有限孔径近场声全息技术研究

有限孔径近场声全息技术研究
有限孔径近场声全息技术研究

数字全息综合实验

数字全息综合实验 实 验 讲 义 前言

传统全息实验通过干涉记录与衍射再现描述了物体的振幅与相位信息,并使用银盐或光致聚合物干板做为记录介质,通过使用不同浓度、温度的药液,经过显影定影,再现物体信息,拍摄过程对环境要求较高,冲洗存在一定的安全隐患,实验结果不方便进行二次开发。 数字全息实验使用高精度CMOS相机和空间光调制器件(SLM)进行采集和再现,降低了对环境(暗室、防震)的要求,免去了冲洗的不安全隐患,可以对数据进行二次开发,如滤波、存储、传输、加密安全等,坧展了全息的应用领域,使经典光学再现现现代风采。 1. 实验目的 a.通过本实验掌握数字全息实验原理和方法;

b.通过本实验熟悉空间光调制器的工作原理和调制特性; c.通过本实验理解光信息安全的概念和特点; 2. 实验原理 全息技术利用光的干涉原理,将物体发射的光波波前以干涉条纹的形式记录下来,达到冻结物光波相位信息的目的;利用光的衍射原理再现所记录物光波的波前,就能够得到物体的振幅(强度)和位相(包括位置、形状和色彩)信息,在光学检测和三维成像领域具有独特的优势。由于传统全息是用卤化银、重铬酸盐明胶(DCG)和光致抗蚀剂等材料记录全息图,记录过程烦琐(化学湿处理)和费时,限制了其在实际测量中的广泛应用。 数字全息技术是由Goodman和Lawrence在1967年提出的,其基本原理是用光敏电子成像器件代替传统全息记录材料记录全息图,用计算机模拟再现取代光学衍射来实现所记录波前的数字再现,实现了全息记录、存储和再现全过程的数字化,给全息技术的发展和应用增加了新的内容和方法。目前常用的光敏电子成像器件主要有电荷耦合器件CCD、CMOS传感器和电荷注入器件CID三类。 (一)数字全息技术的波前记录和数值重现过程可分为三部分: a.数字全息图的获取。将参考光和物光的干涉图样直接投射到光电探测器上,经图像采集卡获得物体的数字全息图,将其传输并存储在计算机内。 b.数字全息图的数值重现。本部分完全在计算机上进行,需要模拟光学衍射的传播过程,一般需要数字图像处理和离散傅立叶变换的相关理论,这是数字全息技术的核心部分。 c.重现图像的显示及分析。输出重现图像并给出相关的实验结果及分析。 与传统光学全息技术相比,数字全息技术的最大优点是:(1)由于用CCD等图像传感器件记录数字全息图的时间,比用传统全息记录材料记录全息图所需的曝光时间短得多,因此它能够用来记录运动物体的各个瞬间状态,其不仅没有烦琐的化学湿处理过程,记录和再现过程都比传统光学全息方便快捷;(2)由于数字全息可以直接得到记录物体再现像的复振幅分布,而不是光强分布,被记录物体的表面亮度和轮廓分布都可通过复振幅得到,因而可方便地用于实现多种测量;(3)由于数字全息采用计算机数字再现,可以方便地对所记录的数字全息图进行图像处理,减少或消除在全息图记录过程中的像差、噪声、畸变及记录过程中CCD器件非线性等因数的影响,便于进行测量对象的定量测量和分析。 目前, 数字全息技术已开始应用于材料形貌形变测量、振动分析、三维显微观测与物体识别、粒子场测量、生物医学细胞成像分析以及MEMS器件的制造检测等各种领域。虽然国内外在数字全息技术方面已经开展了大量的研究工作,但对于这一全息学领域的最新发展成果及其相关知识的传播和教学方面目前明显落后于科研,在全息学的实验教学上仍然以传统全息成像方法为主,很少涉及现

2.声学测试技术及进展

LMS 声学测试与分析——声源识别

目 录
1 2 3 4 5 6 LMS 总体声学解决方案 LMS 声源识别技术 LMS 声源识别产品 LMS 传统声全息技术 LMS HDCam 声学照相机 LMS 内场声源识别技术

声学试验涵盖哪些领域? 与客户需求有什么样的相关性?
这个声音正常么? 为什么听上去不舒服? 声品质
回放/滤波,心理声学指标, 客观及主观评价
声音是从哪里发出来的? 声源识别
声强 – 波束成型 声全息 – 声聚焦 车外 & 车内噪声源识别
根源是什么? 声源? 传递途径? 声振耦合分析工程
传递路径分析 声源量化排序 声振耦合模态分析
Intensite dBA 91 90 89 88 87 86 85 84 83
需要用什么样的材料来 降低噪声?
材料及部件测试
吸声,传递损失 驻波管法,现场试验法,试验室法
产品是否满足标准要求?
声功率 & 通过噪声
声压法 & 声强法 试验室内,车内,试车场
是否满足产品质量目标? 声学分析仪
声级计,Leq连续等效声压级,倍频程, 响度,语言清晰度,..
3 copyright LMS International - 2008

LMS 声源识别技术

声源识别
为什么要做声源识别? 声压测试无法解释分析各个声源的贡献量? 测试声压不能分析声能量是如何传播流动的?
Intensite dBA 76 75 74 73 72 71 70 69 68
声压图显示出有3个声源 而实际上只有2个声源 (干涉)
声源识别需要专门的技术 声强法 (一般来说仅适合于稳态声源) 远场波束成型 (+声聚焦) 近场声全息 (+声聚焦)
5 copyright LMS International - 2008

