探究微震监测系统在煤矿冲击地压预警中的应用

合集下载

基于微震监测的5个指标及其在冲击地压预测中的应用_夏永学

基于微震监测的5个指标及其在冲击地压预测中的应用_夏永学
图 1 微震事件震级 - 频 率分布 F ig11 T he d istribution o f magnitude- frequency
of m icrose ism ic ev ents
计算 b 值的方法主要有线性最小二乘法和最大 似然法。
线性最小二乘法为
m
m
m
E E E M i lg N i - m M i lg N i
lgN ( \M ) = a - bM 式中, a、b 为与区域有关的经验常数。
/ G - R0关系是地震学的基本定律之一, 已广泛 应用于地震活动性、地震区域以及地震预测研究中。 大量研究表明: / G - R0关系不仅描述了大小地震的 比例, 其中的常数 b还能刻画震源区的应力及介质条 件。 Scho lz( 1968)认为, b 值主要代表着介质内部应 力水平的高低, 介质应力值越高, 在岩石断裂面的边 界上处于高水平的应力点所占的比重越大, 破裂前沿 变得更容易推进, 此时大破裂的比例也越大, b 值越 小 [ 14] 。 G ibow icz( 1973) 认为, b 值依赖于流变学和材 料的结构, 特别是依赖于缺陷的存在, b 值是介质控 制所积累的能量的释放能力 [ 15 ] 。岩石试块的声发射 实验研究表明, b 值的变化直接与应力 条件有关, 加 压初期 b值表现为上升, 亚临界裂纹扩展阶段转为下 降, 成核阶段下降加剧, 反映了岩石破裂加剧 [ 16- 18] 。
确且具有应用价值的危险预测指标。采用 R 值评分法对这 5个指标的预测效能进行了研究。实
践表明, 这 5个指标具有较高的灵敏性, 对冲击地压能够起到较好的预测效果。
关键词: 微震监测; 评价指标; 冲击地压; 预报效能
中图分类号: TD324. 2

煤矿微震预警技术的研发与应用

煤矿微震预警技术的研发与应用

煤矿微震预警技术的研发与应用一、煤矿微震概述随着煤炭资源的不断开采,煤矿事故频频发生,给煤矿安全带来了极大的挑战。

近年来,煤矿微震预警技术被广泛应用,通过监测煤矿地下微震信号,预测煤矿突水、冒顶等事故的发生,提高了煤矿的安全性和稳定性。

二、微震预警技术的原理微震预警技术的基本原理是通过监测煤矿地下的微震信号,分析震源位置、震源机制、震级和震源能量等参数,预测煤矿事故的发生。

微震信号通常指震级在-2.0以下,并且受到波形变化(包括地震波传播路径、介质特性等)的影响很小的地震波。

三、微震预警技术的研发微震预警技术的研发需要借助多学科的知识和技术,涉及地质学、地球物理学、地震学、计算机科学等领域。

目前,微震预警技术主要在以下几个方面进行研究:1. 地震波模拟地震波模拟是微震预警技术的基础。

通过计算机对地下结构进行模拟,可以预测不同震源机制的震波传播路径及地震波强度,为微震监测提供科学基础。

2. 微震监测设备微震监测设备包括地震仪、高密度地震台阵等。

地震仪主要用于测量地震信号,而高密度地震台阵则用于提高精度和覆盖范围,对信号进行深入地分析。

3. 数据处理与分析微震监测数据的处理与分析是微震预警技术的关键。

包括数据采集、数据处理、数据解释等。

数据采集包括传感器布置和数据传输,数据处理包括预处理(去除不必要的噪声)和数据反演(震源位置、震源机制、震级等参数的计算),数据解释则包括震源机制、活动区域、活动程度等方面的解释。

四、煤矿微震预警技术的应用煤矿微震预警技术主要应用于以下方面:1. 突水预警突水是地下水涌入采空区和巷道,造成煤矿下水和事故的重要原因。

微震预警技术可根据地下水弹性变形所产生的微震信号,对突水事故进行预测和预警。

2. 冒顶预警冒顶是指顶板运动过程中,局部顶板由于受到构造和充填物体的控制,在支架的支撑范围之外发生自由裂隙、断层和塌落等现象,对煤矿安全产生威胁。

通过监测到地下的微震信号,可以对冒顶进行预测和预警。

微震监测技术在冲击地压矿井的应用

微震监测技术在冲击地压矿井的应用

微震监测技术在冲击地压矿井的应用李文健【摘要】随着现代科学技术的发展,微震检测技术在我国得到了迅速发展.利用微震监测技术,在发生微震活动的矿区内布设微震探头,探测微破裂所发出的地震波,确定发生地震波的位置,还可以给出地震活动性的强弱和频率,通过微震监测获得的微破裂分布位置,判断潜在的矿山动力灾害活动规律,通过识别矿山动力灾害活动规律实现预警.本文以抚顺老虎台矿83003综放工作面为研究对象,结合老虎台矿微震监测系统分析83003综放工作面冲击地压发生的原因以及覆岩破坏的分布规律.通过分析微震事件发生的震级与能量,对冲击地压的发生提供可行性评估,为老虎台矿今后冲击地压的防治工作提供科学有效的借鉴.【期刊名称】《中国地质灾害与防治学报》【年(卷),期】2015(026)004【总页数】5页(P116-120)【关键词】微震监测;冲击地压;覆岩破坏;综放工作面【作者】李文健【作者单位】辽宁工程技术大学矿业学院,辽宁阜新123000【正文语种】中文【中图分类】TD3240 引言冲击地压[1-2]是聚集在矿井巷道和采场周围煤岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和破坏、支架与设备损坏、人员伤亡、部分巷道垮落破坏等。

冲击矿压[3-7]还会引发或可能引发矿井灾害,尤其是瓦斯与煤尘爆炸、火灾以及水灾,干扰通风系统,严重时造成地面震动和建筑物破坏等。

冲击地压[8-9]的显现特征:(1)突发性(2)瞬时震动性(3)巨大破坏性(4)复杂性。

因此,冲击地压是煤矿重大灾害之一。

冲击矿压作为煤岩动力灾害[10-11],自有记载的第一次发生于1738年英国南史塔福煤田的冲击地压至今二百多年来,其危害几乎遍及世界各采矿国家。

英国、德国、南非、波兰、苏联、捷克、加拿大、日本、法国以及中国等二十多个国家和地区都记录有冲击地压现象。

我国煤矿冲击地压灾害极为严重,最早自1933年抚顺胜利矿发生冲击地压以来,在北京、辽源、通化、阜新、北票、枣庄、大同、开滦、天府、南桐、徐州、大屯、新汶等矿区都相继发生过冲击地压现象。

煤矿冲击地压的微震监测的实例分析

煤矿冲击地压的微震监测的实例分析

科学技术创新2021.06煤矿冲击地压的微震监测的实例分析石嘉栋何川(陕西彬长文家坡矿业有限公司,陕西咸阳713599)煤矿开采工作属于高危行业,在实际工作过程中常常发生许多突发事件。

其中冲击地压对于采矿工作人员人身安全具有极大的威胁,随着煤矿开采深度的增加,冲击地压的产生几率也会随之增大。

目前微地震监测系统是最行之有效的预测系统,有关人员应对其深入分析,以便有效利用,减少冲击地压带来的损失。

冲击地压,又被称作“岩爆”,在煤矿作业中又被称作“煤爆”。

冲击地压引发灾害的原因主要是岩体或者矿体受到自身内部的高应力作用,其平衡的状态被严重打破,进而突发性地将大量的能量释放出来,引发振动和爆炸,最终使矿井、巷道等四周的岩石以及矿体等被大量喷出。

此类危害具有极大的危险性,会破坏岩体,损毁设施、支架等,严重时甚至会使巷道发生垮落,被彻底破坏,最终造成人员伤亡。

在煤矿中,冲击地压还会对矿井内部造成严重破坏,极易引发煤尘、瓦斯等爆炸,严重影响内部通风系统,严重时还会引发地面的不断震动,甚至出现火灾、水灾、破坏建筑物等现象[1]。

