电厂机组发电机断水保护动作跳闸分析

电厂机组发电机断水保护动作跳闸分析
电厂机组发电机断水保护动作跳闸分析

电厂机组发电机断水保护

动作跳闸分析

Written by Peter at 2021 in January

某电厂机组发电机断水保护动作跳闸分析一、事故经过

2010年4月15日14:00,某厂8号机组负荷290MW,AGC方式运行,

#8A/#8B/#8D磨运行;8A/8B给泵运行,8B凝泵运行,8B定冷水泵运行。14:10:52光字牌“8号发电机定冷水箱水位低低”、“发电机水系统主故障”报警,8B定冷水泵跳闸,8号发电机断水保护动作跳机,发电机跳闸,汽机高中压主汽门关闭。事后经检查8号发电机定冷水箱就地水位计水位为800mm正常,而机组跳闸是由于发电机定冷水箱水位低低(GSTTLSLL11)信号误发所致。

二、事故原因及暴露问题

8号机组发电机断水保护的逻辑设计为发电机两台定冷水泵跳闸。而定冷水箱水位低低信号(GSTTLSLL11)导致8B定冷水泵跳闸,同时由于8B定冷水箱水位开关低低动作,发电机定冷水泵的P1保护一直存在,造成8A 定冷水泵不能联启。最终发电机定冷水箱水位低低触发了发电机断水保护动作。8号机定冷水箱水位(GSTLSLL11)液位开关采用的是KROHNE (科隆)磁浮子液位计配套的MS15MC液位开关,通过液位计中的磁浮子上下浮动去感应MS15MC液位开关中的磁铁,去实现开关量信号的远传。

现场检查发现存在由于外界的金属物质靠近MS15MC液位开关同样会使MS15MC开关动作的缺陷。

三、事故防范和整改措施

热控人员到现场检查8号机定冷水箱水位(GSTLSLL11)液位开关,发现此液位开关已经动作。同时反复检查此液位开关,发现此液位开关动作正常,接点动作清晰,不存在液位开关本身原因造成接点误动现象,因此把原开关装复投入使用。

四、采取的防范措施:

1、在水位开关上加装防护罩,以防铁器接近,导致开关误动。

2、对在开关附近施工人员加强安全交底,以防设备误碰,导致开关误动。

3、对保护逻辑进行修改:因目前机组在运行无法对逻辑进行修改,故在就地通过硬回路在水位低低串联一副压力低信号来实现对机组保护。待下次机组检修时通过加装流量开关来实现发电机组的断水保护。

4、对主、重要辅机的保护逻辑进行梳理,防止出现单点信号误动导致机组跳闸。

5、水冷机组发电机定子和转子温升一般不大于20℃和30℃,当进水额定温度为40℃时,与出口允许水温80℃相比偏低。由于水介质冷却效果好,定子和转子的温度也偏低,若与绕组B级绝缘最高允许温度120-130℃相比,其裕度较大。因此当定子和转子突然断水时,可考虑适当延长持续时间。考虑到8号机组采用液位低跳闸定冷水泵的保护,其作为断水保护的判据较之流量保护有更大的延迟性,因此可考虑增加液位低保护跳机的延迟时间,参考机组参数进行正确判断和合理操作。

发变组继电保护原理与动作过程

发变组继电保护原理及动作过程 一、发变组继电保护配置的基本要求:发变组继电保护继电保护配置过程中必须满足四性(即:可靠性、选择性、速动性及灵敏性)的要求,必须保证在各种发电机异常或故障情况下正确的发信或出口动作。根据GB14285的规定,按照故障或异常运行方式性质不同,机组热力系统和调节系统的条件,我公司发变组保护的出口方式有以下几种: 1.全停:断开发电机-变压器组断路器、灭磁,关闭原动机主汽门,启动快切断开厂分支断路器。 2.降低励磁。 3.减出力。 4.程序跳闸:先关主汽门,待逆功率保护动作后断开主断路器并灭磁。 5.信号:发出声光信号。 二、我公司发变组保护配置情况介绍: 我公司发变组保护每台机共有三面屏柜,分别为发变组保护A柜、B 柜、C柜,A柜及B柜为冗余设计,两面柜的保护配置完全相同,都是发变组的电气量保护;C柜为主变和高厂变的非电量保护。 发变组电气量保护配置有以下几种类型: 1.定子绕组及变压器绕组部故障主保护:发电机差动、主变压器差动、发变组差动、高厂变差动、励磁变差动、发电机匝间保护、定子接地。

2.定子绕组及变压器绕组部故障后备保护:发电机对称过负荷、发电机不对称过负荷、低阻抗、高厂变复压过流、励磁变过流、励磁绕组过负荷。 3.转子接地保护 4.发电机失磁保护 5.发电机失步保护 6.发电机异常运行保护:发电机过励磁保护、发电机频率异常保护、发电机逆功率保护、发电机程跳逆功率保护、启停机保护、断口闪络保护、发电机断水、发电机热工。 7.主变(间隙)零序保护 8.厂用电后备保护:厂变分支过流、分支限时速断、分支零序过流。9.断路器失灵启动 变压器非电量保护: 1.变压器重瓦斯 2.变压器轻瓦斯 3.变压器压力释放 4.变压器油温异常 5.变压器油位异常 6.变压器冷却器全停 三、重要保护简绍 1.差动保护:包括发电机差动、发变组差动、主变差动、厂变差动、励磁变差动。我司保护装置的差动保护采用比率制动式保护,以各侧