溶菌酶的研究及应用简介

溶菌酶的研究及应用简介 摘要溶菌酶(lysozyme)是一种专门作用于微生物细胞壁的水解酶,又称胞壁质酶(muramidase)。人们对溶菌酶的研究始于20 世纪初,英国细菌学家Fleming在发现青霉素的前6年(1922年)发现人的唾液、眼泪中存在能溶解细菌细胞壁的酶,因其具有溶菌作用,故命名为溶菌酶,其中鸡蛋溶菌酶的研究和应用已相当深入和广泛[1]。通过对它的结构、性质、来源的研究;溶菌酶已广泛的应用于医药、生物工程和食品工业等多个方面。 关键词溶菌酶;结构;应用;研究进展 溶菌酶(Lysozymc EC3.2.1.17)又名胞壁质酶(muramidase)、乙酞胞壁酸聚糖水解酶(N-acctylmuramide glyca-nohydrolase),广泛地分布于自然界[2]。在病毒(如噬菌体T4)、细菌(如枯草杆菌)、植物(如番木瓜)、动物(如鼠、狗)及人体都含有。人体多数组织器官含有一定浓度的溶菌酶。但以脾、肾含量较高。在鼻及支气管分泌液、泪液、脑脊液、唾液、乳汁及血液中均含有一定量的溶菌酶。此酶自被发现以来,经科学家们不断地研究,使得它在酶学及临床医学中均占有一定的重要位置,也将其应用于医疗、食品、畜牧及生物工程中。 1 溶菌酶的发现 1907年Nicollc[2]猜测芽胞杆菌(Bacillus)及枯草杆菌中含有溶解细菌的酶。1909年https://www.360docs.net/doc/d2827069.html,schtchenko[3]第一个报道了鸡蛋清含有溶解细菌的酶。1922年Alexander Fleming[2]发现鼻粘液里有一种能溶解微球菌(micrococcus

lysodeikticus)及其他细菌的酶,他把这种酶命名为溶菌酶(lysozyme)。经过仔细的观察和研究,他发现此酶广泛地存在于生物组织及机体的某些分泌物中。之后Robert及Wolff 也从鸡蛋清里提取出溶菌酶。1937~1946年间Abraham[3],Robinson, Alderson及Fevold等人通过实验从而分别获得了溶菌酶的结晶。 2 溶菌酶的理化性质、空间结构 2.1溶菌酶的理化性质 溶菌酶由129个氨基酸构成的单纯碱性球蛋白,在酸性环境下,溶菌酶对热的稳定性很强。当pH值为1.2~11.3围剧烈变化时,但其结构几乎维持不变。当pH值为4~7,96℃热处理15 min仍能保持87%的酶活性;当pH值为3 时能耐100℃加热处理45min;但碱很容易破坏酶活性,当处于碱性pH 值围时,溶菌酶的热稳定性就很差[4]。在干燥条件下,溶菌酶可以长期在室温存放,其纯品为白色或微黄色。黄色的结晶体或无定形粉末,无臭,味甜。易溶于水,易遭碱破坏,不溶于丙酮和乙醚。其分子结构如下: 2.2 空间结构 溶菌酶是第一个结构弄清楚的酶,在很长一段时间中,其中有许多蛋白晶体研究及蛋白质结构与功能关系研究。这些进展都是利用溶菌酶获得的溶菌酶一直

中国功能晶体研究进展

185 https://www.360docs.net/doc/d2827069.html, Volume 1 · Issue 2 · June 2015 Engineering 中国功能晶体研究进展 王继扬1*,于浩海1,吴以成2,Robert Boughton3 摘要:功能晶体是现代科学技术发展的基础材料之一,在当前 信息时代发挥着重要和关键的作用。本文总结了若干功能晶体的研究进展,综述了中国功能晶体的现状及重大成就和重要应 用,讨论了功能晶体面临的挑战和机遇,提出了可能的发展方向。 关键词:功能材料,激光晶体,非线性光学晶体,闪烁晶体,弛豫型铁电晶体,半导体 1?引言 晶体是具有长程有序的固体材料,功能晶体是力、热、电、磁、光、声等各种能量形式转化的媒介,是现代科学技术发展的基础材料之一。例如,众所周知的宝石——金刚石晶体由于其极高的硬度、优越的热学和电导性能,掺杂后还有半导体性质,是一种优秀的功能晶体;单晶硅是集成电路的基础,推动了计算机及其相关技术的蓬勃发展,使人类进入了信息时代。功能晶体的人工制备始于1900年法国科研工作者生长人工红宝石 (刚玉) 晶体用于制造手表轴承。人工晶体是针对特定需求而专门生长的高纯度和高度完整性单晶体,在现代科学技术中,人工晶体起着关键作用。 根据主要效应和应用,功能晶体可分成:激光晶体、非线性光学晶体、电光晶体、压电晶体、热释电晶体和闪烁晶体等。此外,大多数半导体晶也具有功能效应,属于功能晶体。目前,功能晶体在众多先进光电子和微电子设备起到了不可或缺的作用。 激光是20世纪四大发明之一,激光晶体是其核心和物质基础,标志着激光器的发展历程。1960年,Maiman 以红宝石晶体 (Cr 3+:Al 2O 3) 为激光介质,发明了首台激光器,标志着激光的产生[1];20世纪70年代,掺钕钇铝石榴石 (Nd:Y AG) 激光晶体首次实现激光输出,推动了中高功率激光的发展;20世纪80年代,钛宝石 (Ti:Al 2O 3) 激光晶体的发展奠定了可调谐激光器 (范围为660~1100 nm) 和超快、超强激光器的基础。20世纪80年代晚期,激光二极管的商业化促进了全固态激光器的迅速发展;20世纪90年代,掺钕钒酸钇 (Nd:YVO 4) 晶体生长瓶颈的克服,促进了高效、紧凑全固态激光器和激光技术的广泛应用。 通常情况下,一种激光器仅发射一种或数种具有特定波长的激光,不同的应用和需求需要不同波长的激光。非线性光学晶体可通过非线性光学效应产生不同波长激光。非线性光学效应是指当激光通过非线性光学介质时,会诱发非线性光学介质的非线性极化,从而产生非线性谐波,如倍频、差频、和频、光参量振荡和光参量产生等。具有非线性光学效应的晶体称为非线性光学晶体。 本文概述了中国功能晶体的最新研究进展,涉及激光晶体、非线性光学晶体 (包括深紫外、可见、红外以及太赫兹波段等) 、闪烁晶体、弛豫铁电体和宽禁带半导体晶体等,并讨论了可能的发展方向。 2?功能晶体现状 2.1?激光晶体 激光晶体是可以通过电泵浦或者光泵浦实现激光输 1 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; 2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China; 3 Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403-0001, USA * Correspondence author. E-mail: jywang@https://www.360docs.net/doc/d2827069.html, Received 22 June 2015; received in revised form 28 June 2015; accepted 30 June 2015 ? The Author(s) 2015. Published by Engineering Sciences Press. This is an open access article under the CC BY license (https://www.360docs.net/doc/d2827069.html,/licenses/by/4.0/)英文原文:Engineering 2015, 1(2): 192–210 引用本文:Jiyang Wang, Haohai Yu, Yicheng Wu, Robert Boughton. Recent Developments in Functional Crystals in China. Engineering , DOI 10.15302/J-ENG-2015053 Advanced Materials and Materials Genome—Review Research