1工程概况监测人员采用先进的微地震监测仪器监测某煤矿1610、1609以及1409工作面的覆岩断裂破坏。

此处煤矿的地质结构比较复杂,此区域范围内具有极多的断层,其地表的地面标高是+35.8m ,其工作面的标高范围是-831m ~-783m ,走向为1129m 。

此煤矿内的煤层是5.1m ,整体工作面呈现单斜走势,其单轴具有20M Pa 的抗压强度,冲击倾向大。

同时,煤层倾斜角度平均是23°,其基本顶是16.8m 厚的细粒砂岩、粉砂岩以及泥岩组合,而直接顶是粉砂岩,有7.02m 的厚度。

此煤矿场巷道具有22.83M Pa 的垂直应力。

以往在此处的采矿作业过程中,曾经出现过一次明显的冲击地压,巷道两侧发生过较大的变形,当时抛出了很多煤体,损坏了所有此区域内机电设施,并使3人受到了轻伤。

唐口矿井微震系统防治冲击地压应用研究

唐口矿井微震系统防治冲击地压应用研究
L o ig. u Hu iGu yn Li
( agO ol nn oprt n Zb ol nn ru oprt nJ ig 7 10C ia T nk UC a Mi gC rea o , i C a Mi gG opC rea o ,i n 2 0 hn ) i i o i i n 2
・收 稿 日期 :0 0— 7— 8 2 1 0 2
垮落引起的微震 事件 。由于发生 地远 离工 作场所 , 不 会对生命 、 财产 、 安全造成损害 , 属非重要微震事件 。 ( ) 炮事 件。放 炮事 件是 由于普 掘 、 拓 或其 2放 开
最先进 的微震 监 测系 统。A A SM/ R MR E微 震监 测 系
统 的 主要 功 能 是 对 全 矿 范 围 内 的微 震 事 件 进 行 监 测 ,
自动记 录微震 活动 , 时进行 震源定 位和 微震 能量计 实
算, 为评价全矿范 围内的 冲击地压危险性提供 依据 ; 其
原理是利用各拾 震器 接收 到震动波 的时 间差 , 特定 在 的波速场条件 下进行 定位 , 以判定震源点位 置 , 同时利 用震相持续时间计 算震 动释放 的能 量 , 标 人采掘 工 并 程图和速报显示 给生产 指挥 系统 , 以便及 时采取措施 。 2 微震 事 件分 类 通过积累的监测数据来看 , 微震事件可分为 4类 : () 1 采空区事件 。采 空区事件是 由老 空 区内顶 板
21年 期 01 第1
互瞧晨 技 纠l
l 7 7
唐 口矿 井 微 震 系统 防 治 冲 击 地 压 应 用研 究
李 国营 , 刘 虎
( 淄博 矿 业集 团公 司 唐 口煤 业 公 司 , 东 济 宁 2 2 0 ) 山 7 10

浅谈采空区地压监测(微震监测)在矿山上的应用

浅谈采空区地压监测(微震监测)在矿山上的应用

浅谈采空区地压监测(微震监测)在矿山上的应用【摘要】本文介绍建立适合矿山实际情况的地压监测网,进行长期有效的地压监测,这能对矿山的地压灾害予以提前预警预报,有利于矿山企业进一步采取对策措施,避免灾害性事故发生。

【关键词】采空区;微震;矿山之星该矿山经过多年的开采,井下形成大大小小数十个采空区,虽然该矿使用的采矿方法允许围岩崩落和地表塌陷,但部分采空区对采空区顶部或附近的建筑物或道路形成一定的危险,且某些采空区对井下工作面也构成一定的威胁。

对今后的生产带来一定的安全隐患。

因此,有必要对采空区冒落以及地面沉降(或地表塌陷、地表变形)等采空区引起的地质灾害进行有效的监测和预警,保证井下工作面、地表工业场地的安全生产,以及地表建筑物和道路的行人安全。

1 概述岩体在破坏之前,大多以弹性波的形式释放积蓄的能量(即发生微地震),这种能量释放的强度,随着结构临近失稳而变化。

所以每一个弹性波(微震波或声发射波)都包含着岩体内部状态变化的丰富信息。

若在破坏区域周围以一定的台阵形式布置一定数量的传感器,组成传感器阵列,当监测体内出现微震时,传感器即可将微震信号拾取,并将这种物理量转换为电压量或电荷量,通过多点同步数据采集测定各传感器接收到该信号的时刻,连同各传感器坐标及所测波速代入方程组求解,即可确定微震震源的时空参数,达到定位之目的。

对微震源进行精确定位是该方法的关键技术之一,参见图1。

微震监测技术能够实时、长期、靠近震源监测大范围岩体变形破坏,准确定位震源发生时间、空间位置、微震释放能量、微震体变势、微震尺寸等。

通过记录、统计、分析微震事件的诸多参数的时间和空间中的分布,并利用定量地震学、统计地震学、工程地震学的理论方法,通过矩张量分析,明确微震事件的性质(剪切、张拉、复合)以及众多微震事件在时空中的演化,黏度性、扩散性等,实现灾害发生空间、时间的概率性预警和分区分级评估。

2 对采空区实施微震监测,主要目的为(1)利用微震监测系统在三维空间中对采空区整体稳定性实施全过程的监测预警;(2)以月和年等为单位,实现采空区稳定性评估,利用采空区震害等级等参数对采空区进行分区分级管理;(3)实时显示微震事件的时间、地点、震级等基本参数,可设定预警值;(4)分析确定采空区失稳的机理分析:张拉、剪切、复合等的;(5)计算微震事件的尺度和微震破裂面的方位等参数;(6)基于微震监测结果,统计计算采空区微震时间空间演化的规律;(7)根据微震事件空间分布,参考矿山地质资料,统计分析可能引起采空区不稳定性的已知或未知构造等;(8)与以点为主的传统观测系统获取的参数结合进行综合分析;(9)评估采空区周围的工程施工对采空区稳定性的影响;(10)可运用微震监测的方法评估采空区治理措施的效果。

微震监测技术在煤矿冲击地压防治中的运用王伟龙

微震监测技术在煤矿冲击地压防治中的运用王伟龙

微震监测技术在煤矿冲击地压防治中的运用王伟龙发布时间:2021-10-09T08:25:31.381Z 来源:《中国科技人才》2021年第19期作者:王伟龙崔恒[导读] 文章立足于实际,以微震监测技术为研究背景。

在阐述微震监测技术相关内涵的基础上,对该技术的空间分布特征、能量分布特征进行综合研究,然后对微震监测技术在煤矿冲击地压防治中的运用情况进行探讨,希望论述之后可以给同类工程提供一些借鉴陕西正通煤业有限责任公司摘要:文章立足于实际,以微震监测技术为研究背景。

在阐述微震监测技术相关内涵的基础上,对该技术的空间分布特征、能量分布特征进行综合研究,然后对微震监测技术在煤矿冲击地压防治中的运用情况进行探讨,希望论述之后可以给同类工程提供一些借鉴关键词:煤矿;冲击地压;防治;微震;监测技术;运用引言在社会发展的阶段中煤炭是我国能源之一,随着煤矿资源的不断消耗我国的煤矿开采工作也在不断的加强开采速度相应的也在提升。

在煤矿工程开采的阶段中产生煤矿冲击地压是非常严重的一件事情,如果没有科学有效的技术策略就会出现各种安全事故。

通过微震监测技术的应用能够达到有效的防治效果,因此对该技术进行研究探寻出更为科学有效的方案尤为重要1微震监测技术相关内容简述煤体因为外部作用力的干扰和影响导致了比较多的,会释放出较多的能量,所以会形成震动效应,微震就是比较常见的一种震动效应。

微震的产生会同时形成弹性波给周边的煤体造成一定的影响,释放出较多的动力性能。

微震监测技术就是在微震给煤体运动中安装必要的传感器装置,同时进行煤体受到外力作用的震动波监测与探测,分析获取的相关技术参数,可以准确的掌握震动波的存在问题,并且做好相应技术参数的分析,比如频率高低、震动强弱等等方面,直接确定出煤矿微震破裂的位置信息,在煤矿冲击影响之下的微震信息全面掌握,煤矿冲击地压微震防治的信息获取更加的完善,提高监测的质量与效果,最终可以更好的消除各种不利的因素和影响。

