氨酰羧化酶的辅酶2、对骨代谢有重要作用,对减少动脉钙化有重要作用,大剂量可降低动脉硬化的危险性。 缺乏时病症:维生素K缺乏引起出血。 备注:长期应用抗生素及肠道灭菌有引起维生素K缺乏的可能性。引发脂类吸收障碍的疾病,可引起维生素K缺乏。新生儿易缺乏(不能通过胎盘) 二、水溶性维生素

生物化学考题_维生素

A 只作供氢体 B 只作受氢体 C 既作供氢体又作受氢体 D 是呼吸链中的递氢体 E 是呼吸链中的递电子体 维生素 一级要求 多选题 1 哪种维生素的前身由绿色植物合成? A 维生素 A B 生物素 C 尼克酸 D 维生素D E 维生素B 12 A 2 构成视紫红质的维生素 A 活性形式是: A 9-顺视黄醛 B 11-顺视黄醛 C 13-顺视黄醛 D 15-顺视黄醛 E 17-顺视黄醛 B 3 维生素 K 与下列哪种凝血因子合成有关? A 因子 XII B 因子 XI C 因子 II D 因子 VIII E 因子 V C 4 维生素B 2是下列哪种酶辅基的组成成分? A NAD + B NADP + C 吡哆醛 D TPP E FAD E 5 维生素 PP 是下列哪种酶辅酶的组成成分? A 乙酰辅酶A B FMN C NAD + D TPP E 吡哆醛 E 6 泛酸是下列那种酶辅酶的组成成分: A FMN B NAD + C NADP + D TPP E CoASH E 7 CoASH 的生化作用是: A 递氢体 B 递电子体 C 转移酮基 D 转移酰基 E 脱硫 D 8 生物素的生化作用是: A 转移酰基 B 转移CO 2 C 转移CO D 转移氨基 E 转移巯基 B 9 维生素 C 的生化作用是: C 10 人类缺乏维生素 C 时可引起: A 坏血病 B 佝偻病 C 脚气病 D 癞皮病 E 贫血症 A 11 维生素 C 的化学本质是一种: A 含有二个羧基的有机酸 B 含有一个羧基的有机酸 C 含有六碳原子的、二个烯醇式羟基的化合物 D 含有六个碳原子及一个羟基的化合物 E 含 8 个碳的有机酸 C 12 日光或紫外线照射可使: A 7-脱氢胆固醇转变成维生素D 3 B A 1生成 C 7-脱氢胆固醇转变成维生素 D 2 D A 2生成 E 维生素 E 活化 A 13 维生素 D 的活性形式是: A 1,24-(OH) 2-D 3 B 1-(OH)-D 3 C 1,25-(OH) 2-D 3 D 1,26-(OH) 2-D 3 E 24-(OH)-D 3 C 14 维生素 K 是下列那种酶的辅酶: A 丙酮酸羧化酶 B 草酰乙酸脱羧酶 C 谷氨酸γ-羧化酶 D 天冬氨酸γ-羧化酶