发电机大修实验

电机大修后应作哪些试验: 1、发电机大修后一般应作如下项目的试验: (1)二次回路(操作保护)传动及检查; (2)发电机起动前之其他试验; (3)测静、转子回路直流电阻; (4)励磁机空载特性试验; (5)发电机短路特性试验; (6)发电机空载特性试验及层间耐压; (7)测量发电机静、转子励磁回路绝缘; (8)对民电机作交流耐压试验,直流耐压试验; 2、上述试验的作法及运行人员注意问题:① 测量发电机静、转子励磁回路绝缘电阻。因发电机在大修时,励磁机、发电机要解体进行检查处理,静、转子励磁机等线圈绝缘处于大气中,可能吸收潮气使绝缘降低。另外在整个大修过程中,各部绝缘有无损坏,碰坏或缺陷处理不好等现象。测量上述各部绝缘是一基本方法,这是因为绝缘电阻是衡量绝缘质量的一个主要指标,用它可以发现绝缘内有无贯穿的导电通路,并能发现由于高压作用于绝缘后而发展的缺陷,测绝缘的工作,一般在开机前由运行人员去作,发电机静、转子回路绝缘电阻应在通水前测量,绝缘电阻的数值不作具体规定,但应于历史测量结果比较分析,静子回路用1000—2500V摇表测量,应不低于0.5MΩ。若通水后测量的绝缘电阻值主要的是检查水质,一般为数百千欧(用万用表测量)测量绝缘时,使用摇表,万用表应遵守有关规定。② 对发电机作交流耐压试验的目的是为了检查定子绕组的主绝缘是否良好,检查绝缘水平,确定发电机能否投运。做此试验应用专用试验升压变压器及其他用具,耐压的试验电压,一般应为额定电压的1.3—1.5倍,持续时间为一分钟。③ 直流耐压试验,它能确定绝缘耐压强度,而对绝缘内部不会损伤,同时它还可以测量被测绝缘的泄漏电流,正常时泄漏电流与外加电压为一直线关系,若泄漏电流急剧增加时,则说明绝缘有问题。该试验所加电压应为额定电压的2.5倍,对于发电机的定子绕组来讲,在最高试验电压下,各相泄漏电流在20微安以上者,各相泄漏电流间的不对称系数应不大于2,各相差值应与历史试验值作比较,不应有显著差别。④ 测量静、转子回路直流电阻测量发电机静、转子回路直流电阻的目的,是为了检查线圈内部、端部、引出线的焊缝质量以及连接点的接触情况,实际是检查这些接头的接触电阻有无变化,若接触电阻大,则说明接触不良,该工作由高压试验人员做。⑤励磁机空载特性试验:为了检查鉴定大修后的励磁机各特性是否良好,并与厂家原特性曲线比较,一般在发电机与系统并列前,当汽机转速达3000转/分钟时作该试验,其方法如下:a、在励磁机磁场回路接一电流表(端子609),并接一电压表(端子6.03、6.04) b、断开发电机、工作励磁要刀闸,解除强励11ZK c、合上MK开关,慢慢调节RC电阻,逐点读取励磁机电压及其磁场电流,直至励磁机电压达到额定值为止。 d、采取上升、下降两条特、性曲线与原特性曲线比较应无较大差异。该试验由试验人员与运行人员共同作,操作时要调整缓慢均匀,读表计要求准确同时进行。⑥发电机短路特性试验:所谓短路特性,是发电机在额定转速的发电方式下,静子三相短路时,静子短路电流Id与励磁机电流il 成正比关系。利用此试验可判断发电机转子线圈有无匝间短路,此外,计算发电机的主要参数同其电抗xd短路比以及电压调整器的整定计算时也都需要得用短路特性试验。其方法如下: a、在发电机端子排A432、B431、C432回路中串接标准电流表。在灭磁盘励磁回路接直流电流表(603、604处)并接直流电压表。 b、在发电机主油开关处A、B、C出线上接三相短路线一组。 c、发电机恢复备用,投入各保护(此时甲刀闸在断开) d、合上发电

发电机定子接地保护动作跳闸分析

发电机定子接地保护动 作跳闸分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

发电机定子接地保护动作跳闸分析郑州热电厂3号发电机为典型的发电机变压器组(发变组)单元接线,发电机为东方电机厂生产的QFSN-200-2型,机组于1992年投运,现处于稳定运行期。2001-11-18,3号发电机处于正常运行状态,当时机组带有功负荷125MW,无功负荷25Mvar,对外供热量160t/h。 1事故经过 凌晨01:35,3号机集控室铃响,中央信号盘发出“保护回路故障”和“故障录波器动作”光字,随即喇叭叫,中央信号盘又出“发电机定子接地”、“主汽门关闭”、“断水保护动作”、“远方跳闸动作”、“6kV配电装置故障”光字,发变组表计无明显冲击,发变组控制盘发电机出线开关Ⅲ建石1、灭磁开关Q7、励磁调节柜输出开关Q4绿灯闪光,除副励电压表外,发变组其它表计均无指示;厂用电盘6kVⅠ、Ⅱ段出“BZT动作”光字,6kV高压厂用电备用电源进线开关6107,6207 红灯闪光,6kV高压厂用电备用变压器高压侧开关建备1绿灯平光, 6kVⅠ、Ⅱ段电压表指示为0,高、低压厂用电失电,集控室工作照明失去,保安电源联动正常,值班人员立即退出6107,6207联动开关,将上述跳闸开关复位后,发现Ⅲ建石1、Q7、6kV高压厂用电工作电源进线开关6104,6204均为绿灯平光,红灯闪光,由于灯光指示异常,为防止扩大事故,在确认6104,6204断开后,于01:38,手动合上建备1,高、