近场光学原理简介(转载)

近场光学原理简介(转载) 2011-05-08 16:05:48| 分类:SEM基础 | 标签:精密测试纳米光学衍射极限分辨率远场光学|字号订阅 作者:王佳教授(转载请注明) 清华大学精密测试技术及仪器国家重点实验室纳米光学/近场光学实验室 所谓近场光学,是相对于远场光学而言。传统的光学理论,如几何光学、物理光学等,通常只研究远离光源或者远离物体的光场分布,一般统称为远场光学。远场光学在原理上存在着一个远场衍射极限,限制了利用远场光学原理进行显微和其它光学应用时的最小分辨尺寸和最小标记尺寸。而近场光学则研究距离光源或物体一个波长范围内的光场分布。在近场光学研究领域,远场衍射极限被打破,分辨率极限在原理上不再受到任何限制,可以无限地小,从而基于近场光学原理可以提高显微成像与其它光学应用时的光学分辨率。 1.远场光学的衍射分辨极限 远场光学的分辨率受到衍射效应的限制。1873年,德国科学家阿贝(Abbe)根据衍射理论首次推导出衍射分辨极限,即能够被光学分辨的两点间的距离总是大于波长的一半。后来,瑞利(Rayleigh)将阿贝衍射理论归纳为一个公式: (1-1)这就是人们所熟知的瑞利判据。该判据表明,当且仅当物体上两点之间的距离d大于或等于不等式右边所规定的量时,才被看作是分开的两点。这个量与入射光在真空中的波长l、物方折射率n以及显微物镜在物方的半孔径角q有关。

nsin(q)通常也被称作数值孔径(Numerical Aperture,N.A.)。 由瑞利判据可知,提高分辨率包括两种方法:其一,尽可能选择短的辐射波长,如利用蓝光、紫外光、x射线、电子等;其二,提高数值孔径,但若不考虑较少和较难使用的油浸物镜(N.A. = 1.5左右)与固体浸没透镜,数值孔径的最大值不超过1,因此远场光学的分辨极限最高只能达到波长的l/2。 2.近场光学的超衍射极限分辨率 当光和物体发生相互作用后,在物体表面(xy面)形成携带物体信息的光场分布,可以使用该场(即z= 0平面上的场)的复振幅的分布特性来表示样品。与空间频谱的关系由傅立叶变换确定: (1-2)fx、fy分别为沿x、y方向的空间频率分量,反比于物体的结构尺寸。当光传播到探测平面z时,复振幅和空间频谱满足同样的关系: (1-3)光场分布满足标量亥姆霍兹方程: (1-4) 其中,为总空间频率。将式1-3代入式1-4得: (1-5) 为待定系数,由初始条件确定。z= 0处为物平面,其空间频谱为

基于波叠加方法的半自由声场全息理论

基于波叠加方法的半自由声场全息理论 李卫兵 陈 剑 于飞 陈心昭 合肥工业大学噪声振动工程研究所(230009) hf_lwb@https://www.360docs.net/doc/d2827069.html, 摘要:在半自由声场中,实际全息测量声压为全息面上的直达声压和反射声压叠加;而常规声全息技术要求全息面声压只包含直达声压,这样就不能直接用常规全息方法来重建与预测半自由声场。以波叠加方法为全息变换算法,在充分考虑反射声压的情况下,建立了基于波叠加方法的半自由声场全息重建与预测理论,解决了半自由声场全息重建与预测问题,拓宽了全息技术的应用范围。数值仿真的结果充分证明了基于波叠加方法的半自由声场全息理论的正确性和可行性,以及常规全息技术在半自由声场重建与预测过程中的局限性。 关键词:近场声全息 半自由声场 波叠加方法 1.引言 上世纪80年代初,美国宾夕法尼亚大学学者E.G.Williams等提出了基于空间声场变换的近场声全息 [1-2]。近场声全息是在紧靠被测声源物理表面的测量面上记录全息数据,然后通过变换技术重建三维空间声压场、振速场、声强矢量场,并能预报远场指向性。由于是近场测量,所以除了记录了传播波成分外,还能记录随传播距离按指数规律衰减的倏逝波成分,由于倏逝波含有振动体细节信息,所以理论上可获得不受波长限制的高分辨率图像,测量覆盖了从源出来的一个大的方位角,有指向性的源也能够被不失信息地检测出来[1-8]。 声全息是一种有效而快捷的噪声源辨识技术,只需要测量面上的复声压数据,就可以在很宽的频带范围内对声源特性进行研究。它对大型复杂结构的振动和噪声辐射特性研究、噪声源的识别与定位以及结构强度评价都是一种极为有效的方法,有助于对结构振动、噪声进行有效控制,在工程上具有很高的应用价值和应用前景。 由于常规声全息技术只适用于自由声场,所以全息测量面上存在反射声的问题严重限制了全息技术的应用。在文献[9]所提到的三个亟待解决的问题中就包括了全息面测量声压中包含反射声压的问题。针对这个问题,国内外许多研究者在实验中都采取一些措施来削弱反射声的影响,比如在全消声室中进行测量[1,3,4],或者通过挡板将地面反射声与直达声隔开[5],或将声源放置在离地面很高的地方进行测量[6]。虽然这些方法对声源定位有一定作用,但是并不能准确地预测整个声场的辐射特性,给声源特性判别带来不便,不利于进行噪声源的控制。 在声辐射问题中, 为了寻求边界元方法的有效替代方法, Koopmann等提出了更容易理解和实施的波叠加方法来计算声辐射问题[10-11]. 波叠加方法的基本思想是:任何物体辐射的声场都可以由置于该辐射体内部的,若干个不同大小源强的简单源产生的声波场叠加得到。本文以波叠加方法作为全息变换算法,在充分考虑反射声压的基础上,建立了反射面为刚性和 - 1 -