高中化学必修一知识点总结精简版

第一章、从实验学化学 一、化学实验安全 1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。 (2)烫伤宜找医生处理。 (3)浓酸撒在实验台上,先用Na2CO3 (或NaHCO3)中和,后用水冲擦干净。浓酸沾在皮肤上,宜先用干抹布拭去,再用水冲净。浓酸溅在眼中应先用稀NaHCO3溶液淋洗,然后请医生处理。 (4)浓碱撒在实验台上,先用稀醋酸中和,然后用水冲擦干净。浓碱沾在皮肤上,宜先用大量水冲洗,再涂上硼酸溶液。浓碱溅在眼中,用水洗净后再用硼酸溶液淋洗。 (5)钠、磷等失火宜用沙土扑盖。 (6)酒精及其他易燃有机物小面积失火,应迅速用湿抹布扑盖。 二.混合物的分离和提纯 分离和提纯的方法 过滤用于固液混合的分离一贴、二低、三靠如粗盐的提纯 蒸馏提纯或分离沸点不同的液体混合物防止液体暴沸,温度计水银球的位置,如石油的蒸馏中冷凝管中水的流向如石油的蒸馏 萃取利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂用四氯化碳萃取溴水里的溴、碘 分液分离互不相溶的液体打开上端活塞或使活塞上的凹槽与漏斗上的水孔,使漏斗内外空气相通。打开活塞,使下层液体慢慢流出,及时关闭活塞,上层液体由上端倒出如用四氯化碳萃取溴水里的溴、碘后再分液 蒸发和结晶用来分离和提纯几种可溶性固体的混合物加热蒸发皿使溶液蒸发时,要用玻璃棒不断搅动溶液;当蒸发皿中出现较多的固体时,即停止加热分离NaCl和KNO3混合物三、离子检验 离子所加试剂现象离子方程式 Cl-AgNO3、稀HNO3 产生白色沉淀Cl-+Ag+=AgCl↓ SO42- 稀HCl、BaCl2 白色沉淀SO42-+Ba2+=BaSO4↓ 四.除杂 注意事项:为了使杂质除尽,加入的试剂不能是“适量”,而应是“过量”;但过量的试剂必须在后续操作中便于除去。 五、物质的量的单位――摩尔 1.物质的量(n)是表示含有一定数目粒子的集体的物理量。 2.摩尔(mol): 把含有6.02 ×1023个粒子的任何粒子集体计量为1摩尔。 3.阿伏加德罗常数:把6.02 X1023mol-1叫作阿伏加德罗常数。 4.物质的量=物质所含微粒数目/阿伏加德罗常数n =N/NA 5.摩尔质量(M)(1) 定义:单位物质的量的物质所具有的质量叫摩尔质量.(2)单位:g/mol 或g..mol-1(3) 数值:等于该粒子的相对原子质量或相对分子质量. 6.物质的量=物质的质量/摩尔质量( n = m/M ) 六、气体摩尔体积

生物化学复习重点

绪论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及其应用;蛋白质分离纯化的方法及其基本原理。 【复习思考题】 1. 名词解释:蛋白质一级结构、蛋白质二级结构、蛋白质三级结构、蛋白质四级结构、肽单元、模体、结构域、分子伴侣、协同效应、变构效应、蛋白质等电点、电泳、层析 2. 蛋白质变性的概念及本质是什么有何实际应用? 3. 蛋白质分离纯化常用的方法有哪些其原理是什么? 4. 举例说明蛋白质结构与功能的关系 核酸的结构与功能 掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。 第三章酶 掌握:酶的概念、化学本质及生物学功能;酶的活性中心和必需基团、同工酶;酶促反应特点;各种因素对酶促反应速度的影响、特点及其应用;酶调节的方式;酶的变构调节和共价修饰调节的概念。 第四章糖代谢 掌握:糖的主要生理功能;糖的无氧分解(酵解)、有氧氧化、糖原合成及分解、糖异生的基本反应过程、部位、关键酶(限速酶)、生理意义;磷酸戊糖途径的生理意义;血糖概念、正常值、血糖来源与去路、调节血糖浓度的主要激素。 【复习思考题】 1. 名词解释:.糖酵解、糖酵解途径、高血糖和糖尿病、乳酸循环、糖原、糖异生、三羧酸循环、活性葡萄糖、底物水平磷酸化。 2.说出磷酸戊糖途径的主要生理意义。 3.试述饥饿状态时,蛋白质分解代谢产生的丙氨酸转变为葡萄糖的途径。

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

风险管理知识点-精简版

第一章风险管理导论 第一节风险的定义及构成要素 一、风险的定义 基本含义:某种事件发生的不确定性。但是,在经济学、统计学、决策理论和保险学中尚无一个适用于他们各个领域的一致公认的定义。 (一)经济学:损失机会和损失可能性。把风险定义为损失机会,表明风险是面临损失的可能性,是一定状况下的概率。 (二)统计学:实际结果与预期结果的偏差。 (三)决策理论:损失的不确定性。 二、风险的度量 1、损失频率:用于度量事件是否经常发生 2、损失程度:用于度量每一事故造成的损害 图1-1风险发生的一般规律