低压厂用电恢复正常。到保护间检查,发变组保护A柜“发电机定子接地零序电压”和“发电机定子接地三次谐波”发信、跳闸灯均亮,“主汽门关闭”和“发电机断水”灯亮。值班人员对发变组所属一次系统外观进行检查,未发现明显异常。厂用电失压期间,接于3号机UPS的机、炉所有数字监视表计均无指示。02:35,在高低压厂用电恢复正常后,3号发电机从0起升压,当定子电压升至2kV时,发电机零序电压为2V,当定子电压升至2.5kV时,中央信号盘出“定子接地”光字,于是将发电机电压降至0,断开Q4和微机非线性励磁调节器控制开关KK1、KK2,通知检修进一步查找原因。运行值班人员将发变组解备,并将发电机气体置换后,检修人员拆掉发电机5m处出线,对发电机做交直流耐压试验正常,封闭母线出线、主变及高压厂用变做交流耐压试验正常,然后逐一将发电机出线电压互感器推入工作位置,做交流耐压试验,当推入发电机出线电压互感器2YHA时,发现2YHA相泄漏电流达50mA,其它相只有1mA,遂判断为2YHA故障,将其更换并恢复发电机接线,机组重新从0升压正常。 2原因分析及对策 此次事故原因通过电气检修做交、直流耐压试验及更换发电机出线电压互感器2YHA后,发电机重新零起升压正常的情况看,可以确认为是发电机出线电压互感器2YHA相对地绝缘降低,造成发电机定子接地保护动作引起。

三段式过流保护

无时限电流速断保护(电流I段) 反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。 1.几个基本概念 (1)系统最大运行方式与系统最小运行方式 最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。 最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。 (2)最小短路电流与最大短路电流 在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。(3)保护装置的起动值 对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。 (4)保护装置的整定 所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。 2、整定计算 (1)动作电流 为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。即 Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3, 结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。 (2) 保护范围(灵敏度KLm)计算(校验) 《规程》规定,在最小运行方式下,速断保护范围的相对值Lb%>(15%~20%)时,为合乎要求,即 (3)动作时限 无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。t=0s 3、对电流速断保护的评价 优点:是简单可靠,动作迅速。 缺点:(1)不能保护线路全长; (2)运行方式变化较大时,可能无保护范围。 注意: (1) 在最大运行方式下整定后,在最小运行 方式下无保护范围。 二、限时电流速断保护(电流II段)的电流速断保护 限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。 1、工作原理 (1)为了保护本条线路全长,限时电流速断保护的保护范围必须延伸到下一条线路中去。(2)为了保证选择性,就必须使限时电流速断保护的动作带有一定的时限。

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

600MW机组汽机主保护

益阳电厂600MW机组汽机主保护 一、汽机主保护基本配置情况 根据《DL/T5175-2003 火力发电厂热工控制系统设计技术规定》和《DL5000-2000火力发电厂设计技术规程》,益阳电厂600MW汽机主保护配置了17项。包括EH油压低、润滑油压低、低背压真空低、高背压真空低、轴振大、手动停机、瓦振大、DEH110%超速、DEH失电、ETS超速、MFT、DEH停机、轴向位移大、发电机保护、高压缸差胀大、低压缸差胀大、过热度保护。 近年来,公司组织修编和出版了集控运行规程和检修规程,对汽机保护的检修维护和运行操作进行了详细的描述。 根据保护投退管理要求,对汽机DEH画面进行了完善,将机组主保护的投退状态显示在运行DCS盘上,方便运行和管理人员查询机组的保护状态。 DCS系统为ABB Symphoney 系统。监控软件PGP4.0;控制器为冗余BRC100,版本F,扫描周期100ms,运行中控制器负荷率47%左右。系统供电为2N冗余供电,ETS电源消失设置有硬件接触器触发ETS。 二、现场测点配置情况和逻辑组态情况 1、测点布置。 1.1EH油压低+9.31MPa四个测点,在汽轮机机头,3EHSW1接入46-6C-TB3-1,2;3EHSW2接入46-7C-TB4-5,6 ;3EHSW3接入46-7D-TB4-5,6 ;3EHSW4接入46-6D-TB4-5,6。 1.2、润滑油压低+0.07MPa四个测点,在汽轮机机头,3LBOSW1接入46-6C-TB3-5,6;3LBOSW2接入46-7C-TB4-7,8 ;3LBOSW3接入46-7D-TB4-7,8 ;3LBOSW4接入46-6D-TB4-7,8。 1.3、低背压真空低-69.7KPa四个测点,在汽轮机机头,3LV1SW1接入46-6C-TB4-1,2;3LV1SW2接入46-7C-TB4-1,2 ;3LV1SW3接入46-7D-TB4-1,2 ;3LV1SW4接入46-6D-TB4-1,2。 1.4、高背压真空低-69.7KPa四个测点,在汽轮机机头,3LV2SW1接入46-6C-TB4-5,6;3LV2SW2接入46-7C-TB4-3,4 ;3LV2SW3接入46-7D-TB4-3,4 ;3LV2SW4接入

