虚拟局域网技术现状及发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
虚拟局域网技术现状及发展趋势局域网的作用已从最初的主机连接、文件和打印服务,转向围绕着客户机/服务器模式的大数据流应用、Intranet、WWW浏览、实时音频/视频传送等服务,日益庞大及增长的数据流持续增加了网络负荷。同时,由于基于工作组或部门级的服务器解决方案被企业级服务器所替代,促使数据流向发生了根本变化,网络主干的地位进一步得到提高。这些都促使局域网络技术从网桥技术、主干路由技术向局域网交换技术过渡。交换技术的发展为局域网交换机提供了一个空前的发展机遇,也极大地促进了局域网交换机技术与产品的更新换代。
1、局域网交换机体系结构从目前局域网交换机技术发展的现状而言,其体系结构大致有以下几种。
(1)总统结构基于总线结构的交换机一般分为并行总线和共享内存型总线两大类。并行总统结构采用由一种介质组成的单块背板,模块之间的所有信息流都必须经过这条总线进行传输。数据利用时分多工传输(TDM)方式在总线上传输。基于总线结构的交换机背板最高容量平均为2Gb/s。共享内存型交换机使用大量的高速RAM来存储输入数据。由于数据直接从存储器传输到输出瑞口,因而这种设计完全不需要背板。这类交换机比较容易实现,但在扩展到一定程
度时内存操作会产生延迟。其次,由于在这种设计中增加冗余交换引擎不仅复杂而且成本高,所以这种交换机不可避免地存在单故障隐患。故共享内存型交换机适合于小系统、谁叠式系统或较大系统中的分布式交换模块。
(2)点对点结构点对点结构交换机又称为纵横制交换机或矩阵交换机。结构的可扩展性与其实现方法有关,已知容量可以扩展到100G/s。成本和复杂性高是这种交换机容量增加的主要限制因素。在点对点交换机的全矩阵实施方案中,每个模块都通过连线直接连至其他模块,形成了全网状背板。由于每个模块都有自己的一组连接线,因而不必设置中央交换阵列。背板总容量等于连接线的总线[N×(N-1)]乘以一条点对点链路的传输速度(目前容量已达到1Gb/s 或更高)。矩阵点对点交换机的分布式交换设计不需要中央交换阵列,但由于网状连接的几何性质,这种交换机在扩大端口数目时会造成模板成本迅速增加。同时每个模块都提供网状连接,扩容时还要重复提供系统时钟和控制功能。某些矩阵交换机的实施方案为了降低成本而减少了模块上的缓冲器容量。减少缓冲器容量势必引起阻塞现象的发生。因此,尽管模块之间仍然是全网状连接,但这种交换机的背板容量还是小于标称的总传输速度,这对于核心的主干应用是一个严重的缺陷。
(3)星形连接的点对点结构这种结构多应用于ATM 交换机中。这种实施方案比矩阵交换机的分布交换结构简单得多。星形接法的互连设计用中央交换阵列去取代以太网状的模块连接线。每个星报接法的模块只接到中央交换阵列,在需要有冗余能力时还要连接到备份交换阵列中。由于每个模块不必自配高性能的交换阵列,整个设计只使用两个中央阵列,所以其成本低于含有3个或更多模块的任何网状设计。与网状设计方案相比,星形结构的点对点设计还有更好的可扩展性。该设计在模块与中央阵列之间可设置任何数目的连线(称为背板互连线)。因此互连线的最终传输容量取决于中央阵列和模块的交换能力,不是取决于互连线自身。例如在一个10模块的机箱中,可以给每个模块配置两条互连线,每条互连线的速度为1Gb/s,即模块与中央陈列之间的带宽有2Gb/s。在这种方式下,交换机的总容量能达到对
20Gb/s。综上所述,要提供更大的带宽和更快的速度,点对点连接是交换结构的发展方向。矩阵点对点交换造价高昂,可扩展性差,不适合于大端口量的交换机;星形点对点连接方案虽然绝对带宽不如矩阵连接,但通过优化可以获得很高的性能,且复杂度低得多,目前看来,它是大容量交换机的最佳方案;共享内存结构的复杂度要低得多,但采用了优化设计和分布处理技术后,也能达到很高的性能,因此在
相当一段时间内,它能满足大多数企业的需要,仍是局域网交换机的主流产品。
2、局域网交换机核心技术在今后局域网交换机发展过程中,以下几方面的技术是其核心所在。
(1)线速交换线速交换,顾名思义,就是使交换速度达到传输线上的数据传输速度,消除交换瓶颈。实现线速交换的核心是ASIC技术,用硬件实现协议解析和包转发,而不是传统的软件处理方式(通过一个CPU)。线速交换有设计简单、高可靠性、低功耗、高性能等优点。线速交换的实现还依赖于分布式处理技术,使得多个端口的数据流能同时进行处理。所以它一般是CPU,RISC,ASIC并用的并行处理体系。
(2)第三层交换普通交换机工作在OSI7层模型的第二层,即数据链路层,交换以MAC地址为基础。IP处于OSI 协议栈的第三层,通常由路由器通过软件实现网间互连。路由器价格昂贵且转发速度慢,越来越成为网络的瓶颈。第三层交换就是借助于线速交换技术,把路由功能集成到交换机中,这种交换机称为路由交换机或第三层交换机。第三层交换在各个网络层次上都能实现线速交换,性能有大幅度的提高。同时,它保留了第三层上的网络拓扑结构和服务。这些结构和服务在网络分段、安全性、可管理性和抑制广播等方面具有很大优势,它有鉴别各种应用层协议的能力,有助
于实现基于策略的网络控制,所以借助硬件在第三层实现主要的路由协议(如IP、IPX和APPLETALK是绝对必要的。第三层交换机的目标是取代现有的路由器。它们提供子网间的信息流通信,使通信速度从数百个数据包每秒提高到数百万个数据包每秒。第三层交换旨在高速转发多种协议,或提供防火墙以保护网络资源,或实现带宽的预留。下一代骨干网的核心交换机都将是第三层交换机。
(3)QoS QOS要通过业务分类、优先级划分、多点选播、流量控制、数据过滤和虚拟专网等措施来保证,交换机要能提供控制和机制,保证这些功能的实现。ATM在这方面独具优势,可以说是不可替代的。将来的局域网将是以大网和ATM混合的网络,所以现在有些网络采用ATM作为局域网交换机。ATM是面向连接的技术,是理想的骨干网解决方案。它在每个连接的基础上提供真实的服务质量,允许话音、视频和数据的综合传输。因为它保证了必要的带宽和时延特性,同时保证每个呼叫不会受到骨干网上其他呼叫的影响。对于像视频会议和视频点播这类应用来说,QO S是非常重要的。但ATM到桌面代价太高,效率并不理想,所以各种IP与ATM的混合模式一直在发展。无论何种制式,从实现上看,QoS主要依赖于ASC,RISC和并行处理技术。
(4)ATM与以太网的结合技术ATM与以太网技术的结合有其必要性,为了使ATM和传统的以太网共存,ATM