三、风险的特征 (一)客观性。风险是客观存在的,可以用概率度量风险发生的可能性。 (二)损害性。损害是风险发生的后果,无风险则无保险。 (三)不确定性。 1、空间上的不确定性:损失发生的地点不确定 2、时间上的不确定性:损失发生的时间不确定 3、损失程度的不确定性:损失的后果不确定 (四)可预测性。大量风险的发生呈现出一定的规律性,奠定了保险费率确定的基础。 (五)发展性——可变性 当代高新技术的开发与应用,使风险的发展性更为突出。如使用网络和手机的风险,电信诈骗。 四、风险构成的要素 (一)风险因素 风险因素:引起或增加风险事件发生的各种原因或条件,或者风险事件发生时,导致损失扩大的原因或条件。通常分为三种:

①物质风险因素:与物质的物理功能有关,与人无关——有形的; ②道德风险因素:与人的修养有关,偏重于人的恶意行为——无形的; ③心理风险因素:与人的心理状态有关,偏重于人的善意行为——无形的; 实质风险因素 风险因素道德风险因素 人为风险因素 心理风险因素 (二)风险事故:风险事件的具体表现形式——风险的载体 风险事故,也称风险事件,是造成生命财产损害的偶发事件,是造成损害的直接的、外在的原因,是损害的媒介物。 (三)损失——风险事件的结果,包括直接损失和间接损失 非故意的、非计划的、非预期的经济价值的减少。 (1)直接损失(Physical Loss) 风险事故直接造成的有形损失,所保风险的第一结果 (2)间接损失(Consequential Loss)

生物化学期末考试重点

等电点:在某PH的溶液中,氨基解离呈阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的P H称为该氨基酸的等电点 DNA变性:某些理化因素会导致氢键发生断裂,使双链DNA解离为单链,称为DNA变性 解链温度(Tm):在解链过程中,紫外吸收值得变化达到最大变化值的一半时所对应的温度 酶的活性中心:酶分子中一些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这一区域称为酶的活性中心 同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶 诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这一过程为酶底物结合的诱导契合 米氏常数(Km值):等于酶促反应速率为最大反应速率一半时的底物浓度 酶原的激活:酶的活性中心形成或暴露,酶原向酶的转化过程即为。。 有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化 三羧酸循环:是指乙酰CoA和草酰乙酸缩合生成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,又生成草酰乙酸的循环反应过程 糖异生:从非糖化合物转化为葡萄糖或糖原的过程称为。。 脂肪动员:指储存在脂肪细胞中的甘油三酯,被酯酸逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织,氧化利用的过程 酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常生成的中间产物:乙酰乙酸、β-羟丁酸、丙酮脂蛋白:血浆中脂类物质和载脂蛋白结合形成脂蛋白 呼吸链:线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链或电子传递链 营养必需氨基酸:体内需要而又不能自身合成,必须由食物提供的氨基酸 一碳单位:指某些氨基酸在分解代谢过程中产生的含有一个碳原子的基因 半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模极,按碱基配对规律,合成与模极互补的子链、子代细胞的DNA。一股单链从亲代完整的接受过来,另一股单链则完全重新合成。两个子细胞的DNA都和亲代DNA碱基序列一致,这中复制方式称为半保留复制 生物转化:机体对内外源性的非营养物质进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程为生物转化 氧化磷酸化:代谢物脱氢进入呼吸链,彻底氧化成水的同时,ADP磷酸化生成ATP,称为氧化磷酸化 底物水平磷酸化:底物由于脱氢脱水作用,底物分子内部能量重新分布生成高能键,使ATP磷酸化生成ATP的过程 密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸。这种三联体形成的核苷酸行列称为密码子 盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出称为盐析 糖酵解:葡萄糖或糖原在组织中进行类似的发酵的降解反应过程,最终形成乳酸或丙酮酸,同时释放出部分能量,形成ATP供组织利用 蛋白质的一级结构:指在蛋白质分子从N-端至C-端的氨基酸排列顺序 蛋白质的二级结构:多肽链主链骨架原子的相对空间位置。 蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。 蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用 DNA的空间结构与功能