《继电保护原理》期末试题

《继电保护原理》期末试题 一、填空题(12*2分/个=24分) 1.电器元件一般有两套保护,若主保护未动作,还有一套是后备保护 2.反应电流增大而动作的保护称为过电流保护 3.电流继电器的反馈电流和动作电流的比值成为反馈系数 4.定时限过电流保护的动作时限按阶梯原则选择。 5.继电保护装置由测量回路、逻辑回路、执行回路三部分组成 6.继电保护的可靠性是指应动作的时候动作 7.电流速断保护,即第一段保护的动作电流是按躲开本条线路末端的最大短路电流来规定的,其灵敏性是由保护的范围表征的 8.按阶梯时限保护的原则,越靠近电源端的短路电流越大,动作时间越长 9.距离保护是反映故障点至保护安装地点之间的距离(或阻抗),并根据距离的远近而确定动作时间的一种保护装置。 10.全阻抗继电器的缺点是没有方向性 11.输电线路纵差保护的范围是线路全长,故障的切除时间为零(瞬时动作) 12.比率差动特性的启动电流随电流的增大而增大 13.单相自动重合闸选项的作用选出故障相 14.相间短路的阻抗继电器,当I O =I B -I A, 则 A B U U U- = 15.线路的纵差保护是反应首端和末端电流的大小和相位的,所以它不反映相外保护 16.变压器的励磁涌流中除含有大量的直流分量,还有大量的谐波分量,其中以二次谐波为主 17.发电机正常运行,三次谐波电压机端电压大于中性点量。 18.母线保护的首要原则是安全性 19.微机保护的基本算法是计算被测电气量的幅值和相位 20.微机保护中从某一采集信号内,提出有用信号的过程叫做滤波 二、问答题(6*6分/个=36分) 1、什么叫继电保护装置,其基本任务是什么?

三相同步发电机实验解读

1.同步发电机运行实验指导书2.发电机励磁调节装置实验指导书3.静态稳定实验(提纲,供参考) 4.发电机保护实验提示 5. 广西大学电气工程学院

同步发电机运行实验指导书 目录 一、实验目的 二、实验装置及接线 三、实验内容 实验一发电机组的起动和同步电抗Xd测定 实验二发电机同期并网实验 实验三发电机的正常运行 实验四发电机的特殊运行方式 实验五发电机的起励实验 四、实验报告 五、参考资料 六、附录 1.不饱和Xd的求法 2.用简化矢量图求Eq和δ 3.同期表及同期电压矢量分析

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以4KW直流电动机与同轴的1.5KW同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和自动控制屏(微机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-42,凸极机 额定功率4KW 额定电压DC220V 额定电流22A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.81A 同步发电机 型号STC-1.5 额定功率 1.5KW 额定电压AC400V(星接) 额定电流 2.7A 额定功率因数0.8 空载励磁电流1A 额定励磁电流2A 同步发电机接线如图电-01所示。发电机通过接触器1KM、转换开关1QS、

最新发电机输出保护整定

发电机输出保护整定

发电机保护整定值计算 发布:2009-9-06 16:16 | 作者:电气调试 | 来源:本站 | 查看:299次 | 字号: 小中大 #1发变组保护整定过程1.CPU3保护整定 (1)发电机差动保护: 发电机额定电流:4125A,CT:5000/5,故二次额定电流Ie= 4.12A。额定电压10.5KV,PT:10500/100。 a.比例制动系数Kz=0.4,依据:装置技术说明书。 b.启动电流Iq=2.06A,取2A。依据:取0.5Ie。 c.差动速断倍数Ic.s=6。 d.负序电压定值U2.dz=0.08×100=8V。 依据:按躲过可能出现的最大不平衡负序电压整定。 e.TA断线延时发信Tct=0.5S;依据:见技术说明书。 (2)3Uo发电机定子接地保护: a.零序电压保护定值3Uo.dz=8V。 依据:公式3Uo.dz=Krel×Uunb.max,躲过正常运行时中性点单相压互或机端三相压互开口三角的最大不平衡电压。 b.动作时间t=3S。 (3)3w发电机定子接地保护: a.动作电压调整K1、K2,制动电压调整K3,装置自动整定,见装置技术说明书。 b.动作时间t1=6.0S。 (4)发电机转子两点接地保护:

a.二次谐波电压定值Uld=Kk×Ubpn=2.8×Ubpn b.延时t1=1S。 (5)发电机转子一点接地保护: a.接地电阻定值Rg=8KΩ;保护动作延时t1=5.0S。 b.开关切换延时t0=1.0S。 (6)发电机断水保护: a.整定t0=20S,t1=0S,未用。 2.CPU2保护整定 (1)发电机复合电压过流保护: a.低电压定值Ul.dz=70V,按照低于正常30%的二次额定电压整定。 b.负序电压定值U2.dz=10V,取10%的二次额定电压整定。c.过电流定值Ig.dz=KKIe/Kr=5.95A,取6.0A。按躲过额定负荷下可靠返回整定,Kk取1.3,Kf取0.9。 d.延时t1=3.5S,母线解列,延时t2=4.5S,出口跳闸。 依据:延时与变压器的相应保护延时的限额配合。 (2)发电机定时限负序过流保护: a.负序电流定值I2.dz=1.03A,取1.1A;按发电机能承受的电流和躲过引起转子发热而致损伤的负序电流整定,公式为:I2.dz=0.25Ie。 b.延时t1=4.5S,母线解列;延时t2=5.5S,I段全跳。 (3)发电机不对称过负荷保护(定、反时限):