煤矿安全中的微震监测技术应用与分析

煤矿安全中的微震监测技术应用与分析

煤矿安全中的微震监测技术应用与分析随着现代科技的不断发展,微震监测技术在煤矿安全中的应用逐渐被广泛认可。

微震监测技术可以有效地监测煤矿地质灾害的发生与演化过程,为煤矿安全提供重要的技术支持。

本文将重点分析微震监测技术的应用和其在煤矿安全中的价值。

煤矿地质灾害是煤矿安全的主要威胁之一,包括煤与瓦斯突出、煤与瓦斯爆炸、地压事故等。

而微震监测技术作为一种能够实时监测煤矿地质灾害的手段,被广泛应用于煤矿全生命周期的各个阶段。

首先,在煤矿勘探阶段,利用微震监测技术可以实时监测地下岩层破裂情况并预测煤与瓦斯突出的可能性。

其次,在煤矿开采过程中,微震监测技术可以实时监测地下岩层的变形和应力状态,预测地质灾害的发生风险,以便采取相应的防治措施。

最后,在煤矿废弃阶段,微震监测技术可以帮助监测矿山余压和地下空洞的稳定性,防止突发地质灾害的发生。

微震监测技术的应用主要基于对微小地震信号的采集、分析和解释。

在采集方面,需要配置高灵敏度的地震监测仪器,将地下微震信号转换为可供分析的数字信号。

采集到的微震信号包含了地下岩层破裂、地面移动和冲击等信息,通过对这些信号的分析,可以获得有关地下应力状态、岩层变形和裂隙扩展的信息。

而信号的解释则需要结合岩石力学、地质学和地震学等学科的知识,以及历史地质灾害的经验。

通过对不同时间段的微震数据进行分析,可以对煤矿地质灾害的演化过程和发展趋势进行预测和评估。

微震监测技术在煤矿安全中具有重要的价值。

首先,微震监测技术可以提高煤矿地质灾害的预警能力,使矿工能够提前获得有关地质灾害的信息,并及时采取相应的措施,减少伤亡和财产损失。

其次,微震监测技术可以为煤矿规划和设计提供科学依据,帮助确定矿井的开采方案和支护方式,提高煤矿的安全性和经济性。

此外,通过对微震监测数据的分析,可以改善煤矿开采工艺,减少地下岩层破裂和岩层变形,提高煤矿采收率和资源利用效率。

然而,微震监测技术在应用过程中也面临一些挑战和限制。

微震监测系统预报冲击矿压的实践应用研究

微震监测系统预报冲击矿压的实践应用研究

1 微 震监 测 系统 测 网的 布 置 原 则
微震监测 系统预测预报冲击矿压 , 测网布置对震源精确定 位至关 重要 ,在实际应用 中需遵循以下原则 : ( 1)微震测点应布置在待测 区域周 围,采用全方位 、多层位布 点且数量要达到 足够 的监测密度。 ( 2)测站不 易布置在地质构造带 ,但要尽可能接近监测区域 , 检波测量 探头应布置在底板岩层。 ( 3)测站安装位置应远离长期干扰源 ,例如 :变 电所 ,车场 , 泵站等。 ( 4)微震测网不仅要监测生产 区域 ,还要根据接替计划对未来 段 时 间 开采 区域 进 行 监 测 。

3 结 论
( 1 )S O S微震系统的应用提 高了煤矿开采中 ,人们对 冲击地压 灾害成因机理和灾害类型的认识 ,解决了困惑 十一矿的难题 ,明确 了 防治 目标 。 ( 2)S O S 微震系统通过分区预测预报和微震结合来预测高矿震危 险区将积累大量技术和理论资料 , 将为以后冲击地压的防治提供方向。 ( 3)S O S微震 系统今后需进行 改进 、完善的方向 :需迅速实现 系统的故 障语音报警和查询功能 ; 进一步加 大微震预测分析软件 的研 究 ,并使其具有可视化分析功能 。 参考文献: [ 1]窦林名 ,何学秋 冲击矿 压防治理论 与技 术 [ M] 徐 州: 中国 矿 业 大 学 出版社 ,2 0 0 1 [ 2 ] 李志华 ,窦林名 ,管向清,柳俊仓 ,巩 思园,等 矿震前 兆分 区监测方法及应用 l 1 1 .煤炭 学报 ,2 0 0 9( 5) :6 1 4 — 6 1 8 l 3 ] 牟 宗龙 ,窦林名,巩 思园,等. 矿 井 S O S微震监测网络优化 设计及震源定位误 差数值分析 { T 1 . 煤矿开采 , 2 0 0 9 [ 4 ] 姜福兴,杨淑华 ,成云海,等 煤矿冲击地压的微地震监测研究 [ J ]. 地球物理 学报 ,2 0 0 6 ,4 9( 5) :1 5 1 1 — 1 5 1 6 作者简介 : 路 广奇 ( 1 9 8 0 一) ,男 ,毕 业 于 河 南理 工 大 学 安 全 工程 专业 ,助 理 工 程 师,现主要从事煤矿瓦斯技术 管理和冲击矿 压防治研究。 2)计量 T v 二次线是否太长 ,如是否有其他并联负载使之二次 负载过重等。 检查互感器的实际接线和变 比 1 )检查 T v接线 和变 比。对于j相五柱式 T V,其联 接线在生产 厂家已完成 ,出错的机率极小 ,而且整体封闭在铁壳 内,除 了新安装 时需进行检查试验外 , 在运行 中一般不必检查其接线和变比 ; 而对于 单相式 T V,相 间接线在现场进行 ,安装 、检修和运行 中都可能发生 改接线或错接 ,因而就有必要进行检查 ,以防错接而造 成相位和二次

煤矿矿山微震监测与预警系统

煤矿矿山微震监测与预警系统

煤矿矿山微震监测与预警系统煤矿矿山微震监测与预警系统是为了提高煤矿安全生产水平,保障矿工和设备的安全而开发的一种重要技术工具。

本文将介绍该系统的工作原理、应用范围以及在煤矿安全生产中的重要性。

一、工作原理煤矿矿山微震监测与预警系统通过使用高灵敏度的地震传感器和数据采集装置,实时监测矿区的地质构造变化和微震活动。

一旦系统检测到微震活动或异常的地质构造变化,将自动触发预警机制并发出警报信号。

该系统通过多节点布设的地震传感器网络,对煤矿矿山的微震活动进行全方位监测。

传感器网络将收集到的数据传输到数据采集装置,经过处理后生成可视化的监测结果。

监测结果将实时显示在操作界面上,以便矿山管理人员对矿山的地质情况进行实时监控和分析。

二、应用范围煤矿矿山微震监测与预警系统广泛应用于煤矿的安全生产管理中。

它可以用于以下方面:1. 煤矿灾害预警:系统能够准确监测到微震活动和地质构造的变化,提前发现矿井中的地质灾害隐患,如岩层移动、煤与瓦斯突出等,及时采取措施避免灾害事故的发生。

2. 煤矿透水预警:通过监测微震活动,系统能够快速发现矿井透水情况,及时采取措施进行封堵,防止矿井透水灾害的发生。

3. 采煤工作面监测:系统可以实时监测采煤工作面的地质情况,如岩层变形、裂缝扩展等,为采煤作业提供实时预警和指导,减少采煤事故的发生。

4. 掘进工作面监测:系统可以对掘进工作面的地质情况进行监测和分析,提前判断出地质灾害隐患,保障掘进作业的安全进行。

三、重要性煤矿矿山微震监测与预警系统对于矿山安全生产具有重要的意义,具体表现在以下几个方面:1. 提高事故预防能力:通过系统的实时监测和预警功能,能够有效预防矿井地质灾害和透水事故的发生,降低矿山事故风险,保障矿工的生命安全。

2. 提高应急处理能力:系统能够及时发出警报信号,提醒管理人员和矿工采取紧急措施,有效应对煤矿事故和灾害。

3. 优化生产管理:系统的实时监测数据可以为矿山管理人员提供准确、全面的地质信息,有助于合理规划和调整生产计划,提高生产效率。

微地震监测系统在冲击地压预测预报中的应用

微地震监测系统在冲击地压预测预报中的应用

微地震监测系统在冲击地压预测预报中的应用摘要:微地震是一种小型的地震,在地下矿井深部开采过程中不可避免的发生岩石破裂和地震活动。

冲击地压是采矿诱发的矿井地震, 严重威胁着煤矿的安全生产。

微地震监测技术是一种新的地球物理探测技术,利用微地震监测系统是预测预报冲击地压的有效手段,分析微地震事件的分区性,指出应力积聚区域及冲击地压危险区域,成功预测了该工作面的冲击地压。