生物化学知识点汇总

生物化学知识点486 时间:2011-8-10 18:04:44 点击: 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要1生物化学一、填空题核心提示:折、蛋白质二级结构的主形式是(a-螺旋)、(B-元素组成的,组成蛋白质的基本单位是(氨基酸)。2(疏3、维行蛋白质的空间结稳定的化 学键主要有(氢键)、(盐键)、叠)(B-转角)(无规则卷曲)。... 水键)、(范德华力)等生物化学 一、填空题 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白1 质的基本单位是(氨基酸)。 转角)(无规则卷曲)。、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-2、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华3 力)等非共价键和(二硫键)。 、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、、4 (重金 属盐沉淀法)。、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。构成核酸的基本单位是(氨基酸),5 核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。)、CA)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶6、核酸中嘌呤碱主要有(腺嘌呤)和(胸腺嘧啶T)三种。(尿嘧啶U、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称7 为(酶促反应),酶的活性是指(酶的催化能力)。 8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。 、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、9 )、(激活剂)、(抑制剂)(PH),糖的来源有(食物中糖的消化吸收)、3.9-6.1mmol/L10、正常情况下空腹血糖浓度为((肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。,反应在(线12)分子ATP411、三羧酸循环中有(2)次脱羧()次脱氧反应,共生成(酮戊二酸脱氢酶粒)中进行,三种关键酶是(柠檬酸合成酶)、(异柠檬酸脱氢酶)、(a- 系)。、由于糖酵解的终产物是(乳酸),因此,机体在严重缺氧情况下,会发生(乳酸)中12 毒。 、糖的主要生理功能是(氧化供能),其次是(构成组织细胞的成分),人类食物中的13 糖主要是(淀粉)。、糖尿病患者,由于体内(胰岛素)相对或绝对不足,可引起(持续)性(高血糖),14 1 甚至出现(糖尿)),并释放能量的过程称(生H2O、营养物质在(生物体)内彻底氧化生成(CO2)和(15 物氧化),又称为(组织呼吸)或(细胞呼吸)。琥珀酸氧化呼吸链),两FADH2、体内重要的两条呼吸链是(NADH氧化呼吸链)和(16 2ATP)。条呼吸链ATP的生成数分别是(3ATP)和()H2O17、氧化磷酸化作用是指代谢物脱下的(氢)经(呼吸链)的传递交给(氧)生成(ATP)的过程相(偶联)的作用。的过程与(ADP)磷酸化生成(ATP的主 要方式为(氧化磷酸化),其次是(底物水平磷酸化)。18、体内生成脱a-CO2是通过(有机物)的脱羧反应生成的,根据脱羧的位置不同,可分为(19、体内脱羧)。羧)和(B-氧化过程包括(脱氢)、(加水)、(再脱氢)、(硫解)四个步每一次B-20、脂酰CoA )。)和比原来少2