三段式过流保护的原理及其整定值

三段式过流保护的原理 及其整定值 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

无时限电流速断保护(电流I段) 反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。 1.几个基本概念 (1)系统最大运行方式与系统最小运行方式? 最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。 最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。 (2)最小短路电流与最大短路电流 在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。 在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。 (3)保护装置的起动值 对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。

(4)保护装置的整定 所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。 2、整定计算 (1)动作电流 为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。即? Idz>=式中可靠系数KK=~, 结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。 (2)保护范围(灵敏度KLm)计算(校验) 《规程》规定,在最小运行方式下,速断保护范围的相对值Lb%> (15%~20%)时,为合乎要求,即 (3)动作时限

无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。t=0s 3、对电流速断保护的评价 优点:是简单可靠,动作迅速。 缺点:(1)不能保护线路全长; (2)运行方式变化较大时,可能无保护范围。 注意:(1)在最大运行方式下整定后,在最小运行? 方式下无保护范围。 二、限时电流速断保护(电流II段)的电流速断保护 限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。 1、工作原理 (1)为了保护本条线路全长,限时电流速断保护的保护范围必须延伸到下一条线路中去。 (2)为了保证选择性,就必须使限时电流速断保护的动作带有一定的时限。

发电机的主要保护

发电机的主要保护 1. 继电保护及自动装置的一般规定 继电保护及自动装置是保证电网运行。保护电气设备的主要装置,保护装置使用不当或不正确动作将会引起事故或事故扩大,损坏电气设备甚至整个电力系统瓦解。 1)继电保护盘的前后,都应有明显的设备名称,盘上的继电器、压板和试验部件及端子排都应有明显的标志名称,投入运行前由继保人员负责做 好。 2)任何情况下,设备不容许无保护运行,若开关改非自动,应在有关调度和本厂领导同意下情况方可短时停用其中一部分保护。 3)继电保护和自动装置的投入、停用、试验或更改定值,如由系统调度管理的设备,则应按调度命令执行;如由本厂管理的设备,则应按值长命 令执行。 4)运行人员一般只进行投入,切除装置的压板、控制开关(切换开关)和操作控制电源的操作,在事故处理或发生异常情况时,可以在查明图纸 的情况下进行必要的处理,并做好必要记录。 5)运行人员处的继电保护图纸应经常保持正确完整。当继电保护回路接线变动后,检修人员应及时送交异动报告和修改底图。 2.继电保护及自动装置的维护与管理 1).值班人员在接班时,应巡视保护装置,并检查以下项目: (1)继电保护及自动装置罩壳是否完好,无过热、水蒸汽、异声等不正常现象

。 (2)继电保护及自动装置信号应指示正确。 (3)继电保护及自动装置的运行方式,出口压板等应符合被保护设备的当时运行方式, (4)所有保护装置应保持清洁,做保护装置清洁工作时,要小心谨慎,对保护装置不可敲击,并注意固定不可靠的电阻,灯座,小线等。 (5)监视直流母线电压在220V左右,以防止因直流电压不正常而使保护装置拒动或误动作。监视直流系统绝缘正常,以防止因系统绝缘降低或直流接地造成保护装置误动作 (6)开关跳、合闸回路应良好(跳闸灯亮代表合闸回路正常,合闸灯亮代表跳闸回路正常;跳、合闸灯同时亮或不亮代表回路不正常)。 2).系统发生异常或事故时,值班人员应进行下列工作: (1)立即检查保护装置有无动作,哪些保护动作信号有指示。 (2)准确记录保护动作,电流冲击、电压摆动,负荷变化情况,开关跳闸、合闸时间, 当时的一次系统运行方式,故障发生地点、现象等。 (3)各种保护与自动装置动作情况详细记录后,对装置进行检查,复归信号。(4)保护动作开关跳闸,在强送电前,应先复归保护。 (5)向值长或调度报告发生的异常情况;并说明哪些保护动作,哪些开关跳闸、合闸及时间。 (6)若遇保护及自动装置动作异常,应通知检修人员处理。 (7)退出或投入继电保护及自动装置应按调度或值长命令执行.并将上述情况记在值班记录簿内。对于有可能误动的保护装置,必须先退出,事后报告值长,通知继电人员处理。