数字全息技术

数字全息技术 作者:王栎汉 专业:数字多媒体专业11界 指导老师:李德 概要:数字全息技术是随着现代计算机和CCD技术发展而产生的一种新的全息成像技术。文章主要介绍数字全息技术的基本原理。 关键词:全息技术、图像重建 一:数字全息技术背景 二:数字全息技术的应用 三:数字全息技术的制作过程

一:数字全息技术背景 全息技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 与传统的全息技术相比,数字全息是用光电传感器件(如CCD或CMOS)代替干板记录全息图,然后将全息图存入计算机的一种新技术。用计算机模拟光学衍射过程来实现被记录物体的全息再现和处理。即用计算机产生和重现全息图像。把物理成像过程扩展到数字过程。 计算机产生全息图像的基本特点是它不需要空间物体的真实存在,而是从物体的数学描述开始,计算出全息图。任何能够用数学描述的一维、二维、三维物体都能够做出计算机的全息图。

二:数字全息技术的应用 全息技术通过记录物光振幅和相位的方法能够达到记录和恢复物体三维信息的目的。全息技术的这一特性使得它被广泛应用于科学研究、工业检测、商业包装和艺术设计等领域。 数字全息技术是以传统光学全息为基础,使用CCD数字化地记录全息干涉条纹。 数字全息图能够通过计算机,实现数字再现以及物体变形的测量;同时数字全息图也可以利用空间光调制器实现物体三维信息的空间再现。 因此数字全息技术主要运用在水下侦探,固体无损检验,地球物理探测,雷达技术等方面。数字全息技术最成熟的应用之一是光学原件表面形状的检测。由透镜的设计数据在计算机上计算出标准波前,并制成全息图。

结晶技术的研究进展及应用

结晶技术的研究现状及应用 摘要:简要概述了目前工业结晶的技术现状,阐述了蒸馏一结晶祸合技术、离解萃取结晶技术、诱导沉淀结晶技术、膜蒸馏一结晶技术、鼓泡结晶技术及超临界流体结晶技术的原理与应用现状。提出了不同结晶技术目前存在的主要问题并对其研究动向进行了展望。 关键词:结晶研究现状应用 前言 结晶是化工分离单元中一个基本的工艺过程。结晶过程具有可以分离出高纯或超纯的晶体、能耗较低且操作安全等优点。随着人们对结晶技术的研究,结晶过程也越来越多地与其它工艺过程相结合,由此出现了结晶藕合技术,它可以解决简单单元操作—精馏、萃取、吸附等不能解决的问题,在分离新产品的过程中有着非常重要的作用。 1技术原理与应用 1.1蒸馏一结晶藕合技术 常用的蒸馏过程要求分离体系中组分间的挥发度相差较大,对于共沸体系,因为组分间的挥发度差别较小,很难用蒸馏方法进行分离。对于一些易结晶的共沸体系来说,组分间的沸点比较接近,但熔点相差很大,沸点接近增加了分离的难度,熔点高又会使易结晶物质难以控制。蒸馏一结晶藕合技术既可以解决操作过程中所遇到的问题,又可以利用熔点差大的特点加强分离。对于一些沸点接近、熔点相差较大的有机物质,单纯采用精馏的方法,不仅耗能,而且产品纯度也比较低,而单纯采用结晶工艺,需要多级结晶器,成本高、效率低。利用它们熔点差较大的特性,使用精馏一熔融结晶藕合工艺,不仅能够简化生产工艺,提高产品质量,而且还可以降低生产成本、减少环境污染,是分离有机产品的非常有发展前途的工艺。蒸馏一结晶藕合工艺在精茶等易结晶物质的提取分离中得到了成功的应用。耿斌[m 通过蒸馏和熔融结晶技术的结合来提高间苯氧基苯甲醛c}B}的含量,既解决了产品的品质问题,又提高了收率,而且节约了大量能源。叶青等口]运用减压精馏一熔融结晶藕合技术成功分离提纯了人造廖香,实验结果表明,该技术可以将人造廖香的纯度提高到98%、总收率可以达到54%,比原始工艺提高了13%。侯文杰口]利用精馏和溶剂重结晶藕合方法,从苯加氢装置的苯塔残液中提取了联苯,精馏后联苯的纯度达到95 %,进一步重结晶可以将纯度提高到99.5 % }; 1.2离解萃取结晶技术 离解萃取结晶技术是一种新型的适用于分离物性相近的组分特别是有机物同分异构体与热敏物料的有效方法,它是一种双相分离技术,根据混合物组分间分配系数与离解常数的不同,可应用于有机酸或碱的分离。一个单级的离解萃取过程中的平衡混合物体系包括待分离组分的有机相与溶剂,其中溶剂是由水和与水不相溶的液体形成的混合溶剂,水相中含有一定量的中和试剂,恰好可以中和有机相中的强组分。待分离的有机组分按其分配系数的不同,在有机相和水相之间进行分配,水相中的中和试剂按照待分离组分离解常数的不同而优先与强组分反应,生成不溶于有机相的盐后保存于水相,则水相中富含强组分生成的盐,有机相中富含弱酸C}彭,这样就可以将待分离的离解常数与分配系数不同的组分加以分离。 Gaikar和Sharma在离解萃取的理论基础上提出了一种新型分离工艺—离解萃取结晶0-41。它是一种双相或三相分离技术,同时利用组分间离解常数与分配系数的不同,组分与外加萃取剂化学亲和力的不同以及生成的配合物在溶剂中溶解度的不同来分离上述物系。离解萃取结晶过程主要包括萃取、反应、沉淀结晶三个步骤,根据待分离组分离解常数和分配系数的不同,选择合适的溶剂、萃取剂即可实现高效分离。 曾凡礼等[5]利用离解萃取技术对含7O% }-BO%对甲酚的甲酚混合物原料液进行分离,最终收率大于90%,产品纯度大于99%。向待分离的甲酚混合物中加入一定量的萃取剂与