高考历史知识点精简版总结

高考历史复习要点 (必修1) 一、古代中国的政治制度: 分封制:把土地和人民分封给王族、功臣和先代贵族,建立诸侯国,拱卫王室,加强了周天子对地方的统治,但同时存在分裂的隐患。 古代中央集权制度的形成: ①秦代中央设置三个最高官职:丞相,帮助皇帝处理全国的政事;御史大夫,执掌奏章,下达诏令,兼理国家监察事务;太尉,负责全国军事。 ②郡县制建立:秦始皇在全国范围废除分封制,实行郡县制。 中央集权制度的影响:有利于封建经济文化的发展,对祖国疆域的初步奠定、巩固国家统一,以及形成以华夏族为主体的中华民族,都起了重要作用。 唐朝三省六部制:中书省掌决策,负责草拟和颁发皇帝诏令;门下省掌审议,负责审核政令;尚书省负责执行政令,并下设吏、户、礼、兵、刑、工六部。 汉初,在地方上,郡国二制并行。 元朝:中央以中书省为最高行政机构,在地方采用行省(行中书省)制度,是地方行政制度的重大变革,是中国省制的开端。 汉的州和唐的道,起先都是监察机构,后都演变成地方行政实体。 明朝:通过废除丞相制度和创设内阁,君主专制达到了新的高度。 清朝:雍正帝时,军机处的创设,使君主专制制度发展到了顶峰。 君主专制制度的影响:极大地妨碍了社会的进步,自此,中国社会的发展开始大大落后于西方。 二、列强武装侵略与中国人民的反抗 从鸦片战争到八国联军侵华 鸦片战争(1840~1842):战争中,广州北郊三元里人民自发起来反抗英国侵略者。1842年8月,中英《南京条约》签订,内容规定:①割香港岛给英国;②赔款2100万银元;③开放广州、厦门、福州、宁波、上海五口通商; ④协定关税。影响:是中国半殖民地半封建社会的开端,中国进入了旧民主主义革命时期。 第二次鸦片战争(1856~1860):英法联军侵入北京,洗劫焚烧了圆明园。1860年清政府被迫签订《北京条约》。俄国在此期间趁机先后共侵占了中国150多万平方千米的领土。 甲午中日战争(1894):黄海海战中致远舰管带邓世昌英勇作战,壮烈殉国。1895年,清政府被迫与日本签订中日《马关条约》,内容规定:①割辽东半岛、台湾(台湾人民反割台斗争)、澎湖列岛给日本;②赔款白银2亿两; ③开放沙市、重庆、苏州、杭州为商埠;④允许日本在通商口岸开设工厂。影响:中国半殖民地化程度大大加深了。 八国联军侵华:1900年6月,八国联军借口镇压义和团运动,发动侵华战争。1901年9月,清政府与侵略者签订了丧权辱国的《辛丑条约》,内容规定:①赔款白银4.5亿两;②划定北京东交民巷为使馆界,允许各国派兵保护; ③拆除北京至大沽的炮台,允许各国派兵驻守北京到山海关铁路沿线;④严禁中国人民参加反帝斗争。影响:标志着中国完全沦为半殖民地半封建社会。 抗日战争开始标志:1937年的“卢沟桥事变”。 侵华日军罪行:1937年12月,日本攻陷南京后,屠杀南京平民和放下武器的军人30万人。日军还在中国成立了从事细菌战的“七三一部队”。 抗日战争:面对日军侵华,国共两党停止内战,组成抗日民族统一战线,奋起抗战。淞沪会战粉碎了日军三个月灭亡中国的企图。抗战前期,中国军队取得了平型关战役(太原会战)、台儿庄战役(徐州会战)的胜利。1940年,彭德怀指挥八路军发动百团大战,这是中国军队主动出击日军的一次大规模战役。 抗战胜利的历史地位:①是中国人民一百多年来第一次取得反帝斗争的完全胜利;②大大增强了全国人民的民族自尊心和自信心;③对世界反法西斯战争的胜利作出了重大贡献;④中国的国际地位得到提高。

