基于聚膦腈的杂原子掺杂介孔碳纳米管制备及其用作超级电容器电极材料应用研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于聚膦腈的杂原子掺杂介孔碳纳米管制备及其用作超级电容器电极
材料应用研究
陈奎永1,黄小彬2*,刘洪2,唐小真3
1上海交通大学材料科学与工程学院,上海市闵行区东川路800号,200240
2上海交通大学航空与航天学院,上海市闵行区东川路800号,2002400
3上海交通大学金属基复合材料国家重点实验室,上海市闵行区东川路800号,2002400
*Email:xbhuang@
通过在惰性气氛下碳化交联聚膦腈纳米管,制备了杂原子掺杂的介孔碳纳米管(HMCNTs)。控制碳化温度在700℃~1000℃,所得碳材料能保持良好的管型形貌。所制备碳纳米管具有较高的BET比表面积~791.5 m2/g,孔隙率0.573 cm3/g,以及均一的介孔结构,孔径约为4 nm。碳化之后,交联聚膦腈纳米管中包含的N, P, O, S等杂原子仍被保留且掺杂在碳纳米管的分子结构中。电化学测试表明,所得碳纳米管具有良好的超级电容性能。恒电流充放电表明,在充放电电流密度为0.1 A/g 的情况下,900℃碳化所得材料在6 mol/L 氢氧化钾/水电解液中的比容量约为188.9 F/g,当电流密度提高至5 A/g,起比容量仍可保持70.6%。该杂原子掺杂介孔碳纳米管具有较高的比电容以及较好的高速充放电性。这主要得益于材料的管型形貌以及管壁上的介孔结构有助于电解液离子的扩散。
Fig. 1 (a) SEM image of HMCNTs, (b) Charge/discharge curves of HMCNTs at current densities of 0.1A/g.
关键词:超级电容器;杂原子;介孔;碳纳米管;聚膦腈
参考文献
[1] Zhu, L; Xu, Y; Yuan, W; Xi, J. Adv Mater.2006,18: 2997.
[2] Wang, G; Zhang, L; Zhang, J. Chem. Soc. Rev. 2012, 41: 797.
[3] Xie, X; Pasta, M; Hu, L; Yang, Y. Energ. Environ. Sci. 2011, 4: 1293.
[4] Huang, Y; Liang, J; Chen, Y. Small. 2012, 8:1805.
[5] Frackowiak, E; Metenier, K; Bertagna, V; Beguin, F. Appl. Phys. Lett.2000, 77:2421.
Facile synthesis of heteroatoms doped carbon nanotubes with uniform mesopores for high-performance supercapacitor electrodes
Kuiyong Chen1, Xiaobin Huang 2*, Hong Liu2, Xiaozhen Tang3
1School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan
Road, Shanghai, 200240
2School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 800 Dongchuan Road,
Shanghai, 200240
3National Key Laboratory of Metallic Matrix Composite Material, Shanghai Jiao Tong
University, 800 Dongchuan Road, Shanghai, 200240
Heteroatoms doped mesoporous carbon nanotubes were produced via a facile carbonization of highly cross-linked polymeric nanotubes under inert atmospheres. One-dimensional structures were well maintained at the calcination temperatures in the range of 700 °C to 1000 °C. The obtained carbon nanotubes possess large Brunauer–Emmett–Teller specific surface area up to 791.5 m2/g, high pore volumes of 0.573 cm3/g, and uniform pore size of about 4 nm. Electrochemical tests manifested good supercapacitor performance of the carbon nanotubes. Galvanostatic charge/discharge test demonstrated that, the nanotubes carbonized at 900 °C exhibit a reversible specific capacitance about 188.9 F/g at a current density of 0.1 A/g in 6 M aqueous KOH electrolyte. The carbon nanotubes show high specific capacitance, and rate performance, which would be benefit from their tubular morphology and mesoporous wall structure, thus facilitate the transition of electrolyte ions.