电力电子电动车充电器的设计方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁工业大学
电力电子技术课程设计<论文)题目:36V/2A电动车充电器设计
院<系):电气工程学院
专业班级:电气112
学号:110303070
学生姓名:张巍
指导教师:
起止时间:2018-12-30至2018-1-10
课程设计<论文)任务及评语
院<系):电气工程学院教研室:电气
摘要
电动自行车作为一种轻便的交通工具时下已非常普遍,其普及程度大有超赶自行车的趋势,而充电器是电动自行车必不可少的配件,电动车充电器市场巨大。该充电器基于电流模式的开关电源的原理设计,主电路采用单端反激式设计,控制电路以电流型集成控制器UC3842为核心,配合LM324光耦和TL431实现对蓄电池的充电控制。目前市场上的充电器可分为两类:一类是以UC3842为核心驱动的单管变换器,另一类是以TL494为核心驱动的半桥型变换器。TL494驱动的是半桥式连接的功率管,适用于较大功率;UC3842驱动的单管它激式功率管,适用于功率较小。本文基于UC3842设计了一款反激式低成本的36V电动车充电器。
设计内容简介了相关芯片,给出了完整的实际设计电路详细分析了其设计及其工作原理,这其中包括主电路、工频整流电路、高频逆变-变压器-高频整流电路和显示部分的工作原理。实践应用表明,该充电器性能优良,适应性较强,比同性能的充电器成本低,很有市场竞争力。
关键词:集成控制器;充电器;开关电源;单端反激式
目录
第1章绪论1
1.1电力电子技术简况1
1.2本文设计内容4
第2章36V/2A电动车充电器电路设计5
2.1电动车充电器总体设计方案5
2.2具体电路设计5
2.2.1工频整流电路设计8
2.2.2高频逆变-变压器-高频整流电路设计10
2.3元器件型号选择11
第3章课程设计总结14
参考文献16
第1章绪论
1.1电力电子技术简况
顾名思义,可以认为,所谓电力电子技术就是应用于电力领域的电子技术。电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件<如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。通常所用的电力有交流和直流两种。从公用电网直接得到的电力是交流,从蓄电池和干电池得到的电力是直流。从这些电源得到的电力往往不能直接满足需求,需要进行电力变换。电力电子技术的应用范围十分广泛。它不仅用于一般工业,也广泛用于交通运输、电力系统、通信系统、计算机系统、新能源系统等,在照明、空调的家用电器及其他领域中也有着广泛的应用。
电动车充电器是指专门的电动自行车的电瓶配置的一个充电设备。充电器的分类用有、无工频<50赫兹)变压器区分,可分为两大类。常用的开关电源式充电器又分半桥式和单激式两大类。货运三轮充电器一般使用带工频变压器的充电机,体积大、重量大、费电,但是可靠,便宜;电动自行车和电摩则使用所谓开关电源式充电器,省电,效率高,但是易坏。在各种电子设备当中,需要多路不同电压供电,如数字电路需要5V,3.3V,2.5V等,模拟电路需要正负12V,正负15V等,这就需要专门设计电源装置来提供这些电压,通常要求电源装置能达到一定的稳定精度,还能够提供足够大的电流。开关电源在效率,体积和重量等方面都远远优于线性电源,成为电子设备供电的主要电源形式。只有在一些功率非常小或者要求供电电压纹波非常小的场合还在使用线性电源。
整流电路普遍采用二极管构成的桥式电路,直流侧采用大电容滤波,该电路结构简单、工作可靠、成本低,效率也比较高,但存在输入电流谐波含量大、功率因数低的问题,因此较为先进的开关电源采用有源的功率因数校正 高频逆变-变压器-高频整流电路是开关电源的核心部分,具体电路采用的是带隔离的直流-直流变流电路。针对不同的功率等级和输入电压可以选取不同的电路。针对不同的电压等级,可以选择不同的高频整流电路。 随着微电子技术的不断发展,电子设备的体积不断减小,与之相适应,要求开关电源的体积和重量也不断减小,提高开关频率并保持较高的效率是主要的途径。一个开关电源经常需要同时提供多组供电,这可以采用给高频变压器设计多个二次绕组的方法来实现,每个绕组分别连接到各自的整流和滤波电路,就可以 得到不同电压的多组输出,而且这些不不同的输出之间是相互隔离的。值得注意的是,仅能从这些输出中选择一路作为输出电压反馈,因此也就只有这一路电压的稳压精度较高,其他路的稳压精度都较低,而且其中一路的负载变化时,其他路的电压也会跟着变化。 除了交流输入之外,很多开关电源的输入为直流,来自电池或者另一个开关电源的输出,这样的开关电源被称为直流-直流变换器。直流-直流变换器分为隔离型和非隔离型两类,隔离型多采用反激、正激、半桥等隔离型电路,而非隔离型采用buck、boost、buck-boost等电路。 开关电源高频化是其发展的方向高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域,的应用,推动了开关电源的发展前进,每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。 开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。另外,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET、变压器。SCR在开关电源输入整流电路及软启动电路中有少量应用,GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。 开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功 率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度Bs>下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。,开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。