实验一 过电流保护实验

实验一过电流保护实验 一.实验目的 1.掌握过电流保护的电路原理,深入认识继电器保护自动装置的二次原理接线图和展开接线图。 2.进行实际接线操作,掌握过电流保护的整定调试和动作试验方法。 二.原理说明 电力自动化与继电保护设备称为二次设备,二次设备经导线或控制电缆以一定的方式 与其他电气 设备相连接 的电路称为 叫二次接线。 二次电路图 中的原理接 线图和展开 接线图是广 泛应用的两 种二次接线 图。它是以两 种不同的型 式表示同一 套继电保护 电路。 1.原理接线图图1-1 6~10KV线路的过电流保护原理接线图 原理接线图用来表示继电保护和自动装置的工作原理。所有的电器都以整体的形式绘在一张图上,相互联系的流回路、电压电路和直流回路都综合在一起,为了表明这种回路对一次回路的作用,将一次回路的有关部分也画在原理接线图里,这样就能对这个回路有一个明确的整体概念。图1-1表示6~10KV线路的过电流保护原理接线图,这也是最基本 的继电保护电路。

图1-2 线路过电流保护展开图 从图1-1中可以看出,整套保护装置由五只继电器组成,电流继电器KA2.KA1的线圈接于A、C两相电流互感器的二次线圈回路中,即两相两继电器式接线。当发生三相短路或任意两相短路时,流过继电器的电流超过整定值,其常开触点闭合,接通了时间继电器KT的线圈回路,直流电源电压加在时间继电器KT的线圈上,使其起动,经过一定时限后其延时触点闭合,接通信号继电器KS和保护出口中间继电器KM的线圈回路、二继电器同时起动,信号继电器KS触点闭合,发出6~10KV过流保护动作信号并自保持,中间继电器KM起动后把断路器的辅助触点和跳闸线圈YR二者串联接到直流电源中,跳闸线圈YR通电,跳闸电铁磁励磁,脱扣机构动作,使断路器跳闸,切断故障电路,断路器QF 跳闸后,辅助触点分开,切断跳闸回路。 原理接线图主要用来表示继电保护和自动装置的工作原理和构成这套装置所需要的设备,它可作为二次回路设计的原始依据。由于原理接线图上各元件之间的联系是用整体连接表示的,没有画出它们的 内部接线和引出端子的编号、回路的编号;直流仅标明电源的极性,没有标出从何熔断器下引出;信号部分在图中仅标出“至信号”,无具体接线。因此,只有原理接线图是不能进行二次回路施工的,还有其他一些二次图纸配合才可,而展开接线图就是其中的一种。 2.展开接线图 展开接线图是将整个电路图按交流电流回路、交流电压回路和直流回路分别画成几个彼此独立的部分,仪表和电器的电流线圈、电压线圈和触点要分开画在不同的回路里,为了避免混淆,属于同一元件的线圈和触点采用相同的文字符号。 展开接线图一般是分成交流电流回路、交流电压回路、直流操作回路和信号回路等几个主要组成部分。每一部分又分成若干行,交流回路按a、b、c的相序,直流回路按继电器的动作顺序各行从上至下排列。每一行中各元件的线圈和触点按实际连接顺序排列,每

过流保护电路原理

过流保护电路原理过流保护电路图 过流保护电路原理 本电路适用于直流供电过流保护,如各种电池供电的场合。 如果负载电流超过预设值,该电子保险将断开直流负载。重置电路时,只需把电源关掉,然后再接通。该电路有两个联接点(A、B标记),可以连接在负载的任意一边。 负载电流流过三极管T4、电阻R10和R11。A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。当电源刚刚接通时,全部电源电压加在保险上。三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。保险导电,负载有电流流过。当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。 保险上的电压(VAB)通常小于2V,具体值取决于负载电流。当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。 C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。因此,改变C1的值可以改变延迟时间的长短。该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。对于电路中给出的元件值,负载电流限制为

1A。通过改变元件值,负载电流可以达到10mA~40A。选择合适额定值的元件,电路的工作电压可以达到6~500V。通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。电容器C2提供保险端的瞬时电压保护。二极管D2避免当保险上的电压很低时,C1经过负载放电。 过流保护电路图 带自锁的过流保护电路 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平...

发电机大修后应作哪些试验

发电机大修后应作哪些试验 1、发电机大修后一般应作如下项目的试验: (1)二次回路(操作保护)传动及检查; (2)发电机起动前之其他试验; (3)测静、转子回路直流电阻; (4)励磁机空载特性试验; (5)发电机短路特性试验; (6)发电机空载特性试验及层间耐压; (7)测量发电机静、转子励磁回路绝缘; (8)对民电机作交流耐压试验,直流耐压试验; 2、上述试验的作法及运行人员注意问题: ①测量发电机静、转子励磁回路绝缘电阻。 因发电机在大修时,励磁机、发电机要解体进行检查处理,静、转子励磁机等线圈绝缘处于大气中,可能吸收潮气使绝缘降低。另外在整个大修过程中,各部绝缘有无损坏,碰坏或缺陷处理不好等现象。测量上述各部绝缘是一基本方法,这是因为绝缘电阻是衡量绝缘质量的一个主要指标,用它可以发现绝缘内有无贯穿的导电通路,并能发现由于高压作用于绝缘后而发展的缺陷,测绝缘的工作,一般在开机前由运行人员去作,发电机静、转子回路绝缘电阻应在通水前测量,绝缘电阻的数值不作具体规定,但应于历史测量结果比较分析,静子回路用1000—2500V摇表测量,应不低于0.5MΩ。 若通水后测量的绝缘电阻值主要的是检查水质,一般为数百千欧(用万用表测量)测量绝缘时,使用摇表,万用表应遵守有关规定。 ②对发电机作交流耐压试验的目的是为了检查定子绕组的主绝缘是否良好,检查绝缘水平,确定发电机能否投运。做此试验应用专用试验升压变压器及其他用具,耐压的试验电压,一般应为额定电压的1.3—1.5倍,持续时间为一分钟。 ③直流耐压试验,它能确定绝缘耐压强度,而对绝缘内部不会损伤,同时它还可以测量被测绝缘的泄漏电流,正常时泄漏电流与外加电压为一直线关系,若泄漏电流急剧增加时,则说明绝缘有问题。该试验所加电压应为额定电压的2.5倍,对于发电机的定子绕组来讲,在最高试验电压下,各相泄漏电流在20微安以上者,各相泄漏电流间的不对称系数应不大于2,各相差值应与历史试验值作比较,不应有显著差别。 ④测量静、转子回路直流电阻 测量发电机静、转子回路直流电阻的目的,是为了检查线圈内部、端部、引出线的焊缝质量以及连接点的接触情况,实际是检查这些接头的接触电阻有无变化,若接触电阻大,则说明接触不良,该工作由高压试验人员做。 ⑤励磁机空载特性试验: 为了检查鉴定大修后的励磁机各特性是否良好,并与厂家原特性曲线比较,一般在发电机与系统并列前,当汽机转速达3000转/分钟时作该试验,其方法如下: a、在励磁机磁场回路接一电流表(端子609),并接一电压表(端子 6.03、6.04)