生物化学考试知识点提要

Pro含N16%,AA残基平均M=110,残基数<50称多肽。 主链构象角:肽键中N-Cα转动角为φ,Cα-C转动角为ψ;C-N转动角为ω。 肽链构象为反式构象ω=180 (脯氨酸除外)。Ramachandran图:φ和ψ角。 α-螺旋几乎都是右手,3.6残基/圈,第i残基C=O和第i+4残基N-H形成氢键。Ala,Glu,Leu,Met 对螺旋有倾向,Pro,Gly,Ser不参加。//几乎所有β折叠片均存在链扭曲,大部分是右手。β-折叠片中,β-折叠股处于伸展状态,一股的C=O与另一股的N-H形成氢键。所有β-折叠股有相同的N-C方向称为平行;相互靠近的两股有相反方向为反平行。 不规则二级结构:转角及环。规则的比不规则的稳定,新功能往往由不规 则的二级结构区域来体现,——蛋白质的“结合部位”或酶的“活性中心”。氨基酸残基序列——一级结构(共价键);α-螺旋,β-折叠,环状区域——二级结构(氢键); 超二级结构(花样):TIM桶,β-回折片……其他各种未写明的;// TIM桶:αβ-barrel八个β被//八段α围绕,短的环连接交替的β和α。酶活中心的残基位于TIM桶β片的C端和连接α的环状区。结构域:一个Pro可包含一个或多个,是能够独立折叠成稳定的三级结构的多肽链的一部分或者全部。三级结构(二硫键等连接的多条多肽链);四级结构(多亚基结构);分子聚合体; 胃:胃蛋白酶。胰→小肠(肠激酶激活):羧肽酶原,糜蛋白酶原,胰蛋白酶原,胰凝乳蛋白酶原。蛋白酶家族按照催化部位的残基分:巯基(半胱氨酸)蛋白酶家族;天冬氨酸~;丝氨酸~;金属~。 胰凝乳蛋白酶(丝氨酸蛋白酶家族):共价修饰催化。水解位于C端,芳香基团或大侧链残基的肽键。 很多蛋白酶(枯草杆菌蛋白酶,小麦羧肽酶-II,乙酰胆碱酯酶及脂肪酶) 有催化三联体,特异性由三联体附近的亲水凹隙形成底物结合口袋决定。溶酶体和蛋白酶体:溶酶体涉及内吞作用到胞内的蛋白降解;蛋白酶体主要涉及细胞自身蛋白的降解。 (转录因子、病毒编码的蛋白、折叠错误的蛋白) 自噬泡with溶酶体:内为酸性,有半胱氨酸蛋白酶、天冬氨酸蛋白酶、含锌金属蛋白酶等水解酶。 泛素with蛋白酶体:泛素——多肽,多泛素化的蛋白质被特异性识别并在蛋白酶体中迅速降解。 蛋白酶体:一个桶状结构的26S复合物。核心复合物20S,盖子结构19S。 泛素的C端连到泛素激活酶E1上(耗ATP),然后转移到泛素结合酶E2的巯基,泛素连接酶E3转移被激活的泛素到一个被选择蛋白(E3识别)的赖氨酸侧链上。E3具有底物特异性,关系到N-end rule(蛋白半衰期与其N-端序列相关)。不断重复,Pro被绑了一批泛素分子,被运送到蛋白酶体中切成短链。 氨基酸的N代谢:脱氨基、氮原子代谢、最终形成尿素/尿酸。!谷氨酸有核心地位 ⑴氧化脱氨:(仅少数AA) 谷氨酸+NAD++H2O→NADH+NH4++α-酮戊二酸谷氨酸脱氢酶 //变构酶in MIT,ATP/GTP抑制剂,ADP/GDP激活剂。能利用NAD+/NADP+作电子受体。 ⑵联合脱氨:(主要) 转氨常与谷氨酸氧化脱氨偶联——由谷氨酸完成脱氨。 //转氨酶——催化氨基在氨基酸& α-酮酸之间可逆的转移。 ⑶其它途径:嘌呤核苷酸循环,丝氨酸脱水酶;过氧化物体中的氨基酸氧化酶。 