溶菌酶综述

溶菌酶综述 溶菌酶(Lysozyme,EC3.21.17)又称为胞壁质酶(Murami dase).化学名称为N一乙酰胞壁质聚糖水解酶(N-Acety1 muramidi Glrcanohy.dralase)。它于1922年由英国细菌学家费莱明(A,Fleming)在人类的鼻粘液(有的材料为眼泪)中发现的,随后并给它命名为溶菌酶。1963年由乔利斯和坎菲尔德研究了溶菌酶的一级结构。1965年英国菲利普及其同事门用x衍射法解析了溶菌酶,是全世界第一个完全弄清了立体结构的酶,是近代酶化学研究的最太成果之一。它广泛存于鸟类、家禽的蛋清和哺乳动物的眼泪、唾液、血液、鼻涕、尿液、乳汁及组织细胞中(如肝、肾、淋巴组织、肠道等),从术瓜、芜青、大麦、无花果和卷心菜、萝卜等植物中也分离出溶菌酶,其中,以蛋清中含量为最高.约含0.3%.而人乳、眼泪、唾液中的溶菌酶活性远高于蛋清中的溶菌酶的活力。 溶菌酶是一种碱性球蛋白,其分子由129个氨基酸组成,2200个原子,分子量 14388-18000(14388、14500、18000),等电点为10.7-11.0,分子内有4个二硫键交联,化学性质非常稳定,对热也极为稳定,Sbaharu等报告牛奶中的溶菌酶分子量为18000,一级结构尚未清楚。人乳中的溶菌酶和a-La的一级结构有74%是相同的。Ⅱ一La是人乳中含量较多的蛋白质。它对于乳腺中乳糖的合成是必不可少的.是乳糖合成酶的辅酶。溶菌酶和d-La在生物学上是同源的,但它们的三级结构有很大的区别。它可溶解许多细菌的细胞膜.使细胞膜的糖蛋白类多糖发生加水分解作用。分子中碱性氨基酸、酰氨残基及芳香族氨基酸较高,如色氨酸的比例较高。酶的活性中心是天门冬氨酸和谷氨酸,溶菌酶通过其肤键中第35位的谷氨酸和第52位的天门冬氨酸构成的活性部位水解破坏组成徽生物细胞壁的N_一乙酰葡萄糖胺与N一乙酰胞壁质酸间的B一(1,4)糖苷键,使菌体细胞壁溶解而起到杀死细菌(尤其是球菌)的目的。 因此,溶菌酶是一种无毒、无害.安全性很高的高盐基蛋白质.且具有一定的保健作用。它不仅能选择性地分解微生物,而且又不作用于其它物质。该酶对革兰氏的枯草杆菌、耐辐射微球菌有强力分解作用,对大肠杆菌、普通变球菌和副溶血性弧菌等革兰氏阴性菌也有一定程度的溶解作用.其最有效浓度为0.05%。其同植酸、聚合磷酸盐、甘氨酸等结合使用,可大大提高其防腐效果。由于溶菌酶对多种微生物有很好地抑菌作用,溶菌酶在食品保藏中的作用引起了广泛的重视,尤其是在日本、加拿大、美国等。 溶菌酶的分类: 溶菌酶的底物特异性很强,不同来源溶菌酶作用的底物不同。按溶菌酶的来源可分为蛋清溶菌酶、动物溶菌酶、植物溶菌酶、微生物溶菌酶和细菌噬菌体溶菌酶。按作用细胞壁不同分为细菌细胞壁溶菌酶和真菌细胞壁溶菌酶。细菌细胞壁溶菌酶又细分为两种,一种是作用于β-1,4糖苷键的细胞壁溶解酶,另一种是作用于肽链“尾”端和酰胺部分的细胞壁溶解酶。真菌细胞壁溶菌酶包括酵母菌细胞壁溶解酶和霉菌细胞壁溶解酶。溶菌酶大体分为5种:(1)内N-乙酰己糖胺酶,此酶同于鸡蛋清溶菌酶,破坏细菌细胞壁肽聚糖中的β-1,4糖苷键。(2)酰胺酶,切断细菌细胞壁肽聚糖中N-乙酰氨基葡萄糖胺与肽“尾”之间的N乙酰胞壁酸- L-丙氨酸键。(3)内肽酶,使肽“尾”及肽“桥”内的肽键断裂。(4)β-1,3、β-1,6葡聚糖酶和甘露聚糖酶,此酶分解酵母细胞的细胞壁。(5)壳多糖酶,这是分解霉菌细胞壁的一种溶菌酶。 溶菌酶的应用: 溶菌酶作为一种存在于人体正常体液及组织中的非特异性免疫因素,具有多种药理作用,它具有抗菌、抗病毒、抗肿瘤的功效,目前日本已生产出医用溶菌酶,其适应症为出血、血尿、血痰和鼻炎等。 溶菌酶具有破坏细菌细胞壁结构的功能,以此酶处理G+细菌得到原生质体,因此,溶菌酶是基因工程、细胞工程中细胞融合操作必不可少的工具酶。 溶菌酶是一种无毒、无副作用的蛋白质,又具有一定的溶菌作用,因此可用作食品防腐剂。现已广泛应用于水产品、肉食品、蛋糕、清酒、料酒及饮料中的防腐;还可以添入乳粉中,使牛乳人乳化,以抑制肠道中腐败微生物的生存,同时直接或间接地促进肠道中双歧杆菌的增殖。此外,还能利用溶菌酶生产酵母浸膏和核酸类调味料等。