发电机差动保护原理

发电机差动保护原理

5.1 发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ≥ I op.0 ( I res ≤ I res.0 时) I op ≥ I op.0 + S(I res – I res.0) ( I res > I res.0 时) 式中:I op 为差动电流,I op.0为差动最小动作电流整定值,I res 为制动电流,I res.0为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零; b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于1.2倍的额定电流。 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护

该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: ??????????=?-Λ?2.2223sen j e e I U R P ? 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2. U ?的角度)。 故障分量负序方向保护的动作判据可表示为: P e I U R ε>?????????Λ?22' 2.22'sen j e I I ?-ΛΛ?=? 实际应用动作判据综合为: u U ε>??2 i I ε>??2 ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > εP (εu 、εi 、εP 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保

常见继电保护类型及原理

A、过电流保护---是按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。为使上、下级过电流保护能获得选择性,在时限上设有一个相应的级差。 B、电流速断保护---是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。 过电流保护和电流速断保护常配合使用,以作为设备或线路的主保护和相邻线路的备用保护。 C、定时限过电流保护---在正常运行中,被保护线路上流过最大负荷电流时,电流继电器不应动作,而本级线路上发生故障时,电流继电器应可靠动作;定时限过电流保护由电流继电器、时间继电器和信号继电器三元件组成(电流互感器二次侧的电流继电器测量电流大小→时间继电器设定动作时间→信号继电器发出动作信号);定时限过电流保护的动作时间与短路电流的大小无关,动作时间是恒定的。(人为设定) D、反时限过电流保护---继电保护的动作时间与短路电流的大小成反比,即短路电流越大,继电保护的动作时间越短,短路电流越小,继电保护的动作时间越长。在10KV系统中常用感应型过电流继电器。(GL-型) E、无时限电流速断---不能保护线路全长,它只能保护线路的一部分,系统运行方式的变化,将影响电流速断的保护范围,为了保证动作的选择性,其起动电流必须按最大运行方式(即通过本线路的电流为最大的运行方式)来整定,但这样对其它运行方式的保护范围就缩短了,规程要求最小保护范围不应小于线路全长的15%。另外,被保护线路的长短也影响速断保护的特性,当线路较长时,保护范围就较大,而且受系统运行方式的影响较小,反之,线路较短时,所受影响就较大,保护范围甚至会缩短为零。 ②、电压保护:(按照系统电压发生异常或故障时的变化而动作的继电保护) A、过电压保护---防止电压升高可能导致电气设备损坏而装设的。(雷击、高电位侵入、事故过电压、操作过电压等)10KV开闭所端头、变压器高压侧装设避雷器主要用来保护开关设备、变压器;变压器低压侧装设避雷器是用来防止雷电波由低压侧侵入而击穿变压器绝缘而设的。 B、欠电压保护---防止电压突然降低致使电气设备的正常运行受损而设的。 C、零序电压保护---为防止变压器一相绝缘破坏造成单相接地故障的继电保护。主要用于三相三线制中性点绝缘(不接地)的电力系统中。零序电流互感器的一

