基于计算机视觉的人脸检测与识别
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形态学商图像的方法是建立在如下模型基础上的: I(i,j)=R(i,j)L(i,j)
I(i,j)=R(i,j)L(i,j)
注:I灰度,R反射率,L光照估计 Lambertian反射模型 :
I (i, j) (i, j)n(i, j) s (i, j)
问题就是如何从输入的人脸图像中估计光照分量L,然后就可以通过相 除的操作来获得R,即与光照无关的人脸本质特征。
(三)关于人脸检测识别的应用
随着技术的进一步成熟和社会认同度的提高,人脸识别技术将应用在更多的 领域。 1、企业、住宅安全和管理。如人脸识别门禁考勤系统,人脸识别防盗门等。 2、电子护照及身份证。这或许是未来规模最大的应用,国际民航组织 (ICAO) 已确定,从2010年起,其118个成员国家和地区,必须使用机读护 照,人脸识 别技术是首推识别模式,该规定已经成 为国际标准。中国的电子护照计划公安部一所正在加紧规划和实施。 3、公安、司法和刑侦。如利用人脸识别系统和网络,在全国范围内搜捕逃 犯。 4、自助服务。如银行的自动提款机,如果用户卡片和密码被盗,就会被他 人冒取现金。如果同时应用人脸识别就会避免这种情况的发生。 5、信息安全。
2.基于模板的人脸检测方法 3.基于直方图粗分割和奇异值特征的人脸检测 4.基于局部特征的人脸检测方法 5.基于小波的人脸检测方法 6.基于杠杆训练机的方法 .....
三 人脸识别
• 基于形态学商图像的方法
数学形态学是由一组形态学的代数运算子组成的,它的基本运算有4个: 膨 胀(或扩张)、腐蚀(或侵蚀)、开启和闭合, 它们在二值图像和灰度图像 中各有特点。基于这些基本运算还可推导和组合成各种数学形态学实用算法, 用它们可以进行图像形状和结构的分析及处理,包括图像分割、特征抽取、 边缘检测、 图像滤波、图像增强和恢复等。数学形态学方法利用一个称作结 构元素的“探针”收集图像的信息,当探针在图像中不断移动时, 便可考察 图像各个部分之间的相互关系,从而了解图像的结构特征。数学形态学基于 探测的思想,与人的FOA(Focus Of Attention)的视觉特点有类似之处。作 为探针的结构元素,可直接携带知识(形态、大小、甚至加入灰度和色度信 息)来探测、研究图像的结构特点。
• 形态学的闭运算来估计光照
(1)人脸的本质特征,如眉毛 眼睛 嘴巴 鼻子等的形状边缘以及相 对位置等,通常是小尺度特征的形式表现。相比之下,光照强度的变 化,包括阴影区域,通常是大尺度模式。因此,从一幅人脸图像中估 计光照就相当于将大尺度特征和小尺度特征分离开来。 (2)闭运算对不同尺度的模式很敏感,而且基于形态学的多尺度图 像分割的关键就是选取合适大小的结构元素。那些尺度比结构小的模 式会被去除,而尺度比结构元素大的模式则被保留。 (3)人脸的关键信息如眉毛 眼睛 鼻子 嘴巴等通常比周围的区域暗, 也就是是说其信息是以谷的形式存在。而闭运算就是处理谷的信息。 去除一些暗的细节,使得处理后的图像变得明亮。 (4)这里的结构元素包括其形状和大小。 (5)一方面,如果结构元素过大,利用此结构元素的闭运算进行的 光照估计效果会变差,会误用外界信息,特别是阴暗区。另一方面, 如果结构元素太小,它会损失一些脸部的关键信息。所以要选取合适 的结构元素。
基于计算机视觉的人脸检测与识别
指导老师:黄玉波 学生:刘灿铭
一 对于人脸检测与识别的综述
(一)关于人脸检测与识别的发展
第一阶段(1964 年~1990年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用 的主要技术方案是基于人脸几何结构特征(Geometric feature based)的 方法。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不 是很多,也基本没有获得实际应用。 第二阶段(1991 年~1997年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的热潮期,可谓硕果累累: 不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的 FERET 人 脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名 的 Visionics(现为 Identix)的 FaceIt 系统。以及美国麻省理工学院(MIT) 媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法也成 为这一时期最负盛名的人脸识别方法。 第三阶段(1998 年~现在) 之前的人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非 理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态 问题逐渐成为研究热点。
(二)关于人脸检测识别的主要流程
人脸检测与识别系统的基本实现思想通过赋予计算机的“眼 睛”( 如摄像机、数码相机等 )“观察”到的“影像”——人脸, 从中提取有效个体特征来鉴别身份的能力。人脸检测与识别可分 为人脸检测、人脸特征提取和人脸识别三个阶段,整个流程如图 1 所示,即对像集中的图像逐幅进行检测,判断其中是否存在人 脸,如果人脸存在,则对其进行精确定位,并进行人脸识别,通 过特征提取,获得人脸信息,进行身份验证。
人脸识别应用于出入境
人脸识别应用于公安司法
二 人脸检测Baidu Nhomakorabea
(一)人脸的检测定义
任意给定一个图像或者一组图像序列,人脸检测的目的就在于判定图 或图像序列中是否存在人脸。
(二)人脸检测的方法
这些特征中哪些是有用的,如何利用这些特征,是人脸检测要研究的关键问题。
1.基于镶嵌图(马赛克)的人脸检测方法
• 该方法是将人脸的五官区域分别划分成不同解析度的马赛克块,应用 一组规则进行检测,并且利用边缘特征进一步验证。
• 低解析度图像中的每个单元格的灰度是原图像中相应格内的像素灰度 均值。
• 具体的来说是利用分层的策略 进行人脸检测,系统共分为3层。 (1)最高层 用来检测人脸的规则规定了人脸 的整体灰度特点。 (2)第二层 再上一层检测基础上继续进一步 检测,所用的规则基于更详细 的判断。 (3)第三层 在上一层检测的人脸候选区域进 行直方图均匀化,然后进行眼 睛和嘴唇的边界检测,如果被 检测出的结果符合眼睛和嘴唇 的特征,那么一张人脸就被确 定出来。