《溶液结晶过程研究进展》

溶液结晶过程研究进展 摘要:结晶过程是化工过程中重要的操作单元之一,在介绍结晶过程分类的基础之上,提出影响溶液结晶过程的一系列因素,最后总结了如何合理把握好影响结晶过程中的因素,将会使结晶技术更加成熟与完善。 关键词:溶液结晶;结晶过程;强化 引言 结晶是一种历史悠久的分离技术,是化工制药、轻工等工业生产常用的精制技术,可从均质液相中获得一定形状和大小的晶状固体。结晶过程是化工过程中重要的操作单元之一,为数众多的化工产品及中间产品都是以晶体形态出现的,如一些无机盐晶体、蛋白质晶体、糖、食盐等。许多现代制备技术,例如外延生长、有机模板调制下的结晶、生物矿化、分子和纳米粒子的形成及自组装、大分子结晶等,都基于对结晶过程的有效控制[1]。不仅传统工业结晶操作技术与设备在不断更新,而且新兴行业,如生物工程与生命科学、材料工业、催化剂制造、能源与环境、信息与通讯、电子行业也都离不开结晶技术。工业结晶作为跨世纪发展的化工技术,将成为21世纪高新技术发展的基础手段之一。 溶液结晶过程通过改变操作条件或添加晶种物质使体系中关键组分的溶解度(或过饱度)发生变化,体系由平衡稳定状态转变为非稳定状态,促使新相产生,从而达到结晶物质与体系中其它混合物分离的目的。溶液结晶过程是物质从液态转变为结晶态的过程,要经历两个步骤:结晶成核和晶体生长。结晶成核是在过饱和溶液中生成一定数量的晶核;而在晶核的基础上成长为晶体,则为晶体生长。 1 结晶过程分类 结晶过程可以根据不同的方式进行分类,一般根据过饱和度的产生方式进行分类,如冷却结晶蒸发结晶、超声波结晶和高压结晶等[2]。 冷却结晶主要是使溶液冷却而变得饱和的结晶方法,适用于溶解度随温度的降低而显著下降的物质[3]。冷却结晶有自然冷却结晶、夹套冷却结晶、蛇管冷却结晶、喷雾冷却结晶、自冷冷却结晶、长槽搅拌冷却结晶、真空冷却结晶和外部循环冷却结晶等。 蒸发结晶是通过加热溶液,使溶剂蒸发,改变溶液的浓度,溶液由非饱和状态变为饱和状态,再进入过饱和状态进行结晶操作的过程。蒸发结晶可以分为真空蒸发结晶和恒温蒸发结晶。功率超声是利用超声振动能量,在介质中产生强大的剪切力和高温,以改变物质的组织结构状态、功能或加速这些改变过程,引发或强化机械、物理、化学、生物等过程,提高这些过程的质量和效率,得到理想效果的技术。功率超声与结晶过程的耦合的研究也由来已久,适宜的功率超声能通过影响结晶过程的热力学和动力学过程,从而控制结晶过程,获得不同需求的晶体。关于超声波结晶的作用机理,目前得到普遍认同的具有3种作用机制[4],即热学机制、机械力学机制和空化机制。 高压结晶是利用加压使物系的液、固相发生相变的一种新型分离精制技术。其优点是生产效率高、处理周期短,可从低浓度物系中分离得到高纯度产品而不受其他操作条件的限制,高压结晶可以提高目的组分回收率。高压结晶对提纯物质的生产率、纯度和收率均有大幅度的提高。虽然高压结晶具有以上优点,但由于高压结晶需要高压设备,导致了设备投资增加,系统维护复杂,且高压相平衡数据难以获得,使高压结晶的工业化应用受到限制。 2 结晶过程影响因素 影响整个结晶过程的因素很多,如溶液的过饱和度、杂质的存在、搅拌速度以及各种物理场等[5]。 超声强化溶液结晶的研究在国内外不是非常多,但已越来越受到一些科研机构和研究人