发电机过压保护实验

发电机过压保护实验 一、实验目的 1、掌握发电机电压保护的电路原理,工作特性、使用及整定原则。 2、通过安装调试理解过压保护中各继电器的功用和整定调试方法。 3、掌握发电机过压保护的电路接线和实验操作技术。 二、预习与思考 1、图17—1的过电压保护电路中,每一个继电器承担着什么任务?能否少用几个? 2、图17—1电路中各个继电器的参数是根据什么原则整定的? 3、假如图17—1中信号继电器的电流线圈误接入电压回路会现什么后果? 4、为什么安装调试时只断开电压继电器与电压互感器的连接,在电压继电器线圈上加调试 电压就可以进行调试整定? 5、为什么四个继电器中只有YJ是测量元件? 三、原理说明 发电机保护是一套防止输出端电压升高而使发电机绝缘受到损害的继电保护装置。 当运行中的发电机突然甩掉负荷或者带时限切除距发电机较近的外部故障时,由于转子旋转速度的增加以及强行励磁装置动作等原因,发电机的端电压升高。 对于水轮发电机,由于调速系统惯性较大,使动作过程缓慢,因此在突然失去负荷时,转速将超过额定值,这时发电机输出端电压有可能高达额定值的1.8~2倍,为了防止发电机的绝缘受到损坏,在水轮发电机上一般应装设过电压保护。 对于汽轮发电机,由于它装有快速动作的调速器,当转速超过额定值的10%后,汽轮机的危急保安器会立即动作,关闭主汽门,能有效防止由于机组转速升高引起的过电压,因此,对汽轮发电机一般不考虑装设过电压保护。但为确保大型汽轮发电机的安全,对中间再热式的大型机组,由于其工频调节器调节过程比较迟缓,励磁系统反应的速度也比较缓慢,因此,在大型汽轮发电机也有必要装设过电压保护装置。 (一)保护装置原理接线图 过电压保护装置的原理接线如图17—1所示,由于过电压是三相对称出现的,故只需装一只电压继电器作为测量元件。保护由接在发电机输出端的电压互感器上的一个过电压继电器YJ以及时间继电器SJ、信号继电器XJ、保护出口中间继电器BCJ等组成。保护动作后跳开发电机断路器和灭磁开关,对大型发电机—变压器组则跳开变压器高压侧断路器及灭磁开关。 (二)保护装置动作值的整定 保护的动作电压可按下式进行计算: Udb=(1.2~1.5)UFe (17-1) 式中UF—发电机额定相间电压。 继电器的动作电压则为: nY b Ud j Ud . . (17—2) 保护的动作时限,一般取0.5秒。式中:nY—电压互感器变比。

过电流保护误动作原因浅析

过电流保护误动作原因浅析 内容摘要:电力系统在运行时常常因为系统中的过电流保护发生误动作而造成事故,给经济带来巨大的损失。该文针对过电流保护误动作进行分析,且针对各种情况提出了应采取的措施,并提出了过电流保护改进的方向。 关键词:过电流误动作原因分析 我国目前正处在经济发展的重要时期,各行各业对电力的需求日益增加。因此,预防用电事故就成为迫切需要解决的问题。电力系统在运行中,可能发生各种故障和不正常运行状态,最常见的也是最危险的故障是发生各种形式的短路,在发生短路时流过故障点的短路电流很大,有可能破坏系统并列运行的稳定性,因此需要在系统中配置过电流保护。然而,在某些情况下,即使采用的过电流保护装置的动作值和时间匹配得很合理,但由于与系统中其他的保护不能很好地配合而导致其误动作,造成整个系统故障。因此随着电网结构的日趋紧密,过电流保护能否正确动作,对电力系统安全、稳定运行非常重要。 1 相关概念 过电流保护的工作原理:当流过系统的电流值超过过电流保护装置整定的动作值,且经过一定的时间延时后使保护装置动作,切断故障电路,这就是过电流保护的动作原理。 过电流保护接线方式:过电流保护的接线方式是指保护中电流互感器与继电器的连接方式。正确地选择保护的接线方式,对保护的技术、经济性能都有很大影响。其基本接线方式有三种:三相三继电器的完全星形接线方式,两相两继电器的不完全星形接线方式,两相一继电器的两相电流差接线方式。其中三相三继电器完全星形接线方式,对各种形式的短路都起保护作用,且灵敏度高,而两

相两继电器不完全星形接线和两相一继电器的两相电流差接线方式,只能对三相短路和各种相间短路起保护作用,当在没有装电流互感器的一相发生短路时,保护不会动作。 2 过电流保护误动作原因及采取的措施 2.1 励磁涌流与和应涌流的影响 励磁涌流实质上是断路器操作时引起的电磁暂态现象,是由于变压器内磁通饱和而引起的。此外,自动励磁调节装置的自激振荡和一次设备的铁磁谐振等因素也会造成间隙性励磁涌流,励磁涌流的大小与合闸角有关,当合闸角为零时,变压器铁芯处于高度饱和状态,励磁涌流可达额定电流的6~8倍,即使不是合闸角为零的极端情况,也有可能使过电流保护误动。对于这种误动,一般采用带有二次谐波闭锁功能的电流保护,以防止励磁涌流导致电流保护误动。 当变电站有2台以上主变时,一台变压器空载合闸,会产生励磁涌流,而如果涌流较大,将使得并列运行的其他变压器中产生和应涌流。和应涌流具有以下特征:①合闸变压器电流始终具有涌流特征,但涌流衰减速度不一致,前面很快,取决于系统与变压器电阻之和,后面很慢,仅与两台变压器的原边等效电阻有关; ②系统电流大小与涌流大小相关,开始几个周波有涌流特征,随着和应涌流的出现,系统电流逐渐对称起来,涌流特征消失,同时期衰减速度很慢,与此时变压器涌流衰减的速度一致。和应涌流由于具有涌流特征,因此其幅值也很大,且其持续时间较长,容易造成保护误动,对于这种情况,考虑提高电流定值或引入电压闭锁元件,防止过电流保护误动。 2.2 不平衡电压、电流的影响

相关文档
最新文档