关键词:微地震监测手段冲击地压预测预报冲击地压,也称岩爆,它是在一定条件下一种岩体中聚积的弹性变形势能突然猛烈释放,导致岩石爆裂并弹射出来的现象。

冲击地压首次在英国南斯塔福煤田发生,所有采煤国家也都陆续出现冲击地压。

发生冲击地压的条件是岩体中有较高的地应力,岩石具有较高的脆性度和弹性,并且地应力超过了岩石本身的强度。

冲击地压具有突然性、瞬时震动性和破坏性,采煤井下生产安全和作业人员的生命安全受到严重威胁,现在已成为世界范围内矿井中最严重的自然灾害之一,对冲击地压进行预测的传统方法主要有采用微地震监测法,下面就谈谈自己对微地震监测系统对冲击地压预测预报的肤浅看法。

1 微地震监测技术以声发射学和地震学为基础的微地震监测系统,该方法集采矿学、地震学、信号采集与处理、信号传输等多学科知识于一体,是研究冲击地压、水害治理、煤与瓦斯突出等矿山灾害的有效手段。

通过观测分析矿井生产活动中所产生的微小地震事件来监测生产活动的影响效果及地下状态的地球物理技术。

地球物理学技术为研究小范围内信号微弱的微地震事件提供了技术支持。

2 微地震系统监测原理当地下岩石由于人为因素或应力作用下发生破裂、移动时,产生微地震和强大的声波向周围传播。

在地下岩土中布置微地震传感器,实现微震数据的自动化采集、传输和处理,利用定位原理确定岩石破坏发生的位置,且在三维空间上显示出来,记录这些微地震波的到达时间、传播方向等信息,利用恰当的计算方法可以确定岩石破裂点,即震源的位置。

(如图1所示)微地震监测技术能够根据震源分析地震破裂尺度和性质。

微震监测技术在煤矿动力灾害防治中的应用

微震监测技术在煤矿动力灾害防治中的应用
煤科l 炭 技}
E c
微震监测技术在 煤矿动 力灾害防治 中的应用
余 国锋

薛俊 华
要: 煤矿 中发生的岩爆 、 煤和 瓦斯 突出、 突水等地质 灾害, 与煤 岩体 中的微地 震现 象有着必然的联 系。开展 高精度
微 震监 测工作 . 通过判识潜在 的煤矿动力灾害活动规律 , 进而 实现时煤矿动力灾害实现预 测预 警。
监测系统记录井下震源发生的震点强度 层瓦斯压力 、 煤的力学特性以及采动影响 进。在灾害单一的矿井 , 可采取短期监测
和频度 , 反映煤岩体受力破坏时能量的释 等多因素综合作用的结果。实验室和现场 的方案 ; 在灾害严重的矿井 。 可采取长期 放过程 , 判断推理煤岩体应力状态及破坏 研究表明: 尽管煤与瓦斯突出是突发性的, 监测 的方案并将之并入矿井生产安全监
动力灾害、 冲击地压、 矿震等灾害问题 , 和瓦斯突出、突水等地质灾害, 还
裂隙扩展而产 是煤炭矿山的含瓦斯煤岩突出 ( 或涌出) 与伴随岩体破裂、 生的微地震现象有着必然 的联 问题 . 都是矿山开采过程中的扰动所诱发

的微破裂萌生 、 发展、 贯通等煤岩体破裂 系。
过程失稳的结果。近年来, 随着煤炭开采 实现矿山动力灾害预警 、 预
三、 结束 语
微震监测是一项很有发展前景的新
技术 ,从它的原理和取得的成果来看, 用 技术还需在设备和软件上适当加以改
的资料。
煤( - ̄斯突出是煤矿井下发生的 于井下监测是完全可行的。在井下实施这 岩) f

微震预报冲击矿压原理是通过微震 极其复杂的动力现象。它是由地应力、 煤
关键词 : 震监 测 声发射 微 动 力灾害 预警预报

微震监测技术的运用分析论文

微震监测技术的运用分析论文

微震监测技术的运用分析论文微震监测技术的运用分析论文摘要:煤炭是我国经济社会发展的最主要能源资源之一,随着煤炭资源消耗量的不断提升,我国矿山的开采深度也在不断的增加,煤矿开采的速度也在不断的提升,相应的在煤矿动力灾害方面也呈现出越来越严重的趋势。

如何在煤矿灾难发生之前辨别出煤矿冲击地压、发现灾害发生前兆成为煤矿安全生产管理的重要内容。

基于此,本文对微震监测技术在煤矿冲击地压防治当中的应用进行了相关的分析和探究,以期为煤矿安全生产工作提供一定的参考。

关键词:煤矿;冲击地压;微震监测技术;技术应用随着煤炭资源需求量的不断增加,煤矿的开采深度和开采速度也在不断的提升,在煤矿开采过程中受到煤矿地质条件影响以及相应的人工操作,在煤体集中的地区高弹性能在释放的过程中会发生煤炮或者是冲击破坏,对煤矿安全生产和工作人员产生一定的安全威胁。

微震监测技术在煤矿生产过程中的应用,能够有效地做好煤矿冲击地压的监测工作,为安全生产提供可靠的技术保障。

1微震监测技术相关内容简述煤体在受到外力作用的时候会产生频率比较低的震动波来释放相应的变性能,以此产生震动效应,微震就是这种震动效应的主要表现之一,微震是一种伴随着弹性波在周围煤体中快速释放和传播的动力现象。

微震监测技术是指在发生微震活动的煤体内部放置相关的传感器,对煤体受外力发生微震活动产生的震动波进行监测和探测,通过相关技术对传感器的相关信号和数据进行分析,确定发生震动波的位置,并且对震动活动的相关参数,如频率、震动强弱程度等进行探测,以此来获取煤矿微震破裂分布的位置,对煤矿冲击地压的微震活动信息进行确定,在煤矿冲击地压微震防治工作中提供可靠的依据。

煤体的岩体受到外力的挤压毁坏会产生一定的挤压变形或者是岩体裂纹活动等,通过微震监测技术对其进行监测能够预预先推测和告知岩体受到外力挤压破坏的程度,微震监测技术在煤矿冲击地压的监测方面得到了较为广泛的应用。

2微震监测技术在煤矿冲击地压防治过程中的应用2.1煤矿微震发生的特点将微震监测技术在煤矿冲击地压中进行应用的首要步骤就是对煤矿微震发生的特点和相关参数进行分析。

SOS微震检测系统在防治冲击矿压中的应用

SOS微震检测系统在防治冲击矿压中的应用

SOS 微震检测系统在防治冲击矿压中的应用王坤(大同煤矿集团有限责任公司马脊梁矿,山西大同037003)摘要:本文通过介绍SOS 微震监测系统在现场应用,对煤矿中冲击矿压的预警和防治有着重要的作用,具有较高的现实意义。

关键词:SOS 微震;冲击矿压;监测预警中图分类号TD76文献标识码A 文章编号1000-4866(2019)05-0040-03DOI :10.19413/ki.14-1117.2019.05.0141引言我国井工开采深度不断下探,井下的环境多变,不可预测性扩大,随之而来的可能的地质灾害[1-3]、煤矿事故发生的概率增高,并造成了大量设备损坏、巷道破坏与人员伤亡,对各矿安全生产与工人生命财产造成重大威胁。

然而目前我国对井下的检测系统却一直未能有显著地改进,由于多方面条件的制约,许多地区的煤矿检测依然沿用比如钻屑通过观察多次煤粉含量的变化来判断井下地质活动的活跃程度、不仅技术方法落后,得到的数据干扰性较大并不具有很高的研究价值,因此井下检测设备的更新迭代显得尤为重要。

本文主要介绍SOS 微震监测系统的现场应用,对煤岩层微震事件进行了分析,得到其矿压显现的时间和位置规律,对冲击矿压的预警防治起到了关键作用,增加了煤矿安全生产的可靠性。