高氨血症,NH+4浓度升高尤其对大脑有毒:将驱使谷氨酸→谷氨酰胺,耗尽神经递质谷氨酸;谷氨酸脱氢酶反方向催化α-酮戊二酸→谷氨酸,α-酮戊二酸的耗尽削弱了脑中能量代谢TCAC。氨以丙氨酸、谷氨酰胺形式运输;主要在肝脏合成尿素以解毒(或在肾合成铵盐)。 尿素循环{鸟氨酸循环by Krebs}(完整的尿素循环仅在肝脏): 总:2NH3+CO2+4ATP+天冬AA→Urea+延胡索酸+4ADP+4Pi 线粒体内膜中有鸟氨酸/瓜氨酸转运体,瓜氨酸离开&鸟氨酸进入MIT基质。 0. 循环前的关键——氨基甲酰磷酸的合成:(HCO-3+NH3不可逆反应耗2ATP) 氨基甲酰磷酸合成酶Ⅰ(in MIT)是别构酶,N-乙酰谷氨酸是激活剂。 1. 鸟+氨基甲酰磷酸→瓜鸟氨酸转氨甲酰酶MIT 2. 瓜+天冬→精氨基琥珀酸精氨琥珀酸合酶胞质 3. 精氨基琥珀酸→精+延胡索酸精氨琥珀酸酶胞质 4. 精→尿素+鸟;精氨酸酶胞质 胰脂肪酶选择1,3位酯键水解为甘油单酯+脂肪酸,甘油单酯被甘油单酯脂肪酶水解得甘油+脂肪酸。甘油代谢:⑴甘油+ATP→α-磷酸甘油甘油激酶(in肝脏) ⑵α-磷酸甘油→二羟丙酮磷酸(糖酵解/糖异生)脱氢酶,脱氢 脂肪酸代谢:(脂肪动员:脂肪组织贮存的脂肪释放出游离脂肪酸并转移到肝脏) 长链脂肪酸的活化(内质网膜,线粒体外膜):总:脂肪酸+ATP+HS-CoA→脂酰-CoA+AMP+2Pi ⑴脂肪酸+ATP→酰基腺苷酸+PPi ;PPi→2Pi //脂酰-CoA有高能硫酯键 ⑵酰基腺苷酸+HS-CoA→脂酰-CoA+AMP 脂酰-CoA合酶 脂酰-CoA能透过MIT外膜但不能透过内膜到基质,肉碱介导脂酰基转运到线粒体基质: 1.肉碱软脂酰转移酶I(在MIT外膜):脂酰基从脂酰-CoA转移到肉碱→脂酰肉碱 2.线粒体内膜上的的运输体:介导内膜内外两个肉碱/脂酰肉碱的脂酰基交换 3.肉碱软脂酰转移酶II(在MIT基质):脂酰基从肉碱转移到CoA→脂酰-CoA 脂肪酸的β-氧化(MIT基质): ⑴脂酰-CoA脱氢酶:脂酰-CoA中的脂肪酸氧化出双键(C2=C3),FAD→FADH2 ⑵烯酰-CoA水合酶:反式双键水合反应产生L-羟脂酰-CoA ⑶羟脂酰-CoA脱氢酶:氧化β位(C3)的羟基为酮基,NAD+→NADH ⑷β-酮脂酰硫解酶:硫解产物为乙酰-CoA及少了2C的脂酰-CoA(直到乙酰-CoA) 总:脂酰-CoA+FAD+NAD++HS-CoA→脂酰-CoA(少2C)+FADH2+NADH+H++乙酰-CoA 脂肪酸氧化的控制主要在脂酰基转运:丙二酸单酰-CoA(脂肪酸合成前体)抑制肉碱软脂酰转移酶I。低ATP高AMP时丙二酸单酰-CoA减少,则脂肪酸氧化增加:产生乙酰-CoA进入TCAC补充ATP。脂肪酸的合成(细胞溶胶):合成时的H-载体是NADPH,增2C的直接前体是丙二酸单酰-CoA。 ⑴乙酰-CoA羧化酶:形成丙二酸单酰-CoA ⑵脂肪酸合酶:经历启动,装载,缩合,还原,脱水,还原,释放过程,加上2C。// 动物停在16C 血浆脂蛋白(用于运输脂类):乳糜颗粒,LDL低密度脂蛋白,VLDL极低~,HDL高~。 LDL是胆固醇载体,在细胞表面与LDL受体结合并经内吞作用进入细胞。 高胆固醇血症(引起动脉粥样硬化,冠心病):LDL受体合成缺陷;受体从内质网 到高尔基体的转运缺陷;LDL与受体的结合缺陷;细胞膜凹陷处受体不能聚集缺陷。

