数学黄金分割

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁教版八上
黄金分割
议一议
下面一组矩形中, 你觉得哪一个矩形 最好看呢?
黄金矩形
查阅 & 欣赏
☞ 黄金分割
与生活


世界名画<蒙娜丽莎>之所以有名,也得益于黄 金分割,无论是画面整体还是局部. 人的俊美,体现在头部及躯干是否符合黄金分 割.
查阅 & 欣赏

巴黎圣母院
黄金建筑设计
东方明珠塔,塔 高462.85米.设计师 将在295米处设计 了一个上球体,使 平直单调的塔身变 得丰富多彩,非常 协调、美观.
A
D
C
B
如图,乐器上的一根弦AB=80cm,两个端点 A,B固定在乐器板面上,支撑点C是靠近点 B的黄金分割点,点D是靠近点A的黄金分割点. 试确定支撑点C到端点B的距离以及支撑点D 到端点A的距离.
C B
A
D
巴台农神庙(Parthenom Temple)
A
E
B
D
F
C
如果用图中的虚线表示的矩形画成如图所示的矩形 ABCD,以矩形ABCD的宽为边在其内部作正方形 AEFD,那么我们可以惊奇的发现, BC = AB .点 BE BC E是AB的黄金分割点吗?矩形ABCD的宽与长的比是 黄金比吗?
黄金身材比例
为什么翩翩起 舞的芭蕾舞演员 要掂起脚尖? 为 什么身材苗条的 时装模特还要穿 高跟鞋?为什么她 们会给人感到和 谐、平衡、舒适, 美的感觉?
源自文库
读一读
人体的肚脐不但是美化身型的 黄金点,有时还是医疗效果的黄 金点,许多民间名医在肚脐上贴 药治好了某些疾病.人体最感舒 适的温度是23℃(体温),也是正 常人体温(37℃)的黄金点 (23=37×0.618).这说明医学 与0.618有千丝万缕联系,尚待开 拓研究.人体还有几个黄金点: 肚脐上部分的黄金点在咽喉,肚 脐以下部分的黄金点在膝盖,上 肢的黄金点在肘关节.上肢与下 肢长度之比均近似0.618.
查阅 & 欣赏

黄金分割 与生活
由黄金分割画出的正五角星形,有庄严雄健之美.
A
C
B
度量C到点A、B的距离,
AC AB

BC AC
相等吗?
A
C B
A C B
如图,点 C 把线段 AB 分成两条线段 AC 和 BC , 如果
AC
AB =
BC AC
AC = BC
AB AC
AC2=AB ∙ BC
那么称线段 AB 被点 C 黄金分割(golden section), 点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的比叫做黄金比. √5 – 1 : 1 ≈ 0.618 : 1 AC BC = = 2 AB AC
练一练
A E B
1.点E是AB的黄金分割点吗? 2.矩形ABCD的宽与长的比是
D
黄金比吗?
F
C
BC = BE
AB BC
BC = AB BC AB
BE BC
AE = AB
BE AE
点E是AB的黄金分割点
AE
AB
(即
)是黄金比
矩形ABCD的宽与长的比是黄金 比 宽与长的比等于黄金比的矩形也称为黄金矩形
人与黄金分割
更上一层楼
如图,已知线段AC,并且点C是线段AB的黄金 分割点,你能够找到点B吗?如果已知线段BC 呢?试试看吧! A 若 AC=1, 则 1 = BC
AB 1
C
B
如图,点 C 叫做线段 AB 的黄金分割点,
=
√5 - 1
2
即 AB=
√5 + 1
2
≈1.6 18
若 BC=1,

AC
AB = 1 = √5 - 1 2 AC
即 AB=
√5 + 3
2
≈2.6 18
归纳小结
1.通过建筑、雕塑、音乐等领域的实 例了解黄金分割,感受了黄金分割的 美. 2.进一步理解线段的比、成比例线段 等相关内容.
3.通过作图找到一条线段的黄金分 割点,并利用已学知识给予了说明.
实际 应用 1.据有关测定,当气温处于人体正常体温 的黄金比值时,人体感到最舒适.因此夏天 使用空调时室内温度调到什么温度最适合. 2.在人体下半身与身高的比例上,越接近 0.618,越给人美感,遗憾的是,即使是身 体修长的芭蕾舞演员也达不到如此的完美. 某女士身高1.68米,下半身1.02米,她应 该选择多高的高跟鞋看起来更美呢?
做一做

如图,已知线段AB按照 如下方法作图:
自己找出 黄金分割点
D
1.经过点B作BD⊥AB, 使 BD 1 AB. 2 2.连接AD,在AD上截取 DE=DB. 3.在AB上截取AC=AE.
A
B
思考:
1.如果设AB=2,那么BD,AD,AC,BC分别等于多少? 2.计算AC/AB,BC/AC. 3.点C是线段AB的黄金分割点吗?
想一想
(1)如果设AB=1,那么 1 AD= BD= 2
AC=
5 2
(2)点C是线段AB的黄金分割点吗?
5 1 2
3 5 BC= 2
异曲同工
如下方法也可以得 到黄金分割点.
如图,设AB是已知线段, 在AB上作正方形ABCD; 取AD的中点E,连接EB; 延长DA至F,使EF=EB; 以线段AF为边作正方形 AFGH.点H就是AB的黄 金分割点.
相关文档
最新文档