2概况山寨煤矿位于华砚煤田西北部,井田走向平均长3km ,倾斜平均宽3.43km ,井田面积10.29km 2。

目前主采一采区5#煤层,已开采至+1150m 水平。

1104工作面位于井田东翼一采区,北部为1103综放工作面采空区;其西部为二采区回风下山、二采区轨道下山及二采区胶带下山;东部及南部暂无采掘活动。

走向长度1270m ,倾斜长度150m ,面积190500m 2。

地面标高为+1572m~+1675m ,井下标高为+1168m~+1235m 。

采深为337m ~507m 。

该工作面设计开采煤层为煤5层,煤层总体结构比较简单,煤层厚度在9m ~29.9m 之间,平均厚度为16.6m ,沿走向东厚西薄。

浅析微震监测系统在矿井中预报矿压的应用

浅析微震监测系统在矿井中预报矿压的应用

浅析微震监测系统在矿井中预报矿压的应用波的振幅和频率取决于煤岩体的强度、应力状态、断裂尺寸和变形,波的振幅和频率受波的频率、速度的影响等等。

因此,每个微震信号包含关于岩体内部状态的丰富信息。

应用微震监测系统,其功能是监测整个矿山微地震的范围,评估巷顶的覆盖范围,为防止灾害发生提供科学依据。

标签:微震监测;冲击地压;防治东滩煤矿主煤层主要部分合并为一层,平均厚度8.41米。

其余的分为两层。

分层的平均厚度为5.38m,分层的平均厚度为3.22m。

主井井深-800米,采用国际先进的采矿开采方式从主采煤层和上层采煤。

目前,单一矿区集中,采矿活动集中,互相干扰。

矿区覆盖厚厚厚的集团。

由于煤体的高弹性可能引发多类事故,造成井下工作面的损坏,同时给矿井生产人员的安全带来巨大的威胁。

东滩煤矿为加强矿山爆发的监测预报,特地引进了SOS微震监测系统。

1 微震监测技术1.1 工作原理由冲击矿压引起的震源机理和破坏机理是岩石受力的原因和后果。

然而,我们发现源机制相同,但是后果可能不同,而导致与岩石压力的影响相同或相似的损害,源机制不一定相同。

实践证明,岩石压力和岩石振动的影响总是相互伴随而生。

因此,有必要基于微震监测来监测冲击矿压。

基于岩层地震振动分析,特别是关键地层运动引起的地震波传播,地震岩石动力分析与能量积累与耗散分析法研究,以最大限度地减少岩爆可能会造成损坏。

微震监测技术是通过检测煤和岩体微裂纹过程发出的地震波来检测地震波,并检测微震活动的强度和频率。

监测微裂纹分布的位置,然后获得矿井冲击地面压力微震活动信息,为预防和控制地面压力的影响提供依据。

1.2 微震监测系统的功能介绍微震监测系统的主要功能是分析全矿的实时监测,微震事件的自动记录和微震位置和能量计算范围内发生的微震事件,分析主要危险区域的微震事件,动态评估相关区域效应危害等级,指导煤矿瓦斯岩石压力预防控制工作;摆脱危险性测试和优化相关技术参数,提高防撞系统的影响和控制效率。