浅谈溶菌酶的研究进展

期 引言 英国细菌学家弗莱明最早在人体的唾 液、眼泪等分泌物中发现了溶菌酶,因为它 能溶解细菌,故称为溶菌酶,它的作用机制 是破坏细菌细胞壁肽聚糖层的N-乙酰胞 壁酸和N-乙酰氨基葡糖之间的β-1,4 糖苷键,使细胞壁破裂,使细菌溶解。溶菌 酶作为安全的抑菌剂已被应用于食品加 工、疾病治疗等方面,需求量大,所以利用 生物技术大量生产迫在眉睫。此外,关于 “淀粉样纤维”形成基于溶菌酶的研究较为 热门,因此本文将从这两方面进行叙述。 1溶菌酶的结构及其与病理学相关 的研究 溶菌酶是蛋白质,具有高级结构,依靠 疏水作用、氢键等次级键折叠形成一定的 构象,发挥特殊功能。目前,人类最了解的 溶菌酶是鸡蛋清溶菌酶(HEWL),它包含一 条肽链,129个氨基酸。4对半胱氨酸残基 间形成4个二硫键,具有大量的α螺旋结 构。HEWL在体外一定条件的诱导下可以 形成“淀粉样纤维”,研究人员发现PH值较 低时,蛋白质逐渐去折叠,随着去折叠蛋白 质浓度的增大,蛋白质之间的疏水作用加 大,逐渐出现“淀粉样纤维”,具有成核效 应。另外在蛋白质变性剂的存在下,溶菌酶 的二级结构发生变化,可能出现“淀粉样纤 维”,但是不同浓度的变性剂对“淀粉样纤 维”的作用也不同,研究还有待深入。陕西 理工大学白瑜博士利用溶菌酶与朊蛋白结 构上的相似性来研究淀粉样纤维的形成机 制,为神经退行性疾病的研究带来福音[1]。 溶菌酶是一种小分子碱性蛋白,材料 易取,一直被作为一种模型体系,用于研究 蛋白质的空间构象、酶动力学及其与分子 进化、分子免疫间的关系。为优化食品加工 过程、提高食品质量提供理论指导,并为神 经系统等疾病建立了相关蛋白质模型。 目前有研究人员利用溶菌酶为模型 研究盐浓度对蛋白质聚集的影响,对人类 疾病的研究具有重要意义。 2基因工程载体表达溶菌酶的新进展 溶菌酶的用处广泛,但直接从生物体 内提纯效率低,所以其基因的重组和表达 也成为研究热点。鸡溶菌酶的外显子及内 含子序列已经确定,人的溶菌酶基因也逐 渐被解析清楚,为重组表达载体的构建和 优化提供契机。溶菌酶的外源表达包括原 核表达和真核表达,王赞等人通过PCR获 得美洲大鲵i型溶菌酶的基因,并通过构建 原核表达栽体pET28a-pal,诱导表达了美 洲大鲵i型溶菌酶pal蛋白,并通过West- ern-blot和ELISA进行了验证,出现了特异 性条带和免疫反应[2]。李云龙等通过人工合 成奶牛LYZ基因的CDS序列,由于序列较 短,合成片段容易,且保真度较高,所以避 免了RT-PCR中可能会出现的问题,构建 重组表达载体pET32T,PCR克隆筛选出了 阳性菌株,并利用酶切验证成功地构建了 表达载体,SDS-PAGE实验分析重组蛋白 证明已成功实现了溶菌酶大肠杆菌的原核 表达。重组蛋白的表达形式以包涵体的形 式存在,避免了对大肠杆菌的毒性[3]。 考虑到原核表达系统缺少了翻译后修 饰等过程,重组蛋白表达形式为包涵体,其 变性和复性的过程较麻烦,且容易影响蛋 白质的功能,所以目前多使用真核表达系 统,溶菌酶的真核表达体系局限于酵母表 达系统,付世新等人做了牛乳溶菌酶在毕 赤酵母表达方面的分析,他实验已经涉及 了对溶菌酶的基因进行密码子优化,并且 他们进行了牛乳溶菌酶对乳房致病菌的抑 菌分析,实验证明重组牛乳溶菌酶对这些 致病菌均具有抑制作用[4]。宋增健等人利用 NCY-2型毕赤酵母发酵生产溶菌酶,以价 格低廉、营养丰富且稳定性好的麦芽汁为 发酵液,通过探究发酵温度,外加氮源以及 甲醇的添加方式等优化了毕赤酵母的发酵 条件,以期为溶菌酶的工业化生产做出贡 献[5]。黄鹏等人在前人的基础上又做了改 进,他们通过组成型启动子甘油醛三磷酸 脱氢酶(GAP)来代替诱导型醇氧化酶启动 子,获得了高纯度和高活性的rh LysG2,避 免了使用甲醇,因此可以避免碳源间的相 互转化,提高了产量和效率,其中rhLysG2 的酶学性质与普通的C型溶菌酶不同,弥 补了在高渗条件下不能发挥作用的缺陷, 其开发为新型抗耐药菌药物奠定了基础[5]。 根据表达载体的密码子偏好性,以密 码子优化的方法来加强转基因动物的外源 基因表达是新的研究热点。考虑到蛋白质 分泌的“信号假说”,信号肽的翻译和切除 对蛋白的表达也有影响,已有科研人员通 过对信号肽和人溶菌酶基因的整体优化, 在溶菌酶基因的分泌量方面也有所提升。 3结果与展望 溶菌酶是一种结构清楚、化学性质稳 定、来源广泛的酶,已成为一种模式蛋白用 于研究生理条件的变化对于蛋白质结构功 能的影响,并逐渐应用于人类疾病的研究 上。基于基因工程的溶菌酶的生产目前已 有很多报道,通过将强启动子或者增强子 等调控原件与溶菌酶重组,构建新的表达 载体,或利用乳腺等生物反应器的方法来 扩大溶菌酶的生产有待进一步深入研究。 参考文献: [1]本刊编辑部.蛋清溶菌酶作为朊蛋 白错误折叠和淀粉样纤维形成机制的蛋 白模型研究[J].陕 [2]王赟等.美洲大蠊i型溶菌酶的原 核表达及多克隆抗体制备[J].生物技术通 报,2016,32(01):138~143. [3]李云龙等.奶牛溶菌酶基因的构建、 表达及活性研究[J].家畜生态学报,2018,39. [4]付世新等.牛乳溶菌酶在毕赤酵母 中的分泌表达及活性分析[J].中国预防兽 医学报,2010,32(06):428~431+454. [5]宋增健等.基因重组毕赤酵母产蛋 清溶菌酶发酵工艺及表达条件的优化[J].中 国酿造,2018,37(10):20~24. [6]黄鹏等.利用GAP启动子在毕赤 酵母中组成型表达人鹅型溶菌酶2[J].中 国生物工程杂志,2018,38(10):55~63. 浅谈溶菌酶的研究进展 河南师范大学生命科学学院王佳雯 摘要:溶菌酶作为一种天然的抗菌剂,广泛存在于人及哺乳动物等的多种组织器官中,良好的杀菌作用使其成为医疗、食品保鲜界的宠儿,应用广泛,为了高效表达溶菌酶,有关利用基因工程技术构建其基因表达载体的研究较多;鸡卵清溶菌酶的结构研究较为清晰,所以目前将其作为一种模式蛋白研究蛋白质的变性、聚集等特性上的报道较多,具有病理学上的意义。 关键词:溶菌酶;淀粉样纤维;原核表达;真核表达 HEBEINONGJI 62 2019年第8

溶析结晶研究进展[1]

