高水头长短叶片混流式转轮短叶片的多学科优化

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高水头长短叶片混流式转轮短叶片的多学科优化转轮是水力机组的核心部件,也是水电运行中最容易受到破坏的部件。

新型转轮需要尽量提高效率,改善空蚀、磨蚀和应力集中等问题以改善整体性能,达到机组安全、经济的运行指标。

带有短叶片的转轮具有高效区较宽、振动小、抗空蚀磨损等优势,发展前景广阔。

在水力机械优化设计过程中,优化中的两个重要的学科是水力性能和结构性能。

为了探索更好的水轮机优化设计路线,缩短研发周期,确保机组稳定、高效运转,本文基于多学科优化设计方法,同时考虑水轮机转轮的水力性能和结构性能,对高水头混流式水轮机转轮短叶片进行多学科优化设计。

本文采用CFD计算与FEM分析相结合的优化流程,以提升转轮整体性能,优化中将包括上冠下环在内的转轮整体考虑进去,以得到与实际更接近的应力分布。

通过采用UG二次开发的Open Grip语言编译程序对叶片几何进行参数化,运用Bezier曲线拟合叶片各截面几何翼型骨线,实现转轮的参数化。

优化自变量为短叶片翼型骨线外形、翼型头部偏移量、翼型相对厚度,约束条件为进出口总压差,优化目标为转轮效率、转轮叶片最低静压值和转轮最大静应力,进行学科间耦合信息传递及各学科的分析,运用NSGA-Ⅱ多目标遗传算法展开全局寻优从而得到最终优化结果。

本文基于NSGA-Ⅱ多目标遗传算法分别对三个工况下的转轮进行优化,再通过超传递近似法对不同几何在三个工况下的优化目标进行加权,对加权目标函数进行比较,最终的优化几何选取大流量工况下优化的几何。

优化后的结果显示,优化后的转轮效率得到提高,最低静压得到提升,最大静应力有所降低,转轮的整
体性能得到了提高,对水轮机转轮短叶片多学科优化设计的工程应用进行了一定的探索。

相关文档
最新文档