冲击地压微震能量监测预警技术研究与探讨

冲击地压微震能量监测预警技术研究与探讨

第3期㊀山西焦煤科技㊀No.32021年3月㊀㊀Shanxi Coking Coal Science &Technology㊀㊀Mar.2021㊀㊃问题探讨㊃㊀㊀收稿日期:2021-01-17基金项目:国家自然科学基金项目(51874292);山东省深部冲击地压灾害评估工程实验室开放项目(鲁煤研开(2020)005号)作者简介:杨增强(1987 ),男,山西长治人,2018年毕业于中国矿业大学(北京),讲师,主要从事矿山压力与岩层控制㊁冲击地压等方面的研究,(E-mail)iceiceice185@冲击地压微震能量监测预警技术研究与探讨杨增强,李丰硕,任长乐(江苏建筑职业技术学院交通工程学院,江苏㊀徐州㊀221116)㊀㊀摘㊀要㊀为了研究埋藏较深的煤炭资源开采期间所面临的冲击地压显现难题,对典型的4种冲击地压从动静载叠加诱发冲击机理的角度进行了分析,并指出不同诱因的冲击地压的监测预警均可从能量的角度入手,防止因弹性应变能积聚过高而诱发冲击显现㊂通过对比传统监测与预警分析和优化后监测与预警分析关于微震能量分布演化规律情况,指明优化后监测与预警分析方法能够很好地对能量事件平均化分布集中区进行监测,并能实时分析集中区的演化规律以及其中能量的集中程度状况,起到了事前对冲击显现位置监测预警的效果㊂关键词㊀冲击地压;动静载;微震能量;监测与预警中图分类号:TD324㊀文献标识码:B㊀文章编号:1672-0652(2021)03-0004-04㊀㊀近些年,随着煤炭资源开采深度的逐年增大,出现了很多千米深井,尤其对于开采历史较为悠久的东北㊁山东㊁河南等地区,煤层开采深度普遍较大,这也导致开采期间将会面临更大的地应力影响㊂同时,由于地下条件的复杂多变,不仅面临高地应力威胁,同时还会伴随有断层构造㊁褶曲构造㊁覆岩特征㊁开采布局等因素的叠加影响[1-4].因此,有必要针对埋藏较深的煤层开采期间面临的冲击地压显现等难题进行监测预警研究,提前采取卸压防治措施,为深井煤炭资源的安全高效开采提供安全保障㊂1㊀典型冲击地压诱发机理井工开采期间,根据采掘位置空间上的相对关系以及地质构造的影响情况,可以将诱发冲击地压的原因归纳为典型的4种情况,见图1.基于动静载叠加诱发冲击地压机理可知,冲击地压是由静载荷(σj )和动载荷(σd )共同叠加作用下发生的㊂其中,静载荷(σj )又可以分解为水平方向静载荷(σx )和垂直方向静载荷(σy ).由此可知,图1a)所示的煤柱型冲击地压主要诱发因素为开采导致护巷窄煤柱体内承载较高的垂直方向静载荷图1㊀典型的4种冲击地压诱发机理模型图(σy ),此时窄煤柱体受较高的垂直方向静载荷作用而处于临界屈服状态,当采掘活动引起一定程度的轻微动载荷扰动,窄煤柱体将会发生瞬间失稳破坏而诱发冲击动力显现㊂图1b)所示的构造型冲击地压主要诱发因素为褶曲地质构造引起的水平方向静载荷(σx ),此时采掘空间周围煤体受较高的水平方向静载荷作用而处于临界屈服状态,当采掘活动引起一定程度的轻微动载荷扰动,采掘空间周围煤体将会发生瞬间失稳破坏而诱发冲击动力显现㊂图1c)所示的断层型冲击地压主要诱发因素为断层地质构造引起的动载荷(σd),此时采掘空间邻近断层开采致使断层活化而形成剧烈动载扰动,此时采掘空间周围煤岩体内若积聚有较高的静载荷,采掘空间周围煤体将会发生瞬间失稳破坏而诱发冲击动力显现㊂图1d)所示的顶板型冲击地压主要诱发因素为上覆厚硬顶板破断引起的动载荷(σd),此时采掘空间周围煤岩体内若积聚有较高的静载荷,将会在动载扰动下诱发冲击动力显现㊂综上所述,从动静载叠加诱发冲击动力显现的角度可知[5],煤柱型和构造型冲击地压的诱导因素为静载荷为主,动载荷为辅;而断层型和顶板型冲击地压的诱导因素为动载荷为主,静载荷为辅㊂基于诱发冲击显现的能量判据准则,当采掘周围煤岩体内积聚的弹性应变能高于其发生失稳破坏所需的最小弹性应变能时,煤岩体将会瞬间失稳诱发冲击显现,其表达式:U jd =(σj+σd)22EȡU min(1)式中:Ujd 动静载叠加作用下采掘空间周围煤岩体内积聚的弹性应变能大小,kJ;U min 采掘空间周围煤岩体瞬间失稳破坏所需最小弹性应变能大小,kJ;E 采掘空间周围煤岩体的平均弹性模量,MPa.可见,对于不同诱因的冲击地压的监测预警均可从能量的角度入手,实现对于采掘空间周围煤岩体内积聚弹性应变能较高的区域及时采取措施,防止因弹性应变能积聚过高而诱发冲击显现㊂2㊀微震能量监测预警技术近些年,随着微震能量监测预警技术在矿山企业的推广应用,具有冲击地压危险的矿井基本均安装有相配套的微震监测系统㊂微震能量监测预警体系的数据收集㊁传输与分析见图2.由图2可知,冲击地压矿井现场安装的井下矿山微震灾害监测系统能够实时地将井下采掘活动中产生的微震能量信号收集起来,并对数据进行初步㊁实时的分析,初步对井下作业环境的安全情况进行判定㊂后续收集到的微震能量信号将会通过专用互联图2㊀微震能量监测预警体系图网络传输至矿山地震远程监测与研究中心,再分类传输至相关专业分析人员处,通过对数据的汇总分析,提出相应的预警措施,并将信息反馈给矿山企业㊂可见所构建的微震能量监测预警体系能够实现数据的远程分析,进而能够实时针对矿山开采期间存在的安全隐患进行针对性㊁专业性的分析,为矿山企业安装微震能量监测系统的高效利用奠定了基础㊂3㊀微震能量监测与冲击预警分析3.1㊀传统监测与预警分析方法以鹤煤集团某矿为工程背景,通过该矿井内安装的微震检波器实现对于煤层开采活动期间煤岩体破裂所产生的弹性应力波的接收㊂该矿井内目前正在开采的四水平1号工作面周围的微震检波器布置情况见图3.1号工作面开采期间,于2016年10月15日发生了一起严重的冲击地压事故,造成了服务巷道大范围严重的破坏㊂关于 10.15 冲击地压事故发生前采用传统方法监测的微震能量演化规律见图4.由图4可知,传统方法监测的微震能量分布演化规律不明显,只能通过微震检波器对开采活动期间煤岩体破裂所产生的弹性应力波进行接收和常规的定位计算,最终确定每一次煤岩体破裂时微震能量事件的大小和位置,所获得的监测结果存在分析困难㊁难以精准识别危险区等问题㊂图4只对微震能量大于102J的事件进行了统计,其中图4a)所示10月10日的微震能量事件不大于103J,整体微震能量事件较小㊂图4b)所示10月11日的微震能量事件中存在3㊃5㊃2021年第3期杨增强等:冲击地压微震能量监测预警技术研究与探讨㊀图3㊀微震检波器布置平面图图4㊀传统方法监测的微震能量分布演化规律图次在104J 范围内的中等强度微震能量事件,但紧随着图4c)所示10月12日的微震能量事件中并无在104J 范围内的中等强度微震能量事件继续增加的趋势㊂图4d)所示10月13日的微震能量事件中又出现1次在104J 范围内的中等强度微震能量事件㊂后续图4e)所示10月14日的微震能量事件中又出现2次在104J 范围内的中等强度微震能量事件,在104J 范围内的中等强度微震能量事件存在继续增加的趋势㊂图4f)所示10月15日的微震能量事件中存在2次在105J 范围内的高强度微震能量事件,并伴随有10.15 冲击地压显现的发生㊂由上述 10.15 冲击地压事故发生前的每日微震能量事件分布演化规律看不出较明显的规律性,微震能量事件分布主要集中于1号工作面回采位置前方,最终因为10月15日的2次高强度微震能量事件影响而于工作面回采位置前方超前段巷道内诱发冲击地压事故㊂对于事故原因的分析可知,这次冲击显现属于图1b)所示的构造型冲击地压(此时工作面回采位置位于向斜构造影响区),其诱发因素主要以静载荷为主,动载荷为辅㊂可见,采用传统方法监测的微震能量分布演化规律对于冲击地压发生所起到的监测预警效果较差,难以实现对于冲击危险区域的识别目的,并且对于微震能量后续的分布演化规律也不易判定,适合事后分析事故原因而不适用于事前监测预警㊂3.2㊀优化后监测与预警分析方法针对传统监测与预警分析方法存在的诸多缺陷,提出将能量平均化分布来提高微震能量分布演化规律的辨识度㊂关于对能量进行平均化分布的过程,可根据Frankel 等基于空间光滑地震活动性模型采用点源进行地震危险性分析的理念,将震源简化为点源,并以定位误差作为统计滑移半径,其数值由定位误差数值仿真方法计算获得[6].关于微震能量事件平均化分布的计算模型见图5.由图5可知,针对微震能量事件平均化分布计算模型,以任一微震能量为中心点划分网格,假设网格各节点之间的距离为S ,以定位误差作为统计滑移半径的大小为r ,则相应的尺寸条件应该满足下式:㊃6㊃山西焦煤科技2021年第3期图5㊀微震能量事件平均化分布计算模型示意图S 2()2+S 2()2ɤr 2(2)㊀㊀变换不等式可知:S ɤ2r(3)㊀㊀其相应的核心计算公式:ρj =lgðt i ɪ(t 0,t 1]E tiS j+ðt i ɪ(t 1,t 2]E tiS j+ +(ðt i ɪ(t n -2,t n -1]E tiS j+ðt i ɪ(t n -1,t n ]E tiS j)(4)式中:ρj 第j 区域的累积能量密度,即采场统计区域之一,lg(J /m 2);E ti 在(t n -1,t n ]时间间隔内发生在统计网格单元中的微震总能量,J;S j 统计区域的面积,m 2.同样针对 10.15 冲击地压事故发生前采用优化后监测的微震能量演化规律见图6.由图6可知,优化后监测的微震能量分布演化规律较传统方法监测的微震能量分布演化规律要显著㊂图6中只对微震能量大于102J 的事件进行了平均化分布,其中图6a)所示10月10日的微震能量事件平均化分布云图中开始出现能量事件平均化分布集中区,但是集中区面积较小且集中程度较低㊂图6b),c),d),e)所示的微震能量事件平均化分布云图中能量事件平均化分布集中区面积开始变大且集中程度越来越高㊂图6f)所示的微震能量事件平均化分布云图中能量事件平均化分布集中区中集中程度最高的位置处发生了 10.15 冲击地压显现㊂可见,通过优化后监测的微震能量演化规律能够很好地对能量事件平均化分布集中区进行监测,并能实时分析集中图6㊀优化后监测的微震能量分布演化规律图区的演化规律以及其中能量的集中程度状况,起到了事前对冲击显现位置监测预警的效果㊂4㊀结㊀论1)针对典型的4种冲击地压从动静载叠加诱发冲击地压机理的角度进行了分析,指出煤柱型和构造型冲击地压的诱导因素以静载荷为主,动载荷为辅;而断层型和顶板型冲击地压的诱导因素以动载荷为主,静载荷为辅㊂2)基于诱发冲击显现的能量判据准则,当采掘周围煤岩体内积聚的弹性应变能高于其发生失稳破坏所需的最小弹性应变能时,煤岩体将会瞬间失稳诱发冲击显现㊂因此,对于不同诱因的冲击地压的监测预警均可从能量的角度入手,采用微震能量监测预警技术㊂3)传统方法监测的微震能量分布演化规律较为不明显,监测预警效果较差,难以实现对于冲击危险区域的识别目的㊂根据Frankel 等基于空间光滑地震活动性模型优化后监测与预警分析方法能够很好地对能量事件平均化分布集中区进行监测,并能实时分析集中区的演化规律以及其中能量的集中程度状况,起到了事前对冲击显现位置监测预警的效果㊂(下转第11页)㊃7㊃2021年第3期杨增强等:冲击地压微震能量监测预警技术研究与探讨参㊀考㊀文㊀献[1]㊀俞启香.矿井通风难易程度的统计分析与分级[J].中国矿业学院学报,1985,14(3):82-92.[2]㊀赵以蕙.矿井通风系统的评价方法[J].中国矿业学院学报,1985(3):81-86.[3]㊀胡朝仕,王德明,周福宝,等.矿井通风难易程度评价指标的探讨[J].煤矿安全,2009,40(10):89-92.[4]㊀马㊀砺,雷昌奎,李珍宝.矿井等积孔评价通风难易程度指标探讨[J].矿业安全与环保,2015,42(5):116-119.[5]㊀刘㊀辉,杨胜强,许㊀芹,等.矿井通风难易程度的准确划分及应用[J].河南理工大学学报(自然科学版),2017,36(4):026-031.Research on Accurately Verification of Difficulty in Mine VentilationGAO Zhisong㊀㊀Abstract ㊀In order to evaluate the difficulty of mine ventilation more scientifically and accurately,the mainreasons for the failure of the current coal mines to evaluate the difficulty of mine ventilation using isocratic holes are bining with the Muirger method to evaluate the difficulty of mine ventilation,the relationship betweenthe air volume of the ventilation system and the resistance of mine ventilation,a new method for accurately dividingthe difficulty of modern mine ventilation is proposed,and the accuracy of the new evaluation method are verified indifferent types of mines.The results show that the new method of dividing the difficulty of mine ventilation can moreaccurately and reasonably define the difficulty of mine ventilation.Key words ㊀Mine ventilation difficulty;Equal volume holes;Mine ventilation resistance;Ventilation system(上接第7页)参㊀考㊀文㊀献[1]㊀岳鹏飞.综放工作面回风巷超前段破坏及控制技术[J].山西焦煤科技,2017,41(1):42-45.[2]㊀窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.[3]㊀成晋峰.褶曲构造区沿空巷道底板冲击机理及防治[J].山西焦煤科技,2020,44(6):31-34.[4]㊀杨增强.复杂地质构造区诱发冲击矿压机理及防控研究[D].北京:中国矿业大学,2018.[5]㊀延㊀安.动静载叠加扰动作用对巷道围岩冲击破坏研究[J].山西焦煤科技,2016,40(Z1):28-31,36.[6]㊀王桂峰,窦林名,蔡㊀武,等.冲击地压的不稳定能量触发机制研究[J].中国矿业大学学报,2018,47(1):190-196.Research and Discussion on Monitoring andEarly Warning Technology of Microseismic Energy for Rock BurstYANG Zengqiang ,LI Fengshuo ,Ren Changle㊀㊀Abstract ㊀In order to study the problems of rock bursts during the mining of deeply buried coal resources,thefour typical rock bursts are analyzed from the perspective of the shock mechanism induced by the superposition ofdynamic and static loads,and the rock bursts with different inducements are pointed out.The monitoring and earlywarning can be started from the perspective of energy to prevent the shock from being induced due to the excessiveaccumulation of elastic strain energy.By comparing traditional monitoring and early warning analysis and optimizedmonitoring and early warning analysis on the evolution of microseismic energy distribution,it is pointed out that theoptimized monitoring and early warning analysis method can monitor the evenly distributed concentrated area of energyevents,and can analyze and concentrate in real time.The evolution law of the area and the degree of energyconcentration in it have played a role in monitoring and warning the impact of the impact in advance.Key words ㊀Rockburst;Dynamic and static loads;Microseismic energy;Monitoring and early warning㊃11㊃2021年第3期高志松:准确划分矿井通风难易程度探究。