收稿日期:2003-12-02 作者简介:鲍 颖(1974-),女,天津人,博士后,主要从事工业结晶的研究。联系人:鲍 颖,电话:(022)27405754,E -mail :chem3baoying @https://www.360docs.net/doc/d2827069.html, 。 文章编号:1004-9533(2004)06-0438-06 溶析结晶研究进展 鲍 颖 1,2 ,王永莉1,王静康 1 (11天津大学化工学院,天津300072;21天津经济技术开发区企业博士后工作站,天津300457) 摘要:溶析结晶是一种常见的分离提纯方法,广泛应用于化工、医药、食品等行业。近年来人们拓 展了一些新的研究方向,比如显著影响结晶产品性质的溶析剂加入点的混合技术,与超临界流体技术耦合的溶析结晶微粒制造技术。本文从应用开发、动力学、聚集与混合、晶形与多晶型、超临界流体溶析结晶五个方面回顾了溶析结晶的研究进展。关键词:溶析结晶;动力学;混合;晶形;多晶型;超临界流体中图分类号:T Q02816 文献标识码:A Progress in Dilution Crystallization BAO Y ing 1,2 ,W ANG Y ong -li 1,W ANGJing -kang 1 (11School of Chemical Engineering ,T ianjin University ,T ianjin 300072,China ; 21P ost -D octoral S tation of T ianjin Economic and T echnological Development Area ,T ianjin 300457,China ) Abstract :Dilution crystallization is a usual method for separation and purification.It is widely used in chemical industry ,pharmaceutical industry ,food industry and s o on.S ome new research fields were extended in recent years ,for instance ,study on mixing technique of diluent entrance ,where mixing situation markedly affect crystal characteristics and study on finely crystal preparation by dilution crystallization coupled with supercritical fluid technique.In this paper ,the progress in five aspects including application and development ,kinetics ,mixing and agglomeration ,crystal shape and polym orph and supercritical fluid dilution crystallization were reviewed for dilution crystallization. K ey w ords :dilution crystallization ;kinetics ;mixing ;crystal shape ;polym orph ;supercritical fluid 溶析结晶属溶液结晶范畴。它操作温度低,特别适用于热敏性物质如抗生素、炸药的制备;它能耗低,如溶析结晶NaCl 的能耗比四效蒸发结晶工艺的能耗低29% [1] 。这些显著优点使其在产品的分离 提纯中发挥着越来越重要的作用,由此也带动了溶析结晶技术的进步。除了有关工艺开发和动力学这些工业结晶常规的应用和基础研究外,近年来还拓展了溶析剂入口处的混合技术、超临界流体溶析结晶技术等特有的研究领域。本文将从这几个方面对溶析结晶的发展进行讨论。 1 应用开发 溶析结晶主要应用于热敏性物质的提纯精制,在这方面它具有得天独厚的优势。同时,它使某些 大宗化工产品传统的提纯制备工艺面临着严峻的挑战。以溶析结晶替代蒸发结晶生产NaCl 是非常有前景的。另一个例子是制备无水Na 2C O 3。无水Na 2C O 3的转变温度为109℃,高于其常压水溶液的 沸腾温度。若采用加压蒸发结晶一步得到无水 2004年11月N ov.2004 化 学 工 业 与 工 程CHE MIC A L I NDUSTRY AND E NGI NEERI NG 第21卷 第6期  V ol.21 N o.6

近场声全息方法识别噪声源的实验研究

近场声全息方法识别噪声源的实验研究Ξ 于 飞 陈 剑 李卫兵 陈心昭 (合肥工业大学机械与汽车工程学院 合肥,230009) 摘 要 根据近场声全息(NA H)的原理,建立了全息实验所需要的采集、分析系统。针对影响重建精度较大的截止波数的选取问题,给出了较为详细的讨论,并提出一种不需先验知识的截止波数选取方法。最后通过对实测数据进行全息变换,重建结果表明:在采用提出的截止滤波选取方法后,NA H技术可以精确地对噪声源进行定位与识别,并且可以得到三维空间内的声压、质点振速和声强矢量等声学信息。 关键词:声源识别;近场声全息;实验研究;截止波数 中图分类号:TB532;TB533+.2 进行空间声场的可视化和噪声源的识别与定 位,对于噪声测量和控制工程具有非常重要的意义。上世纪80年代初提出的近场声全息技术(NA H),便是可视化空间声场和定位噪声源的一种强有力工具。近场声全息可以由一个测量面的声压标量数据,反演和预测另一面上的声压、质点振速、矢量声强等重要声场参量,受到了各国研究人员及一些相关公司的重视。近场声全息技术真正地将丰富的声学理论同噪声测量、控制工程紧密地结合起来[1~2]。20世纪80年代末,国内一些学者逐渐对此方法进行了研究:中科院武汉物理所对编磬表面振动模态做了研究[3~4];哈尔滨工程大学对基于边界元法的水下近场声全息也做了研究[5];清华大学汽车工程系对非近场声全息确定噪声源进行了研究[6~7];合肥工业大学机械工程学院对近场声全息方法识别噪声源作了一定的研究[8~9]。 近场声全息可以不受波长分辨率限制重建声场,但在此种全息过程中截止波数的选取对重建分辨率的影响非常大。文献[3]提出一种需要测量先验知识的优化滤波方法,而这种先验知识一般是不易获得的。本文根据截止波数的大小对重建结果的影响趋势,提出一种不需要先验和后验知识的截止波数选取方法。并根据近场声全息的原理,建立了全息实验所需要的采集、分析系统。采用提出的滤波参数选取方法后,对数据进行全息变换,得到了令人满意的重建结果。该优化截止波数选取方法的提出,有助于在实际工程中推进近场声全息技术在高分辨率识别噪声源、可视化声场等方面的应用。1 理论背景 由文献[1,8]可知,在稳态的三维空间声场中,一个平面(全息面)上声压的波数谱与另一个更靠近声源的平行面(声源面或重建面)上声压和质点法向振速的波数谱之间的关系为 P(k x,k y,z S)=P(k x,k y,z H)e-i k z(z H-z S)(1) V(k x,k y,z S)=k z P(k x,k y,z H)e-i k z(z H-z S) Θ0ck(2)式中 z H和z S分别为全息面和重建面的z坐标;k 为声波数;k x和k y分别为对应坐标x和y的波数;而k z与波数k x,k y之间的关系为 当k2x+k2y≤k2时 k z=k2-(k2x+k2y)(3)当k2x+k2y>k2时 k z=i(k2x+k2y)-k2(4) k z取值为式(3)时,对应的声波传播方式是以幅值不变、相位改变的传播波方式传播;当取值为式(4)时,对应的声波传播方式是以相位不变、幅值减小的倏逝波方式传播。倏逝波随全息面与重建面之间距离的增加,成指数倍地迅速衰减,对应的是高波数成分的声波。在非近场的声全息中,由于测量点位置与声源面之间距离过大造成倏逝波信息的丢失或被测量噪声所掩盖,全息重建的结果也就失去高频信息,这种高频信息类似于小波变换处理图像中的细节信息。 近场声全息技术除了能够由全息声压数据重建源面上的声压和法向振速之外,由Eu ler公式还能 第17卷第4期2004年12月 振 动 工 程 学 报 Jou rnal of V ib rati on Engineering V o l.17N o.4 D ec.2004 Ξ国家自然科学基金资助项目(编号:50275044)及高等学校博士点科研基金资助项目(编号:20020359005)收稿日期:2004203203;修改稿收到日期:2004205231

相关文档
最新文档