生物化学知识点梳理

生化知识点梳理 蛋白质水解 (1)酸水解:破坏色胺酸,但不会引起消旋,得到的是L-氨基酸。(2)碱水解:容易引起消旋,得到无旋光性的氨基酸混合物。 (3)酶水解:不产生消旋,不破坏氨基酸,但水解不彻底,得到的是蛋白质片断。(P16) 酸性氨基酸:Asp(天冬氨酸)、Glu(谷氨酸) 碱性氨基酸:Lys(赖氨酸)、Arg(精氨酸)、His(组氨酸) 极性非解离氨基酸:Gly(甘氨酸)、Ser(丝氨酸)、Thr(苏氨酸)、Cys(半胱氨酸),Tyr(酪氨酸)、Asn(天冬酰胺)、Gln(谷氨酰胺) 非极性氨基酸:Ala(丙氨酸)、Val(缬氨酸)、Leu(亮氨酸)、Ile(异亮氨酸)、Pro(脯氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Met(甲硫氨酸) 氨基酸的等电点调整环境的pH,可以使氨基酸所带的正电荷和负电荷相等,这时氨基酸所带的净电荷为零。在电场中既不向阳极也不向阴极移动,这时的环境pH称为氨基酸的等电点(pI)。 酸性氨基酸:pI= 1/2×(pK1+pKR) 碱性氨基酸:pI=1/2×(pK2+pKR) 中性氨基酸:pI= 1/2×(pK1+pK2) 当环境的pH比氨基酸的等电点大,氨基酸处于碱性环境中,带负电荷,在电场中向正极移动;当环境的pH比氨基酸的等电点小,氨基酸处于酸性环境中,带正电荷,在电场中向负极移动。 除了甘氨酸外,所有的蛋白质氨基酸的α-碳都是手性碳,都有旋光异构体,但组成蛋白质的都是L-构型。带有苯环氨基酸(色氨酸)在紫外区280nm波长由最大吸收 蛋白质的等离子点:当蛋白质在某一pH环境中,酸性基团所带的正电荷预见性基团所带的负电荷相等。蛋白质的净电荷为零,在电场中既不向阳极也不向阴极移动。这是环境的pH称为蛋白质的等电点。 盐溶:低浓度的中性盐可以促进蛋白质的溶解。 盐析:加入高浓度的中性盐可以有效的破坏蛋白质颗粒的水化层,同时又中和了蛋白质分子电荷,从而使蛋白质沉淀下来。 分段盐析:不同蛋白质对盐浓度要求不同,因此通过不同的盐浓度可以将不同种蛋白质沉淀出来。 变性的本质:破坏非共价键(次级键)和二硫键,不改变蛋白质的一级结构。蛋白质的二级结构:多肽链在一级结构的基础上借助氢键等次级键叠成有规则的空间结构。组成了α-螺旋、β-折叠、β-转角和无规则卷曲等二级结构构象单元。α-螺旋α-螺旋一圈有3.6个氨基酸,沿着螺旋轴上升0.54nm,每一个氨基酸残基上升0.15nm,螺旋的直径为2nm。当有脯氨酸存在时,由于氨基上没有多余的氢形成氢键,所以不能形成α-螺旋。 β-折叠是一种相当伸展的肽链结构,由两条或多条多肽链侧向聚集形成的锯齿状结构。有同向平行式和反向平行式两种。以反向平行比较稳定。 β-转角广泛存在于球状蛋白中,是由于多肽链中第n个残基羰基和第n+3个氨基酸残基的氨基形成氢键,使得多肽链急剧扭转走向而致 超二级结构:指多肽链上若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角)彼此相互作用,进一步组成有规则的结构组合体(p63 )。主要有αα,

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

相关文档
最新文档