微震监测在冲击地压监测中应用

微震监测在冲击地压监测中应用

ISS微震监测技术在监测煤矿顶板塌落及预警中的应用盛虞MDL/优赛科技地下空间测量技术推介会2009年5月21日,北京微震和微震监测技术(Micro-seismic Monitoring Technology) 微震:局部范围内岩石在断裂时以地震波形式产生的震动。

微震监测技术:利用监测岩体微震活动的发生、发展、以及通过对微震源的定位和分析,以判断、评估和预报监测范围内岩体的稳定性。

矿山微震里氏震级范围-123456711989 Newcastle 地震5.8级里氏震级矿山微震灵敏度510152040751002-44-66-1212-2020-35-1.5-1.0-0.50.0微震监测系统组成微震检波器(本质安全型)GSi微震仪(本质安全型,功率<120mW) 数据通讯(RS232、RS485、PSK协议或光纤)与计算机系统数据处理软件及图像显示分析软件微震检波器ISS第五代全自动数字微震控制器普通型微震控制器煤矿用本质安全型微震控制器数据通讯方式和距离RS485每根电话线可接三只GSi微震控制器最大距离2400米,GSi间距最大1200米PSK由4芯线点到点接到每个GSi微震控制器最大距离5000-7000米根据信号电缆质量GSi微震控制器通讯示意ISS GSx最新无线微震裂缝计数技术GSx技术特点:•自记式微震(裂缝)记录器,本质安全型;•记录器包括了拾震器、信号处理器、电池等;•多只GSx记录器可形成无线微震监测网;•采用无线传输模式,传输距离为100米;•可在没有电源供应和通讯网络的条件下实行监测;•可与GS监测网连接将数据传送到处理中心。

•配有闪光报警功能,可安装在作业面附近。

•磁铁吸附安装方式,便于重复应用。

GSx最新无线微震裂缝计数技术GSx最新无线微震裂缝计数技术GSx最新无线微震裂缝计数技术可回收检波器测得的高质量微震记录图线图像显示与分析软件过滤后的微震事件空间分布微震数据空间等值图表示高精度微震监测数据高精度微震监测数据地质结构面活动性的微震监测识别(1)Lynch R.(2005)The located seismic events would tend tolie on a particular group of geologicalstructures if those structures wereresponsible for the fracturing, andso a search for statistically significantplanes of weakness in the seismic data isuseful. When this procedure is applied tothe Navachab data, a plane sub-parallel tothe slope is indicated –Figure 5.Since this plane has a very similar dipand position to the major J2 joint set, it isassumed that these structures are slipping,resulting in the recorded seismicity.地质结构面活动性的微震监测识别(2)Moonee 煤矿顶板塌落与诱发风爆事故1998年1月22日悉尼《每日电讯报》:17名矿工在煤矿爆炸中受伤Moonee矿微震监测系统Moonee矿微震监测系统„4只三向28Hz检波器,永久性安装于顶板10 米深的钻孔中,检波器间距100m。

