第三讲 配位化合物
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲配位化合物
3-1配位化合物的命名
一般服从于无机化合物的命名原则,内界与外界之间叫“某化某”;“某酸某”;“氢氧化某”等。
一、内界命名:
1、次序:配位体数→配位体名称→合→中心离子或原子(氧化数<罗马数字>)
2、配位名称顺序:无机简单离子→复杂离子→有机离子→NH3-H2O→有机分子。如:[Co(NH3)3H2OCl2]+
(1)多类配体如果不只一个时,按配位原子元素符号的英文字母顺序命名,如:
[CoClNO2(NH3)4]+:一氯·一硝基·四氯合钴(Ⅲ)离子
[Co(CO)4(NH3)2]+:四羰基·二氨合钴(Ⅲ)离子
(2)配位原子相同,配体中原子数目也相同,则按结构式中与配位原子相连的原子的元素符号字母顺序排列,如:[Pt(NH2)(NO2)(NH3)2]:氨基·硝基·二氨合钵(Ⅱ)
(3)多核配合物命名:在桥联基前冠以希腊字母μ-,桥基多于一个时,用二(μ-),三(μ-)。如:
[(NH3)5Cr-OH-Cr(NH3)5]Cl5
五氯化·μ-羟·十氨合二铬(Ⅲ)
五氯化·μ-羟·二(五氨合二铬(Ⅲ))
3、电中性配体:一般保留原来命名,而CO、NO、O2和N2作为配体时,为羰基、亚硝基、双氧、双氮。
4、同一配体若配位原子不同,则名称不同,如-NO2硝基、-ONO亚硝酸根、-SCN硫氰酸根、-NCS异硫氰酸根
5、常见配体缩写:
乙二胺(en)、吡啶(py)、硫脲(tu)、草酸根(ox-)、乙酰丙酮根离子(acac-)、乙二胺四乙酸根离子(EDTA-)3-2 配合物的异构现象
1、构造异构:配合物的实验式相同,但中心原子于配体间连接的方式不同而引起的异构。主要有:
(1)离解异构:如[Co(NH3)5Br]SO4和[Co(NH3)5SO4]Br
(2)水合异构:如[CrCl(H2O)5]Cl·H2O和[CrCl2(H2O)4]Cl·2H2O
(3)配位异构:如[Co(en)3][Cr(CN)6]和[Cr(en)3][Co(CN)6]
(4)键合异构:如[Co(ONO)2(NH3)4]Cl和[Co(NO2)2(NH3)4]Cl
(5)聚合异构:如[Co(NH3)6][Co(NO2)6]和[Co(NH3)4(NO2)2][Co(NH3)2(NO2)4]
2、立体异构:配合物的实验式和成键原子连结方式都相同,但配体在空间排列方式不同而引起的异构。又分为:(1)几何异构:配体在空间相对位置不同而产生的异构现象。如:[Pt(NH3)2Cl]有两种异构体——顺式和反式橙黄色,μ>0,溶解度大亮黄色,μ<0,溶解度小
[CrCl2(NH3)4]+也有2种异构体,顺式和反式八面体Ma3b3存在面式、径式,如:[Co(CN)3(NH3)3].
常见化合物类型与几何异构体数关系
(2)旋光异构(手性):若一个与其镜像不能叠合,则该分子与其镜像像互为旋光异构,如[Pt(NH3)2(NO2)2Cl]的旋光异构体为:
例:画出下列配合物可能存在的立体异构体。
(1)[PtClBrNH3Py] (2)[PtCl2(NO2)(NH3)2]
3—3 配合物价键理论
一、基本要点(对于配合物ML n而言)
1、中心原子M和配体之间的结合是由M提供空轨道,L提供孤电子对而形成的配位键。有σ配键、π配键。
2、中心原子(或离子)提供的空轨道,必须进行杂化,杂化轨道的类型决定了配离子的空间构型和稳定性。如:sp(直线)、sp2(平面三角)、sp3(正四面体)、dsp2(平面正方)、dsp3(三角双锥)、d2sp2(d4s,四方锥)、d2sp3(sp3d2,八面体)
3、中心原子由(n-1)dnsnp轨道杂化而形成的配合物称内轨型配合物;而由nsnpnd轨道杂化而形成的配合物称外轨型化合物,内轨型配合物稳定性大于外轨型化合物。
4、高自旋和低自旋配合物
(1)与自由离子比较,形成配合物后,体系成单电子数未变,而磁矩(μ)未变,称为高自旋配合物,一般为外轨型配合物,而主量子数相同的价轨道杂化成键。
(2)与自由离子比较,形成配合物后,成单电子数减小,磁矩(μ)变小,称为低自旋配合物,即(n-1)d轨道参与杂化成键。
(3)判断高自旋和低自旋配合物方法:
①实验测定:
②经验方法
a、电负性大,高自旋,如F-,O2-等。(F-;H2O等)
b、电负性小:低自旋:C、N等。(CN-;NO2-;CO等)
例:指出下列配离子(1)中心离子的电子排布情况。(2)杂化类型,配合物类型(内轨型还是外轨型)、空间构型及磁矩。
1、Ni(CN)42-
2、Ni(CO)4
3、Cr(H2O)63+
4、CoF63-
5、Co(NH3)62+(μ=3.8μB)
6、Co(NO)64-(μ=1.8μB)
3—4 配合物的晶体场理论
一、基本要点:
1、中心离子与配体之间看作纯粹的静电作用
2、中心离子d轨道在配体(场)作用下,发生能级分裂。
3、d电子在分裂后的d轨道上重排,改变了d电子的能量。
二、d轨道能级分裂
1、八面体场中d轨道能级分裂
2、四面体(场)中d轨道能级分裂
三、分裂能(∆)
1、概念:分裂后最高能量d轨道的能量与最低能量d轨道能量之差叫做d轨道分裂能(∆)。
2、不同配体场中,d轨道分裂能值不同(上图)
3、影响分裂能大小因素
(1)对于同一M离子,∆随配位体不同而变化,如八面体中,
I- 这一序列称为光谱化学序列。按配位原子来说,∆大小为:卤素<氧<氮<碳 (2)相同配体,同一M元素,高价离子比低价∆大。 (3)相同配体,同一族,第三过渡系>第二过渡系>第一过渡系 四、晶体场稳定化能(CFSE) 1、概念:在配体场作用下,d轨道发生分裂,d电子在分裂后d轨道总能量,叫做晶体场稳定化能。在其他条件相同时,CFSE越大,配合物越稳定。 2、应用 例1:计算Fe2+(d6)在强场和弱场中的CFSE。 五、晶体场理论的应用