基于微震监测的5个指标及其在冲击地压预测中的应用

基于微震监测的5个指标及其在冲击地压预测中的应用

基于微震监测的5个指标及其在冲击地压预测中的应用地压冲击是一种将地压应力、裂缝产生及发展应力概念应用于岩溶地貌中的一种进展。

它作为一种地质过程,它主要发生在大力水压下,从而使地压力及其持续时间以及潜在的破坏威胁都被迅速活跃地压。

所以,监测地压及其所产生的损害对于防范灾害是很必要的。

近年来,微震技术得到了广泛的应用,已经成为地压监测的一种方法。

通过微震仪测量地压,可以判断地压真实状况,准确地预测地压冲击及其对建筑物造成的潜在损坏。

下面将介绍基于微震监测的五种指标,以及其在预测地压冲击中的应用:①震动能量。

它是指地面剪切应力的震动能量,可以用来计算临界震动能量,以确定该指标是否低于可控阈值。

②地面偏差。

这是测量微震时地压发生地点位移或转角的指标,它可以提供对地压分布的近似估计。

③峰值振幅。

它是指地压作用的瞬时振幅,可以用来提供对地压的估算大小以及超过临界振幅的过程。

④持续时间。

这是指测量微震振动的持续时间,它可以用来估算地压的断层发展和持续时间的可能性。

⑤波形形变系数。

它是利用微震技术计算微震波形形变率的指标,可用于估算地压发展变形角度,以及弹性释放所必须的可破坏威胁程度。

以上这五种指标都可用于评估地压冲击和损坏可能性。

例如,可以通过计算峰值振幅来评估地压造成的潜在损坏程度,并利用振动能量计算地压破坏的最小可控阈值。

此外,可以通过计算波形形变系数来估算地压发展变形角度、以及弹性释放所必须的可破坏威胁程度。

综上所述,基于微震监测的五种指标在预测地压冲击中有着十分重要的作用,它们可以帮助我们准确地判断地压冲击程度,并采取预防措施,以防止或减少可能造成的损害。

微震监测与深孔爆破在防治冲击矿压中的应用

微震监测与深孔爆破在防治冲击矿压中的应用

1 微震监测系统简介
煤矿冲击矿压灾害是一种开采诱发的矿山地震, 不仅造成井巷 破 坏、人 员 伤 害,而 且 会 引 发 瓦 斯、煤 尘 爆炸。由于这种 灾 害 发 生 时 间、地 点、区 域、震 源 等 的 复杂多样性和突发性,对其预测防治,是煤炭行业的难 题。SOS 微震监测系统可实现对矿井包括冲击矿压在 内的矿震信号进行远距离( 最大 10km) 、实时、动态、自 动监测,给出 冲 击 矿 压 等 矿 震 信 号 的 完 全 波 形。 可 准 确计算出能量大于 100J 的震动及冲击矿压发生的时 间、能量及空间 三 维 坐 标,确 定 出 震 动 类 型,判 断 出 冲 击矿压发生力源,对矿井冲击ቤተ መጻሕፍቲ ባይዱ压危险程度进行评价。
图 1 冲击矿压前矿震能量、频次趋势
5 深孔爆破
接到微震台预警报告后,该区域停止生产,并派专 业防冲钻机进行打眼,进行深孔爆破。
根据震源位置在回风巷 10m 设置钻场,炮眼孔底 布置在工作面上端头 15m( 120 ~ 124 组支架) ,孔底间 距 5m,呈扇形布置,其中 1 号孔深 13m,2 号孔深 12. 4m, 3 号孔深 13. 6m,终孔位置距煤层顶 8m,炮眼方位角分 别为 10°、33°、51°,倾角分别为 40°、28°、14°( 图 2) 。
* 收稿日期: 2012 - 03 - 05 作者简介: 陈贵林,男,1992 年 7 月毕业于黑龙江矿业学院采矿工
程系,大学学历,高级工程师,现任黑龙江龙煤矿业集团股份有限公 司鹤岗分公司开拓技术部副部长。
图 2 钻孔布置图
2012 年第 5 期
197
选煤厂火灾监控系统的设计浅析
马亮
( 北京华宇工程有限公司,河南 平顶山 467002)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究微震监测系统在煤矿冲击地压预警中的应用
发表时间:2019-06-18T11:44:53.680Z 来源:《基层建设》2019年第8期作者:郑义宁孟凡超侯祥丁[导读] 摘要:科学技术的不断进步和快速发展,促使很多行业在发展过程中,都会选择一些先进的技术手段来进行应用。

山东能源临矿集团菏泽煤电公司郭屯煤矿山东菏泽 274700摘要:科学技术的不断进步和快速发展,促使很多行业在发展过程中,都会选择一些先进的技术手段来进行应用。

比如在针对煤矿冲击地压问题进行具体处理的时候,可以将微震监测系统科学合理的应用其中,这样可以起到良好的预警效果。

本文对此进行分析,将微震监测系统在煤矿冲击地压预警中的应用作用充分发挥出来。

关键词:微震监测;煤矿冲击;地压预警;应用措施在当前我国社会经济不断快速发展的背景下,各个行业的整体发展势头都比较良好,对煤矿资源的整体需求量也在不断增加。

由于受到当前形势的影响,各个企业都在不断加大对煤矿的开采力度,同时还需要对开采深度进行不断的深入。

在这种背景下,由于受到煤矿冲击影响,而导致的地压灾害事件数量有了明显的上升。

这样不仅会导致周围环境遭受到严重的破坏和影响,而且还会威胁到人们的财产和生命安全。

在针对煤矿冲击地压问题进行具体处理时候,可以通过微震监测系统在其中科学合理的利用,来提前做好一系列的预警,同时还能够降低事故造成的恶劣影响。

1微震监测系统在煤矿冲击地压预警中的应用 1.1微震监测系统
在当前科学技术不断进步和快速发展的背景下,越来越多的新型技术和自动化、现代化控制系统被广泛应用在各个领域中,对各个行业的发展具有非常重要的影响和作用。

特别是在当前煤矿资源需求量不断增加的形势下,越来越多的企业都在不断提高煤矿资源的开采量,同时还会对其进行不断深入的开采。

这样就会加大煤矿冲击地压出现的几率,一旦出现问题,不仅会对周围的环境造成严重的影响,而且还会威胁到作业人员的人身安全。

所以在这种背景下,可以将微震监测系统科学合理的应用其中,这样可以实现良好的预警作用。

微震监测系统在实际应用过程中,与一些传统的被动式监测系统相比,具有明显的优势特点。

微震监测系统在具体操作过程中,在其中增加了自激震动波速反演的计算功能,所以在这种背景下,该系统在实际应用过程中的精准度和有效性比较良好[1]。

除此之外,微震监测系统在具体应用过程中,自身具有非常良好的自动化参数等功能特征,同时在使用时,还可以实现连续、实时有效的对震动信号进行搜集,在搜集之后,还可以结合实际情况,对这些信号进行有针对性的滤波处理。

根据相关数据统计结果可以得出,微震的整个频率范围在经过测量和统计之后,将其确定在0至150Hz,同时动态范围控制在110dB的范围之内。

除此之外,在与实际情况进行结合之后,发现其整个传输速率大概在100Mbps左右,传输距离在经过测量之后,发现其可以达到20km。

1.2冲击地压预警
在针对地压预警模型进行具体构建和利用的时候,可以与实际情况进行结合,同时还可以将监测结果与模型进行结合,这样做的根本目的是为了对冲击危险状态进行科学合理的判断。

在针对预警模型进行具体构建的时候,其根本目的是为了实现对整个煤矿冲击地压过程的有效预警,这样可以提前做好一系列的准备工作,尽可能降低损失。

在针对各种不同类型的煤矿开采项目进行具体操作的时候,要提前进入到勘测现场,对所处的地质环境等综合因素进行合理的判断,这样可以对煤矿开采工作是否具有冲击危险性进行合理的判断。

在这一基础上,要结合实际情况,根据一些具有冲击危险性的项目,进行冲击地压解危措施的有效落实。

在具体操作过程中,可以组织相关工作人员和技术操作人员,对具有冲击危险性的煤矿作业进行大孔径的卸压处理,同时还可以使用煤层卸载爆破卸压措施等[2]。

通过这些措施在实践中科学合理的利用,不仅能够从根本上促使工作面的冲击危险性得到有效的控制,而且还能够为整个微震监测系统在实际应用过程中的安全性和稳定性提供保障。

2微震监测系统在煤矿冲击地压预警中的应用效果煤矿开采本身就是一项具有危险性的工作内容,在开采作业之前,要提前做好一系列的勘测工作,特别是在具体的采掘过程中,要注意尽可能避免受到冲击危险性的影响。

在针对煤矿冲击问题进行具体处理的时候,要结合实际情况,将微震监测系统科学合理的利用其中,这样不仅能够从根本上实现对整个冲击危险的有效预警,而且还能够结合预警内容,提前做好一系列的应对措施,为煤矿开采作业的顺利实施打下良好基础。

在具体操作过程中,可以利用微震监测系统,对冲击地压的整个监测结果进行实时有效的控制。

在与监测结果进行结合分析的时候,如果监测结果当中所呈现出的内容,表示煤矿开采作业具有冲击危险的时候,就会发出相对应的预警。

在这一背景下,要结合实际情况,利用大孔径卸压等各种不同类型的方式,实现对冲击地压的有效处理。

在针对冲击危险进行妥善处理之后,要与微震监测系统中的监测结果进行结合,对采掘工作在具体开展过程中的状态进行判断,判断是否已经消除了冲击危险。

在监测过程中,如果监测结果显示冲击危险仍然存在,那么需要立即采取有针对性的措施,继续落实解危措施,一直到监测结果显示危险解除之后,才可以实现煤矿采掘作业。

通过利用微震监测系统,不仅能够及时有效的对煤矿冲击危险进行判断,而且还可以结合实际情况,提前做好一系列的预防措施。

在该系统的实际应用过程中,可以实现对工作面真实有效的冲击地压预警。

预警的目的是为了提前发出危险警示,这样不仅能够为工作人员的危险应对提前留出一些时间,而且还能够为冲击地压灾害的防治,起到非常重要的影响和作用。

3结束语近年来,市场上对于煤矿资源的整体需求量不断增加,导致煤矿企业在日常开采作业过程中,加大了开采力度,同时也加深了开采深度。

在煤矿作业过程中,经常会受到冲击地压的影响,这样不仅会直接导致煤矿开采工作很难顺利开展,而且还会威胁到作业人员的人身安全。

所以在这种背景下,将微震监测系统科学合理的应用其中,这样可以实现对整个煤矿开采作业的有效监测,一旦出现冲击地压,可以及时给予相对应的预警,这样有利于实现对冲击地压快速有效的防治。

参考文献:
[1]李宏艳,莫云龙,孙中学,李磊.煤矿冲击地压灾害防控技术研究现状及展望[J].煤炭科学技术,2019,47(01):62-68.
[2]谭云亮,张明,徐强,郭伟耀,于凤海,顾士坦.坚硬顶板型冲击地压发生机理及监测预警研究[J].煤炭科学技术,2019,47(01):166-172.。

相关文档
最新文档